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Abstract

Functional neuroimaging provides an avenue for earlier diagnosis and tailored treatment of psychological disorders char-
acterised by emotional impairment. Near-infrared spectroscopy (NIRS) offers ecological advantages compared to other
neuroimaging techniques and suitability of measuring regions involved in emotion functions. A systematic review was con-
ducted to evaluate the capacity of NIRS to detect activation during emotion processing and to provide recommendations for
future research. Following a comprehensive literature search, we reviewed 85 journal articles, which compared activation
during emotional experience, regulation or perception with either a neutral condition or baseline period among healthy par-
ticipants. The quantitative synthesis of outcomes was limited to thematical analysis, owing to the lack of standardisation
between studies. Although most studies found increased prefrontal activity during emotional experience and regulation, the
findings were more inconsistent for emotion perception. Some researchers reported increased activity during the task, some
reported decreases, some no significant changes, and some reported mixed findings depending on the valence and region.
We propose that variations in the cognitive task and stimuli, recruited sample, and measurement and analysis of data are
the primary causes of inconsistency. Recommendations to improve consistency in future research by carefully considering
the choice of population, cognitive task and analysis approach are provided.
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Altered emotional processing is characteristic in the patho-
physiology of many psychological disorders, including major
depressive disorder, bipolar disorder and schizophrenia spec-
trum disorders (Green et al., 2005; Li et al., 2010; Townsend and
Altshuler, 2012; Earls et al., 2016). An influential model devel-
oped by Mayer et al. (2000) posits that a set of skills combining
emotional and cognitive aspects constitute emotional process-
ing (Aguirre et al., 2008). The model outlines four domains: iden-

tifying emotions (commonly referred to as emotion perception),
facilitating emotions (also known as emotional experience),
managing emotions (also referred to as emotion regulation),
and understanding emotions (Salovey and Sluyter, 1997; Mayer
et al., 2001). Some researchers have suggested that emotional
understanding constitutes a separate social cognitive dimen-
sion and others have proposed that emotional expression is
another discreet subdomain of emotion processing (Higgins and
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Bargh, 1987; Phillips and Seidman, 2008). Although the terms,
definitions and boundaries of emotion processing subdomains
vary widely in the literature and impede comparison of findings,
most researchers agree on three domains: emotional perception,
experience and regulation (Green et al., 2005; Isaacowitz et al.,
2017). Emotion perception refers to one’s ability to recognise and
identify a diverse array of social cues (e.g. facial expressions,
body language and vocal differences) during daily interactions.
Emotional experience is the immediate subjective, physiological
and behavioural reaction to an emotion-invoking event or stim-
ulus. Finally, emotion regulation refers to the process through
which individuals influence what, when and how emotions are
expressed, by initiating, inhibiting or modulating their feelings,
thoughts, physiological responses and behaviours.

It has been well established in previous research that
early diagnosis and treatment of psychological disorders
lead to improved functional outcomes (Barlati et al., 2013;
Zwaigenbaum et al., 2015; Grant et al, 2017). Nonetheless,
the current assessment method of many psychological condi-
tions, including schizophrenia and autism spectrum disorders,
depends upon the initial deterioration and symptom progres-
sion before a diagnosis can be made. Therefore, researchers are
always seeking potential biomarkers to aid in numerous aspects
of prevention and treatment, including risk factor assess-
ment, early diagnosis, prognosis, and treatment selection and
monitoring (Woo and Wager, 2015). The advancement in neu-
roimaging technology has shifted researchers’ attention towards
developing neural-based biomarkers of cognitive impairments
that underlie psychological conditions. Using functional mag-
netic resonance imaging (fMRI), researchers have identified sev-
eral candidate biomarkers for emotion processing, including
the amygdala, temporo-parietal junction, prefrontal cortex (PFC)
and anterior cingulate cortex (ACC) (Nord et al., 2017; Lee et al.,
2019). Nonetheless, several previous studies have reported poor
reliability of activation during a range of emotion processing
tasks (Plichta et al., 2012; Nord et al., 2017, 2019). Although activ-
ity in these regions has demonstrated low statistical reliability
between people with mood and anxiety disorders (Nord et al.,
2017), a recent study by Lee et al. (2019) found that a 12-week
social cognitive training intervention modulated functional con-
nectivity in individuals with psychotic disorders.

NIRS is an emerging neuroimaging technique that has been
increasingly used in the study of cognition over the last couple
of decades. NIRS is a useful tool for non-invasively measuring
haemodynamic changes in the cortical surface of the brain. It
operates in relation to the haemodynamic response, whereby
activated regions of the brain experience high metabolic
demands and an increase in oxygen consumption (Ferreri et al.,
2014). This consumption of oxygen leads to an initial reduc-
tion of oxygenated haemoglobin (O,Hb), followed by an increase
in regional cerebral blood flow, which consequently elevates
O,Hb concentrations (Fekete et al., 2014). NIRS capitalises on
the changing optical properties in cortical tissue by emitting
near-infrared light into the cortex, whereby it is either absorbed,
scattered or reflected, and detecting the amount of light which
is redirected back towards the skull (Irani et al., 2007). Emitter
optodes emanate light into the cortical tissue, while the receiver
optode detects the quantity of reflected light. The level of oxy-
genation determines the absorption properties of haemoglobin,
with activated brain regions absorbing more light owing to the
higher O,Hb levels (Fekete et al., 2014).

NIRS has gained wide support and recognition among cog-
nitive neuroscientists owing to several advantages it has over
other neuroimaging techniques (Nishitani and Shinohara, 2013).

Its high ecological validity is one of the most important advan-
tages, as it can be used in natural environments without the
need for sedation or restraints and is less susceptible to data cor-
ruption from participant movement (particularly the head) (Irani
et al., 2007; Suda et al., 2010; Fekete et al., 2014). This is beneficial
in studying clinical populations owing to the lower physical and
psychological burden on patients and reduced need for control-
ling their actions (Irani et al., 2007). A second advantage of NIRS
is its cost-effectiveness to purchase, use and maintain relative
to the more expensive fMRI and positron emission tomography
(PET) approaches (Fekete et al., 2014). Third, in addition to being
relatively easy to use, most modern NIRS systems are portable
in size, enabling them to be used in a wider variety of environ-
ments, including patients’ homes or shared throughout school
districts (Irani et al., 2007). Other advantages of NIRS include its
suitability for collecting data from larger cohorts, higher tem-
poral resolution compared to fMRI, higher spatial resolution
compared to EEG, capacity to be used in combination with other
neuroimaging techniques, and its high validity and reliability
(Irani et al., 2007; Fekete et al., 2014). Finally, NIRS has the capac-
ity to research fields, which are difficult to examine using other
neuroimaging techniques, such as in the study of linguistic or
auditory topics owing to the absence of instrumental noise, dif-
ferent bodily states because participants are not required to lay
supine or communication because NIRS is capable of measuring
neural activation in multiple participants simultaneously (Irani
et al., 2007; Suda et al., 2010).

