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Abstract

Higher order chromosome structure and nuclear architecture can have profound effects on
gene regulation. We analyzed how compartmentalizing the genome by tethering hetero-
chromatic regions to the nuclear lamina affects dosage compensation in the nematode C.
elegans. In this organism, the dosage compensation complex (DCC) binds both X chromo-
somes of hermaphrodites to repress transcription two-fold, thus balancing gene expression
between XX hermaphrodites and XO males. X chromosome structure is disrupted by muta-
tions in DCC subunits. Using X chromosome paint fluorescence microscopy, we found that
X chromosome structure and subnuclear localization are also disrupted when the mecha-
nisms that anchor heterochromatin to the nuclear lamina are defective. Strikingly, the het-
erochromatic left end of the X chromosome is less affected than the gene-rich middle
region, which lacks heterochromatic anchors. These changes in X chromosome structure
and subnuclear localization are accompanied by small, but significant levels of derepres-
sion of X-linked genes as measured by RNA-seq, without any observable defects in DCC
localization and DCC-mediated changes in histone modifications. We propose a model in
which heterochromatic tethers on the left arm of the X cooperate with the DCC to compact
and peripherally relocate the X chromosomes, contributing to gene repression.

Author Summary

DNA isolated from the nucleus of a single human cell, if stretched out, would be 3 meters
long. This amount of DNA must be packaged into a nucleus, which is orders of magnitude
smaller. DNA of active genes tends to be loosely packed and localized internally within the
nucleus, while DNA of inactive genes tends to be tightly packed and localized near the
nuclear periphery. We studied the effects of DNA compaction and nuclear localization on
gene expression levels using regulation of the X chromosomes in the nematode Caenor-
habditis elegans as a model. In this organism, hermaphrodites have two X chromosomes,
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and males have only one. Genes on the two X chromosomes in hermaphrodites are
expressed at half the level compared to the male X, such that the two Xs together express
as much gene products as the single X in males. We found that silent regions at the left
end of hermaphrodite X chromosomes are tethered to the nuclear periphery, and these
tethers are used to build a compact chromosome structure. If this process is defective, gene
expression levels are elevated, but less than two-fold. These results indicate that chromo-
some compaction and nuclear localization contribute to influencing gene expression lev-
els, but other mechanisms must also contribute.

Introduction

Expression of genes must be tightly regulated both spatially and temporarily to ensure normal
development. While our understanding of gene regulation at the level of transcription factor
binding and modulation of chromatin structure is supported by an abundance of data, the con-
tribution of the spatial organization of the nucleus to regulation of gene expression is not well
understood. Regulation of sex chromosome-linked gene expression in the process of dosage
compensation provides an excellent model to dissect the influence of different gene regulatory
mechanisms on chromosome-wide modulation of gene activity. In the nematode C. elegans,
dosage compensation downregulates expression of genes on the otherwise highly expressed X
chromosomes of hermaphrodites, such that transcript levels from the two hermaphrodite X
chromosomes are brought down to match transcript levels from the single X in males [1, 2]. A
complex of proteins called the dosage compensation complex (DCC) binds the length of both
hermaphrodite X chromosomes to regulate transcription. The DCC contains a subcomplex,
condensin I°, which is homologous to condensin complexes in all eukaryotes responsible for
compaction and segregation of chromosomes in mitosis and meiosis [3-5].

Although a number of studies in recent years uncovered molecular mechanisms of DCC
action, how these alterations in X chromosome structure repress gene expression remains
unknown. Consistent with a similarity to mitotic condensins, DCC binding leads to compac-
tion of hermaphrodite X chromosomes in interphase [6, 7]. The DCC also remodels the X
chromosomes into topologically associating domains (TADs) with more regular spacing and
stronger boundaries than those found on autosomes [8]. At the level of chromatin organiza-
tion, posttranslational modifications of histones are also altered in a DCC-dependent manner:
monomethylation of histone H4 lysine 20 (H4K20mel) becomes enriched, and acetylation of
histone H4 lysine 16 (H4K16ac) becomes depleted on dosage compensated Xs as compared to
autosomes [9, 10]. Analysis of gene expression in H4K20 histone methyltransferase (HMT)
mutants revealed that changes in H4K20mel levels contribute to DCC-mediated repression,
but are not fully responsible for the observed two-fold repression [11]. The relative contribu-
tions of chromosome condensation and partitioning of the chromosome into TADs are
unclear. To date, no correlation has been found between genes being subjected to DCC-medi-
ated repression and regions of the chromosome bound by the DCC[12, 13], DCC-induced
changes in TADs [8] or posttranslational histone modifications [10]. These observations led to
the suggestion that the DCC regulates gene expression not on a gene-by-gene basis, but rather
in a chromosome-wide manner.