Owing to its practical advantages over other techniques, NIRS
provides an avenue for investigating the psychophysiological
mechanisms of disorders characterised by emotion process-
ing impairments (Yang et al., 2019). Although NIRS has been
proposed as a potential tool for risk assessment, treatment
monitoring and therapeutic intervention, candidate biomark-
ers first need to be identified, and the reliability of NIRS for
detecting them must be determined (Yang et al., 2019). Numer-
ous researchers have used NIRS to investigate neural activations
during emotion processing, but findings are often contradic-
tory. While many studies implementing a range of cognitive
tasks have reported O,Hb changes in the PFC during emotion
processing (Bigliassi et al., 2015; Egashira et al., 2015; Gruber
et al., 2019), other studies have reported no significant changes
in O,Hb concentrations when measured with NIRS (Ates et al.,
2017; Huang et al., 2017; Lucas et al., 2019). Furthermore, dis-
crepancies in localisation and direction of neural activity also
exist in the literature (Rodrigo et al., 2016; Abdullayev et al.,
2018; Anuardi and Yamazaki, 2019). The abundance of conflict-
ing findings poses a challenge for healthcare professionals who
often lack the time to source, critically appraise and extract evi-
dence from all relevant articles to guide their decision-making
(Gopalakrishnan and Ganeshkumar, 2013). Therefore, a system-
atic review of the literature is warranted to synthesise, clarify
and provide evidence for use in clinical practice.

To date, three reviews have examined emotion process-
ing using NIRS. The first, a mini-review by Doi et al. (2013),
thematically described the findings from eight studies using
NIRS to examine emotion-evoked prefrontal activity. A sec-
ond study by Bendall et al. (2016) reviewed 11 recent studies,
which adopted NIRS methodology to study PFC activities during
emotional experiences in both healthy individuals and several
patient populations, including bipolar disorder, major depres-
sive disorder and social anxiety disorder. The third review by
Maria et al. (2018) examined 50 NIRS studies of passive emo-
tion processing in infants under the age of 2 years. As far as we
are aware, the present review is the most extensive systematic



review of emotional processing studies using NIRS and the
first review to incorporate the domains of emotion perception
and regulation. This review aimed to establish the capacity of
NIRS for detecting changes in neural activations during various
domains of emotion processing in healthy individuals. Before
NIRS can be considered for detecting potential biomarkers, its
capacity for measuring activation during emotion processing
must first be assessed. If NIRS is established as an effective
tool for measuring functional changes during emotion process-
ing, future investigations can then determine whether NIRS
can detect differences between patient populations and healthy
control groups. After summarising and synthesising the over-
all findings reported in studies examining three domains of
emotion processing, the current review outlines methodological
limitations, recommendations for future research and clinical
implications.

Methods

A systematic database search was conducted of MEDLINE
(PubMed), Scopus, EMBASE and Google Scholar independently
by two authors (M.W. and C.H.). Additionally, the citation lists
of all relevant articles and previous reviews were screened. A
combination of the following search terms was employed: near-
infrared spectroscopy AND (emotion processing OR emotion
perception OR emotion recognition OR emotion experience OR
emotion regulation). All pertinent research papers published in
English between January 2000 and January 2020 were collected
and imported to a reference manager (EndNote, X9 Thomson
Reuters). All duplicates were removed, along with any papers
not published in English. If multiple publications and compan-
ion papers were found using the same participants, only those
papers with the largest sample and most in-depth assessment
were included. The titles and abstracts were firstly screened
for relevance, followed by a full-text reading of the relevant
articles. The literature search and presentation of results were
undertaken in accordance with the Preferred Reporting Items for
Systematic Reviews and Meta-Analysis (PRISMA) guidelines.

The Population, Intervention, Comparison and Outcome
(PICO) framework was employed to establish eligibility criteria
(O’Connor et al., 2008). Peer-reviewed articles were only included
if they met four criteria: (i) the study examined a healthy human
population or included a healthy control group, (ii) a cognitive
task involving some form of emotion processing (perception,
experience or regulation) was administered during the NIRS
measurement, (iii) the task period was compared to a baseline
period or a neutral task condition, and (iv) mean oxygenated
haemoglobin changes were measured as the primary outcome
variable. Any studies which measured O,Hb during a neurocog-
nitive task and later correlated that activity with performance
data on an emotion processing task were excluded from this
review. Only peer-reviewed articles written in English were con-
sidered. Narratives, reviews, commentaries, reports and essays
were excluded from this review; nonetheless, the reference lists
were screened for relevant studies.

Extraction and analysis

Two authors (M.W. and C.H.) independently extracted data from
all relevant studies using a standard pre-piloted form and later
compared results, resolving inconsistencies through mediation.
If the first two authors could not reach consensus, the remain-
ing authors (D.S. and D.N.) were contacted to settle the dis-
agreement. Thirteen variables were extracted: the size of the
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sample, type of participants, mean age, gender distribution,
the emotion processing domain, type of control condition, NIRS
system used, analysis software, cognitive task, chosen stimuli,
the size and direction of O,Hb change, probe arrangement, and
the geographic location of the study. When data were not ade-
quately reported, the corresponding author of the study was
contacted and the necessary data requested. If multiple groups
were reported separately in a study, only the data for the healthy
control group were included in the analysis. Data were reported
for each of the included studies separately and synthesised the-
matically. Meta-analyses of the studies could not be conducted
owing to inconsistencies with the type of measurement, choice
of tasks and method of analyses. Owing to the lack of standard-
isation between the eligible studies, analyses of outcomes were
limited to descriptive synthesis. Refer to Figure 1 for a sum-
mary of the selection and screening process presented using the
PRISMA flow chart.

Quality assessment

The quality evaluation of eligible studies was also independently
conducted by two researchers (M.W. and C.H.) according to the
outlined criteria. The Quality Assessment Tool for Observational
Cohort and Cross-Sectional Studies (QATOCCS), an instrument
developed by methodologists at the National Institute of Health
for assessing non-randomised studies, was implemented in
evaluating the quality of included articles (National Institute of
Health, 2004). The instrument consists of 14 items for evaluating
potential flaws in study methods or implementation, includ-
ing sources of bias, confounding factors, statistical power and
strength of association between variables. Owing to the nature
of NIRS studies, the QATOCCS scale was adapted in several
ways for this review. First, item-12 was removed as blinding
of participants and assessors was not applicable to this type of
research. Second, item-6 was adapted to highlight the studies,
which incorporated both a baseline and neutral control con-
dition. Finally, regarding item-7, the sufficient timeframe was
interpreted as block length and set to 20 s to ensure adequate
time for the haemodynamic response. The 13-item checklist was
used to divide the articles into three levels: poor, fair or good
quality. Good-quality studies were defined as having a score
equal to or greater than 9, fair-quality studies had a score rang-
ing from 5 to 8, while poor-quality studies were defined as 5 or
less. Studies rated as poor were excluded from the review. See
Supplementary materials for the quality assessment instrument
and score sheet.

Results

During the initial search phase, 1736 articles from databases
and 11 articles from reference lists were identified and exported
to EndNote (Clarivate Analytics, USA). After removing dupli-
cates, 1384 studies were screened for relevance by examining
their titles and abstracts, narrowing the pool to 125 articles for
full-text evaluation. Following the aforementioned eligibility cri-
teria, 41 studies were excluded for several reasons, including
17 for inadequate cognitive task designs, 7 for lack of full-text
availability, 6 for not reporting O,Hb concentrations, 4 for not
including a healthy control group, 4 for reusing a previously
reported sample, and 3 for not measuring with NIRS during the
emotion processing task. A total of 85 NIRS studies were found
to meet inclusion criteria and included in the final review. A full
list of included studies and their summary characteristics can
be found in Table 1.
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PRISMA flow diagram of study

Records identified through
database searching
(n= 1736)

Additional records identified
through other sources
(n=11)

| [ 1dentification

(n= 1384)

Records after duplicates removed
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Records excluded

(n=1384)

) (s

Full-text articles assessed

(n=126)
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Full-text articles excluded, with
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0O2Hb not reported (n = 6)
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Inadequate task design (n=17)

Studies included in systematic
review and qualitative synthesis
(n=85)
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Repeated use of sample (n =4)
Full text not available (n=7)
Emotion processing task not
measured with NIRS (n = 3)

v

Studies included in quantitative
synthesis/meta-analysis (n = 0)

[ Included

Fig. 1. PRISMA 2009 flow diagram visually depicts the flow of studies through each phase of the review process.
Adapted from: Moher D, Liberati A, Tetzlaff ], Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA

Statement. PLoS Med 6(6): €1000097. doi:10.1371/journal.pmed1000097.