A model of DCC-mediated chromosome-wide repression is consistent with the idea of the
formation of a repressive nuclear compartment. Organization of chromosomes within the
nucleus is not random, but rather active and inactive portions of the genome are clustered
together and separated into spatially distinct compartments [14-16]. One prominent feature of
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nuclear organization is positioning heterochromatic regions at the nuclear periphery or near
the nucleolus [17-19]. An open question is to what extent this level of organization influences
gene activity, rather than being a consequence of it. In this study we investigated the role of
nuclear organization, particularly the tethering of heterochromatic regions to the nuclear lam-
ina, in regulating genes on dosage compensated X chromosomes in C. elegans.

Genome-nuclear lamina interactions change dynamically during cellular differentiation and
development and are known to influence gene activity. In C. elegans, tissue specific promoters
are localized randomly in nuclei of undifferentiated cells, reflecting the pluripotent state of
these cells. As cells commit to specific fates and differentiate, active promoters move toward
the nuclear interior, while repressed promoters move toward the nuclear periphery [20]. Dis-
ruption of nuclear lamina anchoring by depletion of lamin (LMN-1) or lamin-interacting pro-
teins leads to derepression of otherwise silent transgenes, demonstrating the relevance of the
anchoring process to gene repression, at least in the context of transgenes [21]. Anchoring of
these heterochromatic transgenic arrays to the nuclear lamina requires trimethylation of his-
tone H3 lysine 9 (H3K9me3) by the HMTs MET-2 and SET-25, as well as the chromodomain
protein CEC-4 [22, 23]. The relevance of this process to the regulation of endogenous gene
expression is less clear. Gene expression does not change dramatically in the absence of
H3K9me3 or CEC-4, but repression induced by heterochromatic anchoring does help restrict
alternate cell fates in development [22, 23]. These observations indicate that likely multiple
mechanisms contribute to repression of genes not expressed in a given cell type, and the contri-
bution of lamina anchoring to gene regulation may only become apparent in sensitized back-
grounds. Similar results were obtained in other organisms. For example, in differentiating
mouse embryonic stem cells, genome-nuclear lamina interactions are remodeled such that
some, but not all, genes move away from the nuclear lamina when activated [24].

Consistent with a generally repressive environment, regions of the genome associated with
the nuclear lamina (lamina associated domains, or LADs) are depleted of active chromatin
marks and are enriched for repressive marks such as H3K9 and H3K27 methylation in a variety
of organisms [24-27]. These silencing marks, and the enzymes that deposit them, are required
for peripheral localization of heterochromatic transgenes and some developmentally regulated
endogenous sequences [23, 28-30]. Artificial tethering of genes to the nuclear lamina leads to
repression of some, but not all, genes [31-34]. These observations are consistent with the idea
that the vicinity of the nuclear lamina is a repressive environment, yet it is not incompatible
with transcription. Therefore, subnuclear compartmentalization may not be a primary driver
of gene expression levels, but rather serve as a mechanism to stabilize existing transcriptional
programs [22].

Here we show that anchoring of heterochromatic regions to the nuclear lamina contributes
to shaping the higher order structure and nuclear localization of dosage-compensated X chro-
mosomes. These X chromosome-specific phenotypes were observed in multiple tissues, and
thus appear to be inherent to the chromosome and not any cell-type specific differentiation
program. We show that heterochromatin integrity and its nuclear lamina anchors are required
for spatial organization of the nucleus and dosage compensation mediated condensation of the
X chromosome. In mutant strains that lack these anchors, despite normal DCC localization to
the X chromosome, we observe a small, but significant level of X derepression, consistent with
the idea that anchoring contributes to stabilizing gene repression. Remarkably, tethering of het-
erochromatic regions of the X chromosome to the nuclear lamina affects the entire chromo-
some, not only the tethered domain. We propose a model in which the tethered domain
nucleates formation of a peripherally localized compact structure, which facilitates the action
of the DCC to compact the entire X chromosome.
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Results