Quality assessment

Based on the checklist criteria outlined in Supplementary Table
S3, 31 of the studies were identified as good quality and 54
studies as fair quality. None of the articles maintained after
screening were identified as poor quality during the quality
assessment phase. Conflicts of interest were reported in one of
the studies, while 39 failed to report on conflicts of interest and
the remaining 45 reported that there were no notable conflicts.
Attrition of participants was less than 80% in 27 of the studies.
Furthermore, 25 of the studies included both a resting baseline
and neutral comparison condition, which enabled better con-
trol for unrelated neurocognitive interference. A summary of

the quality assessment findings can be found in Supplementary
Table S2 (see Supplementary Material A).

Participant characteristics

The total sample size for the 85 included studies was 2169, con-
sisting of 1682 healthy adults, 269 infants, 181 children and 37
elderly. Fifteen of the studies also included a clinical compari-
son group, including four of schizophrenia spectrum disorders,
four of depressive disorders, two for autism spectrum disor-
ders, two of ADHD and one study each for Alzheimer’s, border-
line personality disorder and prenatal alcohol-exposed children.
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Across all articles mentioning gender (n=1 did not report gen-
der), the ratio of males to females was 1006 (45.7%) to 1195
(54.3%), respectively. Four of the studies included only male
participants, while eight included females only. The mean age
ranged from 163 days to 63.7 years, with an average of 28.8 years
(s.d.=4.2) across all studies. The studies were conducted in a
variety of countries, including 25 from Japan, 13 from China, 12
from Germany, 11 from the USA, six from Italy, three each from
Austria and the UK, two from Spain, Switzerland and Turkey,
and a single study from Brazil, Cyprus, Netherlands, Singapore
and South Africa. Although 15 of the 85 studies also included a
clinical sample for comparison, it was not a necessary criterion
as group comparisons fell outside the scope of this review.

NIRS measurement and analysis

A total of 30 different NIRS systems were used to measure O,Hb
changes across the reviewed studies, including CW6 (NIRSOp-
tic), DLP (NirScan), DYNOT (NIRx), ETG-100/4000/7000 (Hitachi),
Imager1000 (NIRx), FNIR100B/1100 (BioPac), FOIRE-3000
(Shimadzu), LABNIRS (Shimadzu), MP150 (BioPac), NIMprobe
(NIM Inc.), NIRO-200/300 (Hamamatsu), NIRScout (NIRx), NIR-
Sport (NIRx), OEG-16 (Spectratech), OEG-SpO2 (Spectratech),
OM-220 (Shimadzu), OMM-2000 (Shimadzu), Oxymon MKIII (Art-
nis), PocketNIRS duo (DynaSense) and eight custom-developed
systems. The ETG-4000 (Hitachi, Japan) was the most common
system, being used by 29 (33.7%) of the studies, followed by
the NIRScout with nine (10.5%) studies. There were 43 (50.6%)
articles which compared the task-related activity to a resting
baseline condition, 17 (20%) which compared to a neutral or con-
trol task condition, and 25 (29.4%) examined both baseline and
neutral conditions. The probes were positioned 3 cm apart for all
studies and placed over the frontal lobe in 75 of the studies, tem-
poral lobe in seven studies, occipital lobe in three studies and
parietal lobe in a single study. In addition to the range of NIRS
systems and probe layouts, the studies also used a variety of dif-
ferent softwares to analyse the NIRS data, including MATLAB,
SPSS, SPM 5, SPM 8, Homer 2, NIRS_SPM, fNIRSoft, NIRStar, Ana-
lyzIR, JMP Pro 12, NIRS toolbox, BIMTAS-II, NIRSLab, PowerLab
and the integral mode of various systems.

Emotion processing outcomes
Emotional experience

Emotional experience was the most commonly examined
domain of emotion processing, with 51 studies containing a total
of 1286 participants. Forty-three studies focused on the PFC,
while eight examined other brain regions, including the occip-
ital cortex and temporal lobe. Of the 43 studies examining the
PFC, 22 (51.2%) reported increased O,Hb in the PFC during the
experience of emotion stimuli, three (7%) reported greater acti-
vation only for negative stimuli (Herrmann et al., 2003; Yang
et al., 2007; Ozawa et al., 2014) and six (14%) reported no signif-
icant change in the O,Hb (Matsuo et al., 2003; Piper et al., 2015;
Deppermann et al.,, 2017; Huang et al., 2017; Nakata et al., 2018;
Lucas et al., 2019). In contrast, three (7%) studies claimed there
was a decrease in O,Hb in the PFC during emotional experience
(Himichi et al., 2015; Wei et al., 2017; Ozawa et al., 2019). The
remaining nine studies (20.9%) reported mixed findings depend-
ing on the valence or type of presented stimuli (Hoshi et al., 2011;
Perlman et al., 2014; Vanutelli and Balconi, 2015; Fanti et al., 2016;
Rodrigo et al., 2016; Matsukawa et al., 2017; Wang et al., 2018a,b;
Zhang et al., 2018).

Emotion regulation

Eleven studies with a total of 313 participants examined the
domain of emotional regulation. Of the 11 studies, six (54.5%)
reported increased activity in the PFC during regulation tasks
(Dieler et al., 2010; Ruocco et al., 2010; Ernst et al., 2013; Matsubara
et al., 2014; Giles et al., 2018; Grabell et al., 2018), three (27.3%)
reported increased prefrontal activation only during the regula-
tion of negative stimuli (Tupak et al., 2014; Holper et al., 2016;
Honda et al., 2018) and two (18.2%) studies reported no sig-
nificant changes in O,Hb (Glotzbach et al., 2011; Grabell et al.,
2019).

Emotion perception

With a total of 600 participants, 23 studies examined the domain
of emotion perception. Nineteen of the studies examined the
PFC, while four focused on other regions of the temporal or
occipital cortices. Of the 19 prefrontal studies, five (26.3%)
reported a significant increase in PFC activity during emotion
recognition tasks (Nishitani et al., 2011; Fox et al., 2013; Egashira
et al., 2015; Nishikawa et al., 2015; Lu et al., 2019) and two (10.5%)
reported increased O,Hb for negative stimuli only (Roos et al.,
2011; Hosokawa et al., 2015). In contrast, five (26.3%) studies
reported a significant decrease in O,Hb (Ravicz et al., 2015; Hirata
et al., 2018; leong and Yuan, 2018; Gruber et al., 2019; Manelis
et al.,, 2019) and two (10.5%) reported no significant change in
O,Hb (Herrmann et al., 2016; Ates et al., 2017). One study by
Watanuki et al. (2016) declared a significant change in O,Hb
but failed to indicate the direction of change. The remaining
four (21%) of studies presented mixed findings depending on the
prefrontal region or type of emotion stimuli (Roos et al., 2011;
Abdullayev et al., 2018; Anuardi and Yamazaki, 2019; Gao et al.,
2019).

Discussion

This review aimed to establish the capacity of NIRS for detecting
haemodynamic changes during emotion processing and pro-
vide recommendations for future research to improve reliability.
Following a comprehensive literature search, we identified 85
peer-reviewed journal articles assessing O,Hb concentrations
during tasks of emotion processing among healthy participants.
Of the included articles, 51 studies examined emotional experi-
ence, 23 emotion perception and 11 emotional regulation. There
was a wide variety of experimental paradigms across the var-
ious studies; thus, quantitative analyses of data were limited.
Nonetheless, we thematically summarised and synthesised the
findings, highlighted methodological limitations and made rec-
ommendations for future research. A frequency distribution of
overall study outcomes is presented in Figure 2.

Emotional regulation

The findings were most consistent among studies of emo-
tional regulation with almost all the reviewed studies showing
increased O,Hb in the PFC during the task period, especially for
the regulation of negative stimuli. For example, Giles et al. (2018)
delivered a cognitive reappraisal task using negatively valences
IAPS images and found increased activities in the dorsal and
APFC during the reappraisal condition. Likewise, Honda et al.
(2018) reported increased activity in the left PFC when partic-
ipants were required to suppress their own facial expressions
during the presentation of negatively valenced video stimuli.
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Fig. 2. Frequency distribution of study outcomes. The findings were most consistent among studies of emotional regulation with almost all the reviewed studies
showing increased O,Hb in the PFC. Many studies reported significant increases in prefrontal O,Hb concentrations during emotional experience, but there are several
studies with conflicting findings. Inconsistent findings were reported among the reviewed studies of emotional perception, with some reporting increased prefrontal

activity, some decreased and other no significant changes in O,Hb.

These findings are congruent with fMRI studies, which have
found increased activation in the vIPFC, dmPFC and left supe-
rior temporal gyrus, as well as hypoactivation in the amygdala
and OFC (Mak et al., 2009; Grecucci et al., 2012; Kohn et al., 2014;
Picé-Pérez et al., 2017). Nonetheless, one meta-analysis of cogni-
tive reappraisal studies found activation in the lateral temporal
cortex and bilateral amygdala, but not in the vmPFC or any
other region (Buhle et al., 2014). Dorfel et al. (2014) examined
various emotion regulation strategies separately and found that

cognitive reappraisal recruited a qualitatively different network
comprising the left vIPFC and orbitofrontal gyrus, compared to
the right prefrontal-parietal region activated by other strate-
gies, including detachment, expressive suppression and distrac-
tion. A recent meta-analysis of fMRI studies further concluded
that the dmPFC, angular gyri and left vIPFC are typically acti-
vated during cognitive reappraisal of emotion (Pic6-Pérez et al.,
2017). Taken together, these findings suggest that the left lateral
PFC plays a role in constructing reappraisal strategies that can
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modulate activity in emotion centres of the brain (Anderson and
Green, 2001; Ochsner et al., 2002; Dieler et al., 2010).

Although the findings among studies of emotional regula-
tion are relatively consistent, limited research has examined
this domain of emotion processing (n =11 studies), task dimen-
sions varied widely, and studies were often limited by statistical
power, sensitivity and generalisability. Specifically, three arti-
cles only focused on a single type of emotion (Ruocco et al.,
2010; Glotzbach et al., 2011; Honda et al., 2018), three only exam-
ined negatively valenced stimuli (Ernst et al., 2013; Tupak et al.,
2014; Giles et al., 2018), three used word-based interference
tasks involving neurocognitive interference (Dieler et al., 2010;
Matsubara et al., 2014; Holper et al., 2016), and the remaining two
studies used developmentally appropriate paradigms suitable
only for young children (Grabell et al., 2018, 2019). To date, there
have been no NIRS studies of emotional regulation using a range
of emotional stimuli to evoke affective states in healthy func-
tioning adults. Future research should focus more attention on
the domain of emotion regulation by using representative sam-
ples and comprehensive tasks to verify the findings presented
in the reviewed studies.

Emotion experience

The experience of emotion was by far the most exten-
sively researched domain of emotion processing. Many studies
reported significant increases in prefrontal O,Hb concentrations
during the presentation of emotionally inducing stimuli (Kreplin
and Fairclough, 2013; Brugnera et al., 2016; Balconiet al., 2017; Hu
et al., 2019; D. Zhang et al., 2019). Several studies also reported
increased activity in other brain regions, including the occip-
ital cortex during visual tasks (Herrmann et al.,, 2008; Kochel
et al., 2011) and the temporal lobe for tasks of auditory modality
(Plichta et al., 2011;Kondo et al., 2018; Zhao et al., 2019). Nonethe-
less, although most studies agreed on the increased O,Hb con-
centrations during emotional experience, no significant changes
were found by others (Nakata et al., 2018; Lucas et al., 2019)
and some even reported decreased prefrontal O,Hb concentra-
tions during the presentation of emotional stimuli (Himichi et al.,
2015; Wei et al., 2017; Ozawa et al., 2019). These findings are con-
gruent with fMRI studies, which have linked parts of the PFC
to emotional experience, even though there is no consensus
on the exact role, localisation and nature of activation (Kober
et al., 2008; Wacker et al., 2009; Gazzaniga and Ivry, 2013; Green
et al., 2015). One meta-analysis of fMRI and PET studies sug-
gests that there is no single region that uniquely represents
emotional valences, but rather valence is flexibly implemented
across instances by a set of valence-general regions, including
the anterior insula, rostral vimPFC, dorsal ACC, amygdala, ven-
tral striatum, thalamus and occipitotemporal cortex (Lindquist
et al., 2016).

Investigators have proposed that different neural systems
are responsible for the processing of different emotions
(Gazzaniga and Ivry, 2013). Providing support for this theory,
neuroimaging studies have revealed that activation in brain net-
works varies depending on the emotional situation (Changet al.,
2015; Kragel and LaBar, 2016). It is possible that alteration in
neural activities between some of the reviewed studies may
reflect differences in the types or valences of emotional stimuli
presented. A theme was uncovered in several reviewed stud-
ies whereby positively valenced stimuli were characterised by
O,Hb increases in the left hemisphere and negatively valenced
stimuli in the right hemisphere (Balconi and Vanutelli, 2016;
Balconi et al., 2017; Wang et al., 2018a). This pattern of activity is
consistent with two general theories of hemispheric asymmetry

for emotion: the right hemisphere hypothesis and the valence
hypothesis. The right hemisphere hypothesis posits that the
activation in the left hemisphere may function to regulate the
intensity of activation in the right hemisphere, whereby over-
activation is associated with negative experiences and under-
activation is associated with positive experiences. In contrast,
the valence hypothesis of hemispheric asymmetry suggests that
the anterior portions of both hemispheres are differentially spe-
cialised, with the left side being more dominant for positive
experiences and right-side dominance for the experience of
negative emotions. Although there is considerable evidence to
support both theories, the extent to which either hemisphere is
involved remains unclear. Nonetheless, these findings suggest
that, even within the PFC, positive and negative emotions are
characterised by different patterns of activation. Although this
is consistent with our findings, some of the studies with conflict-
ing results implemented tasks with a limited emotional range
(Himichi et al., 2015; Nakata et al., 2018). Thus, further research
is needed into the experience of different types of emotion using
NIRS.