In order to identify chromatin modifying genes that influence dosage compensation, we previ-
ously performed a targeted RNAI screen to analyze genes implicated in chromatin regulation,
including histone variants, as well as genes containing chromo, bromo, or set domains [35].
The assay is based on rescue of males that inappropriately turn on dosage compensation. The
DCC assembles on the X chromosome of xo0l-1(y9) sex-1(y263) males, leading to insufficient
expression of genes from the single X chromosome and thus lethality. RNAi-mediated disrup-
tion of dosage compensation can rescue a proportion of these males. Control vector RNAi
leads to background level of rescue (about 1.5%), while RNAi of a component of the DCC res-
cues over 25% of males. We previously described the screen in detail, as well as the role of one
of the hits from the screen, the histone H2A variant HTZ-1 [35]. In this study we characterize
the remaining genes identified in this screen that led to low but reproducible levels of male res-
cue. These genes include the histone methyltransferases met-2, set-32, set-20, set-6, set-25, and
the chromodomain protein cec-4 (Fig 1). All of these histone methyltransferases are known
(met-2, set-25, [23]) or predicted (set-6, set-20, set-32 [36]) to modify H3K9. H3K9 methylation
and the chromodomain protein CEC-4 were previously shown to work together in regulating
nuclear organization and anchoring heterochromatic transgenic arrays to the nuclear lamina
[21, 22, 37]. We therefore included in our analysis LEM-2 (hMAN1), a non-essential compo-
nent of the nuclear lamina. RNAI of the single C. elegans lamin gene LMN-1 leads to embry-
onic lethality [38], precluding this type of analysis. However, RNAi-depletion of LEM-2 led to
male rescue comparable to, or higher than, the rescue caused by depletion of the HMTs or
CEC-4 (Fig 1). Chi square test of the data indicated that all genes rescued significantly more
males than vector RNAI (Fig 1B). To ensure that the rescue is reproducible, we also performed
the rescue assay with a subset of the identified genes in four independent biological replicates
and analyzed the results using Student's t-test. In this analysis, all genes identified in the screen
with the exception of set-6 and set-20 rescued significantly more males than vector RNAi

(S1 Fig).

X chromosome decondensation in mutants

The finding of H3K9 methyltransferases, CEC-4, and LEM-2, in this screen suggested that
nuclear organization, and specifically anchoring of chromosomal regions to the nuclear lamina
(Fig 1C), might affect dosage compensation. To investigate X chromosome morphology and its
location in the nucleus in the absence of these proteins, we performed X chromosome paint
fluorescence in situ hybridization (FISH) in the various mutant backgrounds. First we investi-
gated the 32-ploid nuclei of the intestine, because their large size facilitates visualization of
chromosome territories. In wild type (N2) hermaphrodite worms, the X chromosome territo-
ries are kept compact by the action of the DCC [39] and the territory is found near the nuclear
lamina (Fig 2A). Visual inspection of the X chromosome territories in met-2(n4256), set-6
(0k2195), set-20(0k2022), set-25(n5021), set-32(0k1457), cec-4(ok1324), and lem-2(0k1807) her-
maphrodites revealed that the nuclear territory occupied by the X chromosomes became larger.
As a control, we also analyzed the X chromosomes in met-1(n4337), hpl-1(tm1624) and hpl-2
(tm1489) mutants. MET-1 is an unrelated HMT, while HPL-1 and HPL-2 are homologs of the
highly conserved heterochromatin protein and H3K9me3 binding protein HP-1 [40] (Fig 2A).
To quantify X chromosome condensation, we measured the volumes of X chromosome territo-
ries, as in [39]. Briefly, we generated intensity threshold-based 3D masks for the X chromo-
some (X paint signal) and for the nucleus (DAPI signal). We then calculated the volume of the
X chromosome and of the nucleus, and determined the portion of the nucleus occupied by the
X chromosome. Normalization to total nuclear volume was necessary due to the large
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Fig 1. RNAI screen to identify genes that promote dosage compensation. (A) Male rescue assay. RNAi-
mediated depletion of the indicated genes in the him-8 xol-1 sex-1background led to rescue of the indicated
percentage of males. Depleting DCC components DPY-21 and DPY-27 rescues a larger percentage of males than
depletion of the other genes identified in this screen Asterisks indicate statistical significance based on Chi square
test analysis of results, with expected rescue being equivalent to vector RNAI. * = p<0.05, ** = p<0.01, *** =
p<0.001. (B) Raw data and expected table used in Chi square analysis. (C) Proposed mechanism of anchoring
heterochromatic regions to the nuclear lamina. HMTs methylate H3K9. The chromodomain protein CEC-4 binds to
this chromatin mark. Bound genomic regions are enriched for interactions with the nuclear lamina protein LEM-2.