Researchers have suggested that the resolution of NIRS might
be too coarse to discriminate between different emotional pro-
cesses (Glotzbach et al., 2011). Although previous fMRI stud-
ies have shown reliable differences in prefrontal activation
between emotional experience and regulation (Ochsner et al.,
2002; Lévesque et al, 2003; Kalisch et al., 2005; Phan et al,,
2005; Banks et al., 2007; Eippert et al., 2007), it remains unclear
how well NIRS can distinguish between the difference cognitive
states. One fMRI study found that cognitive reappraisal acti-
vates prefrontal regions similar to those reported in studies of
emotion regulation, while emotional experience activates the
bilateral amygdala (Winecoff et al., 2011). It has been theorised
that the PFC plays a role in suppressing activity in the amyg-
dala during emotional regulation, which can result in detectably
greater haemodynamic activity in the PFC and lower activation
in the amygdala during emotional regulation compared to expe-
rience (Glotzbach et al., 2011). Despite the coarseness and low
spatial resolution of NIRS, initial studies have shown different
patterns of activation for emotional regulation and experience.
For example, Giles et al. (2018) found decreased activity in the
dorsal and APFC during negative experience and increased activ-
ity during negative regulation. Similarly, Glotzbach et al. (2011)
found increased O,Hb in the PFC during fearful experience and
no significant change during emotional regulation.

Emotion perception

Inconsistent findings were also reported among the reviewed
studies of emotional perception. Many of the publications
reported increased activity in PFC (Roos et al., 2011; Schneider
et al.,, 2014; Egashira et al., 2015; Nishikawa et al., 2015), sev-
eral suggested decreased activity (Ravicz et al,, 2015; Hirata
et al., 2018; leong and Yuan, 2018; Gruber et al., 2019; Manelis
et al., 2019) and some reported no change in O,Hb (Herrmann
et al., 2016; Ates et al, 2017). Furthermore, several of the
reviewed studies reported mixed findings depending on the
brain region or type of emotion being measured. Although het-
erogeneous emotional mechanisms likely accounted for some
of these inconsistencies, discrepant findings also persisted
among studies implementing similar paradigms. For example,
most perception-based studies employed a photo-visual facial
expression recognition task, yet patterns of prefrontal activity
still varied across these studies. One study by Abdullayev et al.
(2018) reported that O,Hb increased in the vPFC and mPFC and
decreased in the dIPFC during a facial affect recognition task.



Another study by Gao et al. (2019) implemented a similar recog-
nition task and found increased O,Hb concentration in the right
PFC during the presentation of happy and fearful stimuli, while
sad facial expressions resulted in decreased activity in the left
PFC. Herrmann et al. (2016) also examined healthy adults using a
facial emotion recognition task and found no significant change
in Osz

These findings are congruous with fMRI research, which has
identified a plethora of regions responsible for facial expression
recognition, including the mPFC, fusiform gyrus, ACC, infe-
rior frontal gyrus (IFG), superior temporal sulcus (STS), nucleus
accumbens, amygdala, insula and parts of the occipital lobe
(O’Doherty et al., 2003; Grill-Spector et al., 2004; Habel et al.,
2010; Dolcos et al., 2011; Filkowski et al., 2017). Although activ-
ity in the fusiform gyrus, amygdala, IFG, STS and occipital lobe
has been found in the study of neutral faces, it seems emotion-
induced activation depends upon the type and intensive of
expression (Kesler-West et al., 2001; Gur et al., 2002; Jehna et al.,
2011). Angry faces have been found to elicit activation in the
superior frontal gyri and ACC, while disgust has been found to
elicit activation in the fronto-orbital cortex and insula, and sad
faces elicit relatively greater activation in the putamen and IFG
(Kesler-West et al., 2001; Abel et al., 2003; Fusar-Poli et al., 2009;
Jehna et al., 2011; Wabnegger et al., 2015). The mPFC has also
been implicated in the processing of emotions, including happi-
ness, fear and angry (Kesler-West et al., 2001). Nonetheless, find-
ings within the mPFC are inconsistent with some fMRI studies
reporting hypoactivation, some reporting hyperactivation, and
others reporting no activation (Haxby et al., 2002; Vuilleumier
and Pourtois, 2007; Liet al., 2010; Sabatinelli et al., 2011; Ruiz et al.,
2013). A meta-analysis of emotion activation studies using fMRI
and PET found no consistent pattern of activity in PFC across
individual emotions or induction methods (Phan et al., 2002).
Several researchers have suggested that the mPFC may be impli-
cated in cognitive functions, which are implicit to the emotional
tasks, such as directing visual attention towards facial features,
especially the eyes, during emotional expression (Kesler-West
et al., 2001; Wolf et al., 2014).

Although further investigation is needed to establish the
causes of discrepancy among previous studies and to identify
the most suitable approach to measuring emotion processing
with NIRS, by examining differences between prior studies, we
can posit several potential factors which may influence research
outcomes. Three key areas of the experimental design might
explain the discrepancies in research outcomes between the
reviewed studies: (i) the cognitive task, (ii) the recruited sam-
ple and (iii) the methods for measurement and analysis of NIRS
data. In examining the cognitive task, we will focus on varia-
tions in the intensity of stimuli, emotional valences of stimuli
and type of control condition. During the discussion on the
recruited sample, we will examine the effects of age and gen-
der distribution, as well as the size of the sample. Finally, for
the measurement and analysis of NIRS data, we will discuss the
different types of NIRS systems, analysis software and probe
arrangements.

Variations in cognitive tasks

The design of the cognitive task was a likely factor influencing
research outcomes and contributing to discrepancies between
studies. Many studies implemented a rating or response type
paradigm whereby participants had to actively select a fixed or
subjective response option, while other studies simply involved
passive viewing of static images. The various task designs
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involved diverse cognitive demands, required a variety of
neurocognitive skills, and included a range of different valances,
sensory modalities and levels of complexity. The findings from
this review highlighted three task design characteristics, which
could potentially influence outcomes: (i) intensity of the stim-
uli, (i) emotional valence of stimuli and (iii) type of control
condition.

Intensity of the stimuli. Altered O,Hb concentrations have been
observed in tasks with varying degrees of complexity. Some
studies presented obvious stimuli over a prolonged period, while
many other studies elected for a rapid presentation of subtle
expressions of emotion. One study by Gruber et al. (2019) pro-
vided participants with a series of semantically meaningless
words spoken with various inflections and required the partic-
ipants to either categorise or discriminate them based on their
emotional or linguistic context. The findings revealed that, com-
pared to a neutral condition, O,Hb concentrations decreased
in the frontal left hemisphere during categorisation and dis-
crimination of emotional tones, especially in the fear condition
(Gruber et al., 2019). Another perception-based task in a study by
Krol et al. (2019a) merely involved the passive viewing of emo-
tional facial expressions and found increased O,Hb in the PFC
during the recognition of fear and happiness. Nishikawa et al.
(2015) used NIRS to investigate the effect of task difficulty on
neural activation during an emotional facial expression recog-
nition task and found higher O2Hb concentrations in the right
hemisphere when stimuli were more ambiguous compared to
those that were less evident. In addition to highlighting the
difficulties in comparing results between studies, these exam-
ples show the importance of task selection when undertaking
NIRS research by demonstrating that prefrontal activity varies
depending on the cognitive demands of the task.