doi:10.1371/journal.pgen.1006341.9001

variability in nuclear size after the harsh treatments involved in FISH. Quantification of the
volume of the X chromosome territory showed that in the H3K9 HMT mutants, as well as in
cec-4 and lem-2 mutants, the X chromosome occupied a much larger portion of the nucleus
than in control wild type, or met-1, hpl-1 or hpl-2 mutant hermaphrodites. Lack of X chromo-
some condensation defects in ipl-1 and hpl-2 mutants are consistent with a previous study that
reported no defects in nuclear lamina anchoring of heterochromatic transgenic arrays in hpl-1
or hpl-2 mutants [22]. In nuclei of wild type worms the X chromosome occupied about 10% of
the nuclear volume, compared to an average of up to 20% percent in mutants (p<0.001, Stu-
dent's t-test, for all comparisons between a mutant and wild type) (Fig 2B). In fact, the degree
of decondensation in set-25(n5021) mutants is even larger than in DCC mutant or RNAi-
depleted hermaphrodites (dpy-21(e428) and dpy-27(RNAi) [39]) (p = 0.0251 for comparison
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Fig 2. X chromosome decondensation in mutants. (A) X chromosome paint FISH (red) in representative images of intestinal
nuclei (DAPI, blue) of hermaphrodite adult worms in each genotype. The X chromosomes are compact and peripherally localized in
wild type (N2), hpl-1, hpl-2 and met-1 mutant hermaphrodites, but are decondensed and more centrally located in the other
mutants. Scale bar, 5 ym. (B) Quantification of X chromosome volumes normalized to nuclear size (n = 20 nuclei). Error bars
indicate standard deviation. n.s = p>0.05 not significant; *** = p<0.001 by Student’s t-test (N2 compared to appropriate mutant).

doi:10.1371/journal.pgen.1006341.9002

with dpy-21, and p = 0.00442 for comparison with dpy-27; other differences were not statisti-
cally significant) (Fig 2). We conclude that the X chromosome is decondensed to a significant
degree in worms carrying mutations in DCC subunits, as well as in H3K9 HMT, cec-4 and lem-
2 mutants.

SET-25 and MET-2 are the only well characterized HMTs among the ones we identified.
MET-2 introduces H3K9 mono- and dimethylation, while SET-25 introduces H3K9 trimethy-
lation. Complete lack of H3K9 methylation, and loss of anchoring of heterochromatic arrays,
are only observed in the met-2 set-25 double mutants and not in set-25 or met-2 single mutants
[23]. We therefore analyzed X chromosome structure in the met-2(n4256) set-25(n5021) double
mutant strain and found that the X chromosome morphology is comparable to single mutants
without an obvious additive effect (p = 0.56 for met-2 compared to met-2 set-25; p = 0.11 for
set-25 compared to met-2 set-25) (Fig 2A and 2B). For the rest of this study we concentrated on
lem-2, set-25 or met-2 set-25, and cec-4 mutants, and we will refer to them collectively as “teth-
ering mutants”.

One possible explanation for X decondensation phenotype is that the tethering defects
diminish the ability of the DCC to condense the X chromosome. For example, the DCC may
use these heterochromatic tethers as nucleation sites for a more compact chromosomal organi-
zation. An alternative possibility is that lack of tethering leads to chromosome decondensation
independent of the DCC. We tested whether simultaneous disruptions of tethering and the
DCClead to increased levels of decondensation by measuring X chromosome volumes in set-
25 and lem-2 mutants that were depleted of DPY-27 using RNAI (Fig 2B). X chromosomes of
nuclei in dpy-27(RNAi) treated lem-2 mutants were significantly different from wild type, but
statistically indistinguishable from either lern-2 mutants (p = 0.77, Student's t-test) or dpy-27
(RNAi) (p = 0.26). Similarly, X chromosomes of nuclei in dpy-27(RNAi) treated set-25 mutants
were significantly different from wild type, but statistically indistinguishable from set-25
mutants (p = 0.052) and dpy-27(RNAi) (p = 0.39). Therefore, at this resolution, we cannot
detect any additional defects when tethering mutations are combined with DCC depletion,
consistent with the hypothesis that the DCC and tethering genes work together, and are both
required, to condense the X chromosomes.

To determine whether the phenotype is specific to the 32-ploid intestinal nuclei, we also
examined diploid tail tip hypodermal cells hyp 8-11. Results were comparable to intestinal
cells. In wild type cells, the X chromosome occupies about 10% of the nucleus, while it occupies
a much larger portion of the nucleus in anchoring mutants (p<0.001 for all mutant compari-
sons to wild type) (S2 Fig).

The dosage compensated X chromosome relocates to a more central
position in tethering mutants

Previous studies showed that tethering mutants have a defect in anchoring heterochromatic
transgenic arrays to the nuclear lamina [21-23]. Similarly, visual inspection of our images sug-
gested that tethering mutants have a defect in subnuclear positioning of the X chromosome
resulting in the X occupying a more central position (Fig 2). To quantify this defect, we
performed an analysis similar to the three-zone assay used in [20]. We selected nuclei that
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were spherical or ellipsoid shaped. From the Z-stacks generated during imaging, we selected
the optical section toward the middle of the nucleus with the largest and brightest X-paint sig-
nal. This optical section was divided into three-zones of equal area, and the portion of the X
signal located in each zone was quantified (Fig 3A). The percentage of nuclei in each genotype
that can be quantified using this assay is shown in S3 Fig. Representative irregularly shaped
nuclei are also shown to illustrate that the X chromosome appeared qualitatively similar to the
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% X paint signal in each ring
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80% -
70% -
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20% -
10% -
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Fig 3. The X chromosome relocates centrally in the nucleus. (A) A diagram of the three-zone assay. An
optical section from the middle of the nucleus was divided into three concentric rings of equal area. The proportion
of the X chromosome paint signal in each zone (peripheral-intermediate-central) was quantified. (B) Results of
quantification of the three-zone assay using whole X paint FISH probes in hermaphrodite intestinal nuclei (n = 10).
In tethering mutants, a larger portion of the X chromosome is located in the central zone compared to wild type
hermaphrodites. Relocation to a central region is less significant in DCC mutants or DCC-depleted
hermaphrodites. Asterisks indicate statistical analysis (Student’s t-test) of the centrally located portion of the X
chromosome (shown in blue). n.s. = p>0.05, * = p<0.05, ** = p<0.01, *** = p<0.001. See S1 Table for statistical
data.

doi:10.1371/journal.pgen.1006341.9003
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X chromosomes in round or ellipsoid shaped nuclei: compact and peripherally located in N2
hermaphrodites, and larger and more centrally located in tethering mutants. The three-zone
assay showed that in wild type (N2) nuclei only about 20% of the X chromosome signal was
located in the central zone, while in tethering mutants over 40% of the X signal was located in
this zone, suggesting that the X chromosome relocates to a more central position within the
nucleus (Fig 3B). Comparisons of the portions of the X chromosome located in the central
zone revealed statistically significant differences in all tethering mutants. As for volume mea-
surement, the three-zone assay again failed to reveal additional defects in met-2 set-25 double
mutants compared to set-25 single mutants. We then compared this effect to mutating or
depleting a subunit of the DCC by RNAI. The three-zone assay showed less significant reloca-
tion of the X toward the center in dpy-27 RNAi-treated hermaphrodites compared to tethering
mutants. In dpy-21 mutants, although the portion of the X in the central zone increased from
24% to 34%, the difference did not reach statistical significance (Fig 3B). One possible reason
for the less significant relocation in dosage compensation mutants is the fact that dpy-27
(RNAi) or a mutation in dpy-21 does not completely disrupt dosage compensation function.
Complete lack of DCC activity would be lethal to hermaphrodites, precluding this type of anal-
ysis (see analysis of the male X below).

H3K9me3 is generally found in heterochromatic regions of the genome. In C. elegans, sev-
eral megabase regions at both ends of autosomes and the left end of the X chromosome are
enriched for this mark [41]. These H3K9me3-enriched domains also coincide with nuclear
lamina-associated domains, as assessed by ChIP [26] or DamID [23]. Together these results
suggest a model in which both arms of autosomes and the left of arm of the X chromosome are
tethered to the nuclear lamina [23, 26, 42-44] (Fig 4A). Peripheral localization of heterochro-
matic chromosomal regions may be mediated by CEC-4, as is the case for heterochromatic
transgenes [22].