Valence or type of emotional stimuli. Many studies have found
contrasting O,Hb concentrations amongst a range of different
emotions and valences. Krol et al. (2019b) presented infants
with emotional facial expressions and found increased O,Hb
in the right PFC during the passive viewing of happy and fear-
ful faces but decreased activation during the presentation of
anger. Another study found increased O,Hb during passive lis-
tening to happy emotional prosody compared to the neutral
condition but reported no significant activation changes for the
anger or fear conditions (Zhang et al., 2018). Hoshi et al. (2011)
used a simple image valence rating task and found decreased
activity in the left dIPFC for positive stimuli and increased
O,Hb in the VIPFC during the presentation of negative stim-
uli. Another similar study requiring participants to rate emo-
tional images found increased O,Hb concentrations in the left
PFC for negative stimuli, but not for positive (Herrmann et al.,
2003). Taken together, these findings add to the growing evi-
dence that patterns of neural activity differ according to the
discrete emotion or valence of presented stimuli. Therefore,
researchers risk diminishing signal reliability and contaminat-
ing data if they fail to isolate discrete emotions during anal-
ysis, owing to potential oxygenation saturation or weakening
of activation by averaging across unrelated blocks. In conduct-
ing research using NIRS, it is important for investigators to
include and isolate the effects of positive, negative and neutral
conditions, or preferably examine each type of emotion sep-
arately. These more comprehensive approaches would allow
for a more even comparison between studies and more precise
findings regarding the haemodynamic changes during emotion
processing.
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Type of comparison condition. Alternatively, the choice of com-
parison condition might help explain the mixed results among
reviewed studies. Many of the studies used a resting base-
line period, usually consisting of viewing a cross hair on a
blank screen. Other studies implemented various neutral con-
trol tasks, which provided matching cognitive demands without
the emotional component. For example, a study by Fanti et al.
(2016) presented participants with either violent, comedic or
neutral video clips and found increased O,Hb during positive
videos and reduced activity during negative videos compared
to the neutral condition. Another study by Nakadoi et al. (2012)
presented images of faces displaying either fearful or neutral
expression and found increased O,Hb concentrations in the
PFC during the fearful condition compared to the neutral facial
expressions. On the other hand, there have been several similar
studies comparing emotional experience to a resting baseline
period and finding no significant changes in prefrontal O,Hb
(Matsuo et al., 2003; Piper et al., 2015; Matsukawa et al., 2017,
Nakata et al., 2018; Lucas et al., 2019). Without a neutral control
condition, studies run the risk of detecting activation stemming
from neurocognitive processing, including selective attention,
visual perception and working memory. Thus, it is reasonable to
assume that patterns of activation would differ between studies
depending upon the type of control condition that was imple-
mented. Owing to a lack of standardisation in the analysis and
reporting of data among the reviewed studies, it is difficult to
compare between the two control conditions. Although some
studies included both a resting baseline and a neutral condi-
tion, to the best of our knowledge, no study has yet compared
activation between the two control conditions. Future studies
would benefit by examining neural activity during both resting
baseline and neutral control conditions to help disentangle the
influence of emotion processing from unrelated non-emotional
neurocognitive processes.

Variations in the recruited sample

Previous research has established that individual differences
between participants can impact on O,Hb concentrations, espe-
cially concerning the subjective tasks used in emotion process-
ing research (Hoshi et al., 2011). For example, the mood of an
individual at the time of measurement might influence their
performance and associated neural activity in a manner unre-
lated to the task. A review by Bendall et al. (2016) examined
11 studies of emotional experience and argued that there were
often discrepancies between individual- and group-level find-
ings. Bendall et al. (2016) concluded that to reduce the likelihood
of Type I and II errors resulting from systemic physiological fluc-
tuations, future research would benefit by examining the data
of individual participants before commencing a secondary-level
analysis. The current review highlighted three characteristics
of the recruited samples, which may have influenced the study
outcomes: (i) gender distribution, (ii) age difference and (iii) the
size of the recruited sample.

Gender distribution. The assumption that women are more
emotional than men has transpired over the last several
decades, resulting in many studies of gender difference in emo-
tion (Parkins, 2012; Deng et al., 2016). While there is substantial
evidence to suggest gender differences exist across a range of
emotional processes, no consensus has been reached for any
specific domain as findings are often contradictory (Whittle et al.,
2011; Deng et al., 2016). Advancements in neuroimaging have

provided an opportunity for the objective measurement of the
neural mechanisms underlying emotion processing (Gross and
Thompson, 2007). Studies employing fMRI or PET have found
evidence for gender differences in the neurobiological mech-
anisms underlying emotion processing, suggesting that men
and woman use different strategies when processing emotion,
which can lead to diverse subjective and behavioural responses
(Whittle et al., 2011).

To date, few studies of emotion processing have adopted
NIRS in the investigation of gender differences. Bigliassi et al.
(2015) examined gender difference in emotional experience and
found that males had significantly higher O,Hb concentration in
the mPFC while listening to motivational and calm music than
females. Another study examined gender differences during
passive viewing of fearful faces and found that female experi-
enced greater activation in the left dIPFC (Marumo et al., 2009).
Although most studies have recruited roughly equivalent distri-
butions of males and females, several studies restricted their
focus to a single gender. Lucas et al. (2019) examined emo-
tional experience using a passive viewing task in a sample of
only women participants and found no significant differences
in prefrontal O,Hb. Another study focusing only on male par-
ticipants employed a similar task and reported increased O,Hb
during the presentation of negative stimuli (Ozawa et al., 2014).
Anuardi and Yamazaki (2019) recruited a predominately male
sample and found increased O,Hb during an emotion perception
task, while another similar article reported no significant O,Hb
changes among a sample of predominately female participants
(Herrmann et al., 2016). Taken together, these findings suggest
that prefrontal brain activities during emotion processing are
more prevalent among male participants than female partici-
pants. Therefore, it is possible that results could be diluted from
the inclusion of more female participants owing to a potential
gender effect. Nonetheless, further research directly compar-
ing the two genders while controlling for confounding factors
is warranted before such conclusions can be made.

Age differences. NIRS has been used to examine emotion
processing in participants of varying ages, including infants,
children, adults and the elderly. One study has investigated dif-
ferences in emotional experience between younger and older
adults using a VR driving simulation task (Nakata et al., 2018).
Nakata et al. (2018) discovered that elderly adults experienced
increased O,Hb in response to anger elicited by red traffic lights,
while the younger adults had no significant changes in the acti-
vation for any of the traffic light conditions. Research on children
populations has also produced some contrasting findings. For
example, one study by Grabell et al. (2019) investigated emo-
tional regulation in a sample of 60 children (mean age: 4.9+ 1)
and found no significant O,Hb changes in the lateral PFC dur-
ing either positive or negative conditions. To date, almost all
studies of emotional regulation have produced consistent find-
ings, namely increased activity in the PFC, meaning the article
by Grabell et al. (2019) is one of the two with discrepant results.
These limited findings provide some indication that the neu-
ral mechanisms underlying emotion processing, as revealed by
NIRS, vary between child, adult and elderly populations.

Size and representativeness of the sample. Additionally, the
sample sizes for most of the reviewed articles were quite small,
with only 13 studies recruiting >35 participants and 21 stud-
ies recruiting <15 participants. Smaller sample sizes may con-
tribute to low statistical power and reduce the reliability of



research findings (Zhang and Roeyers, 2019). For example, stud-
ies by Yu et al. (2017) and Heger et al. (2014) recruited rela-
tively small samples (n=7 and n=38, respectively) and found
increased prefrontal activity during an emotional experience
task. Conversely, studies by Lucas et al. (2019) and Piper et al.
(2015) recruited moderate to large numbers (n=39 and n=104,
respectively) of participants relatively and found no significant
changes in O,Hb during emotion experience tasks. It is possi-
ble the studies with smaller sample sizes are finding significant
results because of Type I error (Button et al., 2013). The discrep-
ancy between studies might be resolved simply by recruiting
more participants to achieve sufficient statistical power.