To examine whether heterochromatic segments of the X chromosomes are affected differ-
ently than other chromosomal regions, we prepared probes to approximately 3-4 Mb regions
of the chromosome. The X-left probe covers a region enriched for H3K9me3 and LEM-2, the
X-mid probe covers a gene-rich portion of the chromosome with very little H3K9me3 and
LEM-2, and the X-right probe covers a region with intermediate levels of H3K9me3 and LEM-
2 (Fig 4A and 4B). We then assessed the level of decondensation of each of these regions by
measuring the proportion of the nuclear volume occupied by this region of the X chromosome
(Fig 4C). Surprisingly, the left end of the X chromosome was least affected and remained con-
densed both in tethering mutants and in DCC-depleted hermaphrodites. We only observeda
mild level of decondensation in set-25 mutants. By contrast, the gene-rich middle portion of
the chromosome was most affected and was significantly decondensed in all tethering mutants.
The right end of the chromosome, which contains some LEM-2 and H3K9me3 peaks, but
fewer than the left end, exhibited an intermediate phenotype.

The gene-rich middle portion of the X chromosome was not only decondensed but also
appeared to exhibit the greatest degree of central relocation. To quantify this effect, we again
performed the three-zone assay and found that indeed the mid-X region was most affected (Fig
4D). While on average only 17% of the X-mid probe was located in the central zone in wild
type nuclei, up to 50% of the same region was found in this zone in tethering mutants. Reloca-
tion to a central position was less obvious for the left end of the chromosome and was not
detectable for the right end. These results were at first unexpected. However, they are consis-
tent with previous observations that have hinted at the existence of redundant tethering mech-
anisms in differentiated cells. The tethering mechanism mediated by heterochromatin is only
essential for anchoring of heterochromatic arrays in embryonic cells, and the arrays remain
anchored in differentiated tissues even in the absence of SET-25 and MET-2 [23]. Similarly,
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p<0.05, ** = p<0.01, *** = p<0.001. See S1 Table for statistical data.

doi:10.1371/journal.pgen.1006341.9004
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CEC-4 is required for anchoring in embryos, but other, yet unknown, mechanisms can com-
pensate for the lack of CEC-4 protein in differentiated cells [22]. We note that all of our analy-
ses were performed in terminally differentiated postmitotic cells of adult animals. Our results
suggest that regions of the left end of the X chromosome are anchored to the nuclear periphery
by an additional mechanism that is independent of SET-25, CEC-4, and LEM-2, and loss of
H3K9me3-lamina mediated anchoring mechanism is not sufficient to significantly relocate this
region. The lack of heterochromatic anchoring mechanism affects the middle of the chromo-
some disproportionately, even though this region is depleted of H3K9me3 and LEM-2 interac-
tions. One possible interpretation of this result is that the few H3K9me3 sites and LEM-
2-bound regions present in the middle of the chromosome represent the only anchoring mech-
anism present in this region. In the absence of these tethers, the mid-X region is free to relocate
more centrally, while redundant anchors maintain tethering to a greater degree at the two chro-
mosome ends. The other interpretation, which is not mutually exclusive, is that heterochro-
matic anchors at the left end of the chromosome are used to nucleate a compact structure,
which is required to be able to pull the rest of the X chromosome toward the periphery and
compact it efficiently (see Discussion).

Defects in DCC function had a somewhat different effect. The mid-X region was more
decondensed after dpy-27(RNAi) than the right end, and the left end was unaffected, similar to
the decondensation defects seen in tethering mutants. Less significant decompaction of the left
end may be related to the somewhat lower levels of DCC binding in this region [41, 45]. Alter-
natively, nuclear lamina tethers at the left end may be sufficient to compact this region even in
the absence of the DCC. Although the portion of the mid-X region in the central domain
increased in dpy-27 RNAI, the difference did not reach statistical significance, suggesting again
insufficient disruption of dosage compensation (Fig 4C and 4D).

Chromosomal phenotypes are dosage compensation dependent

To examine these X chromosomal phenotypes in the complete absence of DCC activity, we
analyzed the X chromosome in males and in XO animals that develop as hermaphrodites due
to a mutation in the her-1 gene required for male development [46] (Fig 5). The XO hermaph-
rodites also carry a null mutation in the dosage compensation gene sdc-2 to ensure that all XX
progeny die due to dosage compensation defects and only XO animals survive [47]. The DCC
is XX hermaphrodite-specificand does not bind to the male X or the X chromosome in XO
hermaphrodites, therefore these backgrounds allow us to examine X chromosome structure in
the complete absence of the DCC, but in the presence of heterochromatic anchors. In wild type
males and in XO hermaphrodites, the single X occupied an large proportion of the nucleus,
about 16%, as we previously observed, which is significantly different from the 10% seen in
wild type hermaphrodites [39] (Fig 5A and 5B). It is also different from what was seen previ-
ously in nuclei of young embryos, possibly due to the differences in stage of development and
differentiation status [7]. Note that the level of decondensation in males and XO hermaphro-
dites is greater than in tethering mutants. In XO animals, the single X chromosome occupies
16% of the nucleus, compared to the two Xs occupying 18-20% in tethering mutant hermaph-
rodites. However, in set-25 mutant males, the X did not decondense further compared to nor-
mal males (Fig 5A and 5B). In addition, the three-zone assay revealed that the X chromosome
is located significantly more centrally in XO hermaphrodites and males, compared to wild type
hermaphrodites (Fig 5C). Irregularly shaped nuclei that cannot be quantified using this assay
also appeared to have large centrally located X chromosomes (S3 Fig). While in set-25 mutant
males a slightly higher proportion of the X chromosome was located in the central zone, this
difference was not statistically significant (Fig 5C). These results indicate that the activity of the
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Fig 5. The X chromosome is decondensed and centrally located in the absence of dosage compensation
in XO animals. (A) Chromosome paint FISH (red) in intestinal nuclei (DAPI, blue) of male adult worms, XO
hermaphrodites and set-25 mutant males using whole X paint probe, and probes to the left, middle, and right
domains of the X chromosome. The X chromosome, and the middle region of the X chromosome, appear large
and diffuse and are located more toward the nuclear interior. set-25 mutations do not have additional effects on X
chromosome morphology in males. Scale bar, 5 um. (B) Quantification of volumes occupied by the X paint probe
(n =20 nuclei). The wild type hermaphrodite data point (wt herm) is repeated from Fig 2B and is marked by $ sign.
(C) Three-zone assay for the whole chromosome X paint probe (n = 10). Wt herm data point is repeated from Fig
3B ($). (D) Quantification of volumes occupied by the X-left, X-mid, and X-right probes normalized to nuclear size
(n=20). Wt herm data points are repeated from Fig 4C ($). (E) Three zone assay for the mid-X probe (n = 10). Wt
herm data point is repeated from Fig 4D ($). Error bars in (B) and (D) indicate standard deviation. Asterisks
indicate statistical analysis compared to wild type hermaphrodites for volumes in (B) and (D) and centrally located
portion of the X or mid-X (C) and (E), using Student’s t-test. wt male and set-25 male comparisons are also shown
as indicated. n.s. = p>0.05, * = p<0.05, ** = p<0.01, *** =p<0.001. See S1 Table for statistical data.

doi:10.1371/journal.pgen.1006341.g005
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DCCis required to condense and peripherally relocate the X chromosome, and that the lack of
both DCC function and heterochromatic tethers (in set-25 males) does not lead to additional
defects.

We next analyzed the left, middle and right regions of the X chromosome in XO animals
(Fig 5A, 5D and 5E). All regions of the X chromosome were decondensed in XO animals, com-
pared to hermaphrodites, but mutations in set-25 did not lead to any further decondensation
(Fig 5D). Furthermore, the mid-X region was more centrally located in XO animals than in
hermaphrodites, but again mutations in set-25 did not lead to additional central relocation.
While we cannot exclude the possibility that the X chromosome is affected in tethering mutant
males, we conclude that hermaphrodite X chromosomes are more severely affected by these
mutations than male X chromosomes.