Furthermore, a secondary issue with small sample sizes is
that they are often not representative of the target popula-
tion. Larger sample sizes are advantageous because they allow
for more precise estimates of mean values, are usually more
representative, provide a smaller margin of error and have
greater generalisability (Biau et al., 2008). Samples which lack
representativeness are usually not generalisable and may con-
tribute to another source of inconsistency to research outcomes
(Gobo, 2004). Several of the studies included in this review used
convenience sampling to recruit solely undergraduate univer-
sity students. Although student samples are typically recruited
because of their accessibility, low cost of administration and
lower response bias, they are usually considered to be homoge-
nous and not representative of the general population (Arnett,
2016; Hanel and Vione, 2016). As students typically represent
a proportion of the population with higher socioeconomic sta-
tus, educational attainment and intelligence, it raises concerns
regarding the representativeness, generalisability and compara-
bility of the results (Greenfield, 2014; Hanel and Vione, 2016).
Therefore, larger more representative samples are encouraged
in future research to ensure reliability.

Variations in the measurement and analysis of NIRS
data

Variability in the measurement and analysis of haemoglobin
concentrations was another area, which potentially contributed
to the reported discrepancies. Many of the reviewed articles
used different NIRS systems, probe layouts, analysis software
and approaches to data pre-processing. Although each of these
methods provides an accurate indication of haemodynamic
changes, technical variations could lead to slight differences in
research findings. Three areas of data collection and analysis
were identified as potential causes of the inconsistent conclu-
sions: (i) type of NIRS systems, (ii) selection of probe placement
and (iii) choice of analysis approach and software.

Different types of NIRS systems. The use of 30 different NIRS
systems might also help explain some of the inconsistencies
between studies. NIRS systems use a variety of wavelengths
to monitor changes in haemoglobin concentrations, which can
contribute to the unreliable quality of signals (Gervain et al.,
2011). For example, a study by Watanabe et al. (2011) found
increased O,Hb in the PFC during the passive viewing of posi-
tive and negative IAPS stimuli, while another study by Wei et al.
(2017) found decreased O,Hb. Both studies used the same task,
same stimulus materials and roughly similar samples recruited
from a similar location and age group; however, the former
study used a Hitachi-4000 system (NIRx) with two near-infrared
wavelengths (695 nm and 830 nm) to measure haemoglobin con-
centrations, while the latter used a LABNIRS system (Shimadzu)
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with three wavelengths (780 nm, 805 nm and 830 nm). Although
it would be unreasonable to conclude the difference in findings
is totally due to the use of different NIRS systems, it does provide
a possible explanation for the discrepancy.

Data analysis methods and software. As NIRS is an emerg-
ing technique, there is currently no standardised approach to
data analysis. Several different software packages have been
developed to assist in the pre-processing and analysis of NIRS
data, but most of these are either incomplete or adapted from
other neuroimaging techniques. A study by Huang et al. (2017)
analysed data using NIRS_SPM toolbox (BISP KAIST, Korea), a
MATLAB-based software package that was initially designed
for the statistical analysis of fMRI data and adapted for NIRS.
The study used an emotional image rating task and found
no significant changes in O,Hb between positive and neutral
stimuli. Another study analysed data using Homer-2, a second-
generation set of MATLAB scripts explicitly designed for use with
NIRS, and found increased O,Hb in the left dIPFC during the
emotional experience of positive compared to neutral stimuli
(Wanget al., 2018a). As with the different NIRS systems, the vary-
ing analysis approaches only serve as a possible explanation for
discrepancies between studies. Future research would need to
investigate and compare the various methods of data analysis
to establish their consistency and identify the best approach to
use in the analysis of NIRS data.

Region of interest and probe placement. The source-detector
separation, number of channels and placement location are all
parameters which contribute to the type of data collected. The
separation between the source and detector probes determines
the depth of penetration, while the quantity and position of
the channels determine the amount and location of brain cov-
erage. NIRS has limited spatial resolution compared to fMRI,
and subsequently, researchers are presented with a challenge
when identifying the specific brain regions, which contributed
to detected changes in haemoglobin. Often the international
10-20 system, a method for mapping electrodes in EEG research,
is used to localise the probe positions on a standard template.
However, this method can be inaccurate because the relation-
ship between the external probe placements and the internal
brain structures is often unknown owing to the variation in head
shape and size between participants.

Most of the studies included in this review focused on the
prefrontal area, which is not surprising owing to the suitabil-
ity of NIRS for measuring cortical tissue, the verified role of
the PFC in emotion processing and the possibility of hair inter-
ference. Nonetheless, studies implementing emotion prosody
tasks identified the temporal cortex as a key area of activation
owing to its involvement in the auditory network (Zhang et al.,
2017, 2019; Zhao et al., 2019). For example, a study by Zhao et al.
(2019) found increased O,Hb in the left anterior superior cor-
tex during passive listening of anger-based prosody. In contrast,
other studies using visual perception tasks focused on the occip-
ital cortex (Herrmann et al., 2008; Kochel et al., 2011; Di Lorenzo
et al., 2019).

Not only should researchers carefully consider the position-
ing of probes, but also how they approach the grouping of
channels and mapping of brain structures. Several of the studies
presented in this review reported varying results depending on
the examined subregion or hemisphere of measured brain struc-
tures. For example, a study by Abdullayev et al. (2018) exploring
emotional perception found increased activity in the vPFC and
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mPFC, but decreased activity in the dIPFC during a facial affect
identification task. Another study reported decreased O,Hb in
the left dIPFC for positive stimuli and increased activity in the
vIPFC for negative stimuli during an emotional experience rat-
ing task (Hoshiet al., 2011). These studies demonstrate how even
the slightest change in probe position can lead to diverse results.
Over the last two decades, fMRI has been used extensively in the
mapping of brain function in many areas of cognition. Inves-
tigators planning to use NIRS in their research should address
relevant fMRI research before carefully selecting their approach
to data collection and analysis.

Strengths and limitations of the review

The present review has several advantages. Foremost, a search
of four high-quality databases resulted in a wide breadth and
depth of studies from 16 countries, investigating a range of par-
ticipants and using a variety of tasks. Another major strength
was that two authors independently conducted the literature
search, data extraction and quality assessment before consol-
idating their findings. Additionally, all included studies were
assessed for quality using a well-established checklist tool and
found to be of moderate or high quality. Finally, both studies
with a resting baseline period and neutral task condition were
included in this review.

Nonetheless, there were also several limitations which need
to be addressed. First, very few studies have focused on the
domain of emotion perception and even fewer examined emo-
tion regulation, thus it is difficult to draw strong conclusions
across these domains. Second, quantitative analyses of data
were limited in this review, owing to the lack of standardisation
between studies. The variations in cognitive tasks, measure-
ment methods and approaches to data analysis not only lead
to a lack of consistency between studies but also render meta-
analyses difficult (Parker et al., 2013). Furthermore, data extrac-
tion was constrained by the availability of the reported outcome
variables. Even though care was taken to remove studies using
repeated samples, it is difficult to rule out the possibility of
participant data being used repeatedly across multiple papers
involving the same authors. There was also a possibility of file
drawer effects, which were difficult to address in this review
owing to the variation between study designs. Finally, although
any articles rated as weak were removed after the quality assess-
ment stage, the included studies cannot be considered equality
valued. The cognitive task designs varied considerably in terms
of their complexity and depth. For example, some studies exam-
ined a range of emotions using a variety of engaging tasks, while
other studies merely focused on the passive viewing of a single
valence.

Recommendation for future research

Researchers should consider several aspects of the experimen-
tal design when investigating emotion processing using NIRS,
including the valence, intensity and modality of the stimuli,
the size and representativeness of the recruited sample, and
the methods of measurement and data analysis. As outlined
in this review, a lack of procedural standardisation not only
made it difficult to compare findings across studies but was
also a likely cause for much of the inconsistent results. It is
recommended for future studies to include multiple cognitive
tasks designed to measure across various emotion processing
domains and sensory modalities to help explore task-related

differences and resolve inconsistent findings. Perhaps more
importantly, it is recommended that future research examines
a diverse array of stimuli with varying levels of arousal, inten-
sity and valence. Neuroimaging studies have provided evidence
that there are distinct brain regions or neural circuits associated
with the processing of different emotions (Gazzaniga and Ivry,
2013). Furthermore, previous research suggests that the strength
of activation is dependent on the level of arousal or intensity of
stimuli. Thus, restricting the focus to general emotion process-
ing may limit and potentially weaken findings, as well as make it
difficult to compare across studies. It would be useful for future
researchers to employ a range of stimuli with both subtle and
obvious depictions of positive and negative emotions or examine
discrete types of emotion (e.g. anger and happiness).

It is recommended that researchers recruit larger and
more representative samples to increase statistical power
and improve reliability (Zhang and Roeyers, 2019). A sta-
tistical power analysis using Faul, Erdfelder, Lang, and
Buchner’s (2007) G*'power program 3.1 was performed for sam-
ple size estimation. Effect sizes were extracted and aver-
aged across reviewed studies with sample sizes greater than
n=20 when sufficient data were provided (Balconi et al.,
2015; Himichi et al., 2015; Piper et al., 2015; Grabell et al,
2019; Lu et al., 2019; Lucas et al., 2019). The average effect
size reported in these studies was 0.34 for regulation, 0.32
for experience and 0.29 for perception. Using a two-tailed
t-test between means with 80% power and an alpha of 0.05, the
projected minimum total sample size needed with these effect
sizes is approximately n=70 for studies of regulation, n=79
for experience and n=296 for studies of perception. Thus, it is
recommended that future studies should recruit a minimum
of between 70 and 96 participants to ensure adequate statisti-
cal power when investigating emotion processing when using
similar study methodology to that used in prior research. Fur-
thermore, studies should recruit participants from a diverse
range of education levels, socio-economic positions and cul-
tural backgrounds to ensure the findings are generalisable to
the wider population. Finally, as neuroimaging research neces-
sitates smaller sample sizes owing to greater cost and time
demands, researchers should carefully consider the type of sam-
pling method (e.g. stratified, purposive sampling, etc.) they use
to ensure the appropriateness and representativeness of their
sample.

One advantage of NIRS is that it can easily be used in con-
junction with other neuroimaging techniques (Bendall et al.,
2016). As such, future research is encouraged to use a multi-
modal approach to obtain more information about participants
from multiple perspectives. For example, MRI could provide an
anatomical-functional co-registration to assist NIRS with over-
coming issues of lower spatial resolution and limited anatomical
mapping (Zhang and Roeyers, 2019). Additionally, to bring about
greater standardisation, future studies should compare activa-
tion during an emotional task condition with both a resting
baseline period and a neutral control condition. Analysing and
reporting the findings in relation to both of these control condi-
tions would enable better comparison between studies and help
disentangle emotion processing-related changes from the task-
related neurocognitive influences. It is advisable for researchers
to report all findings even if they are non-significant as this can
help portray the true effectiveness of NIRS.

Finally, before NIRS can be considered for real-world appli-
cations, further research needs to examine the test-retest reli-
ability to establish whether the outcomes are reliable over time



or whether they are influenced by extraneous day-to-day fac-
tors, such as a participant’s mood or the amount of sleep they
received during the prior night. Although some preliminary
studies have found the test-retest reliability of NIRS in emo-
tion processing to be acceptable at the group level for mapwise
and clusterwise scales, further research is needed to gain bet-
ter insight into the reliability of the method (Huang et al., 2017).
Given that existing literature has reported inconsistent findings,
it remains to be seen whether the stability of O,Hb signals is
influenced by extraneous factors, such as the cognitive task,
method of data processing and analysis, or the type of NIRS
system and associated wavelengths (Huang et al., 2017). Future
research should investigate whether these factors influence the
reliability of NIRS at multiple time intervals (e.g. hours, weeks
or months) before we can draw more instructive conclusions.

Implications and conclusion

The diagnosis and treatment of psychological disorders stand to
benefit from the development of cheaper and easier neuroimag-
ing technology. Compared to other neuroimaging techniques,
NIRS is cost-effective, makes data collection of large samples
more achievable and is favourable in the study of otherwise diffi-
cult populations, including infants or patients with schizophre-
nia, owing to the reduced psychological discomfort and flexi-
bility of head movement. These notable advantages advocate
in favour of NIRS over other more established techniques for
the purpose of real-world applications, as it would be a fea-
sible and efficient method of biomarker screening and guided
treatment of psychological disorders. Nonetheless, our find-
ings suggest the larger samples (n=70-96) required to reduce
sources of noise and improve power might preclude NIRS as a
sensitive enough instrument for measuring biomarkers. Further
research is needed to determine the effectiveness and reliability
of NIRS for measuring the neural systems involved in emotion
processing.

NIRS also has a potential treatment application through
neurofeedback training. Neurofeedback training would enable
patients to monitor their own functional activity and use real-
time feedback to regulate their neural and behavioural perfor-
mance (Zhang and Roeyers, 2019). The use of neurofeedback in
the treatment of a wide range of psychological conditions has
already been well established using electroencephalogram (EEG)
(Hurt et al., 2014; Micoulaud-Franchi et al., 2014). Several stud-
ies have also applied NIRS in the therapeutic intervention with
some promising results. One study by Liu et al. (2017) used neu-
rofeedback during a facial recognition task among ASD patients
and found that those who received real-time feedback on their
O2Hb showed more behavioural improvement compared to the
patients who received sham feedback. Although the initial find-
ings are promising, several limitations currently prevent NIRS
from being able to compete with EEG in this regard, including
the time-consuming haemodynamic response, individual differ-
ence in O,Hb concentrations, and the lack of standardisation in
measuring and analysing NIRS data.

Overall, the evidence presented in this review provides some
support for the capacity of NIRS in detecting O,Hb changes dur-
ing emotion processing. Although further research is needed,
the initial findings from this review highlight the IPFC as a
candidate biomarker for emotional experience and regulation.
Nonetheless, some studies yielded mixed results, some were
limited in their design and some had outcomes that were
contingent on other factors, such as the valence or intensity
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of stimuli. Although significant activation was found for all
three domains, further research is warranted to investigate the
discrepant findings reported by some studies. Several compo-
nents of the experimental design were highlighted through our
review of the literature, which might explain the unreliable
results, including the valence, intensity and modality of the
stimuli; the size and representativeness of the recruited sam-
ple; and the measurement and analysis of the data. Overall,
the findings from this review show potential for NIRS to be
adopted as a tool for the assessment of emotion processing
impairment; however, further research is needed to address
the conflicting findings between studies and establish a more
reliable experimental paradigm.
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