Chromosomal phenotypes are X specific

To determine whether the chromosomal phenotypes are specific to the X chromosome, we
analyzed the structure and localization of a similarly sized autosome, chromosome I (Fig 6A).
Chromosome I occupies about 15% of the nucleus in wild type hermaphrodites, closely corre-
lated with its genome content, indicating lack of condensation beyond genomic average [39].
As we found previously for dosage compensation mutants [39], the volume of chromosome I
appeared unaffected in tethering mutants (Fig 6B). In addition, the three-zone assay revealed
that a significant portion of chromosome I signal is located in the central zone in wild type her-
maphrodites (39%) (Fig 6C). This value is significantly different from the value obtained for
the X chromosome in wild type hermaphrodites (23%, Fig 3, p = 0.035, Student's t-test), and
more similar to the X chromosome in tethering mutants (ranging from 43% to 55%, Fig 3). In
addition, mutations in tethering mutants did not lead to any further central relocation of chro-
mosome I compared to the same chromosome in wild type hermaphrodites (Fig 6C). These
results suggest that the X chromosome is more sensitive to the loss of heterochromatic tethers
than the autosomes.

To confirm these results, we further examined different domains of chromosome I (Fig 6D).
Chromosome I has two anchored heterochromatic domains, one at each end (left and right),
while the middle region lacks significant interactions with the nuclear lamina [23, 26, 41]. Our
FISH analysis is consistent with these earlier observations. The left and right domains of the
chromosome were located near the nuclear periphery, while the middle region was more cen-
trally located. Neither volume measurements (Fig 6E), nor the three-zone analysis (Fig 6F)
showed any significant differences between wild type (N2) and set-25 mutant hermaphrodites.
A significantly greater portion of the chromosome I middle domain was located in the central
zone (36%) in wild type hermaphrodites compared to the X chromosome (17%, Fig 4,

p = 0.018, Student's t-test), and this value was more comparable to the centrally located portion
of the mid-X region in tethering mutants (ranging from 37% to 51%, Fig 4). These results indi-
cate that in wild type hermaphrodites, the two ends of chromosome I are peripherally located,
while the middle domain is more centrally located. Furthermore, we conclude that this organi-
zation does not change significantly in the absence of heterochromatic tethers, and that the
observed chromosomal phenotypes are specific to the dosage compensated X chromosome.

The distribution of H3K9me3 within the nucleus

Previous ChIP-chip analysis showed that H3K9me3 is enriched at both ends of autosomes and
at the left end of the X chromosome, although peaks can be found elsewhere on the X as well
[41]. To determine how this signal is distributed in the nucleus, we performed immunofluores-
cence microscopy (IF) with H3K9me3 specific antibodies in wild type cells and in tethering
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Fig 6. Chromosome | structure and organization is not affected in tethering mutants. (A) Chromosome | paint FISH (red) in
representative images of intestinal nuclei (DAPI, blue) of hermaphrodite adult worms. Chromosome | appears comparably sized
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in each background. Scale bar, 5 um. (B) Quantification of chromosome | volumes normalized to nuclear size (n = 12 nuclei).
Error bars indicate standard deviation. (C) Three-zone assay for whole Chr | paint (n = 10 nuclei). The chromosome did not
relocate to a more central position in any of the mutants (D) FISH analysis of the left, middle and right regions of Chr | in wild type
(N2) and set-25(n5021) mutant hermaphrodites. Diagram (left) indicates locations of probes, representative images are shown on
the right. The left and right ends of the chromosome are peripherally located, but the middle appears more centrally located in
both backgrounds. (E) Quantification of volumes occupied by Chr | domains (n = 20 nuclei). Error bars indicate standard
deviation. (F) Three-zone assay for the left, middle and right domains of Chr | (n = 10 nuclei). The middle domain is more centrally
located than the left and right arms in both genotypes. Student’s t-test did not reveal any statistically significant differences for
volume measurements in (B) and (E), or for the portion of chromosome located in the central zone in (C) and (F), mutant
compared to wild type. n.s. = p > 0.05. See S2 Table for statistical data.

doi:10.1371/journal.pgen.1006341.9g006

mutants (Fig 7). Antibodies specific to DCC subunit CAPG-1 were used as staining controls
and to mark the territories of the X chromosomes. S4 Fig shows specificity of this newly devel-
oped antibody to CAPG-1. In wild type cells, the H3K9me3 signal was distributed all over the
nucleus, with no obvious enrichment at the nuclear periphery, except for the presence of some
peripherally located bright foci. Both the overall staining and the bright foci are H3K9me3-spe-
cific, as they were absent in set-25 mutants. Sites of exceptionally high levels of H3K9me3 signal
were not observed by ChIP [41]. Therefore, we interpret these bright foci as three-dimensional
clustering of multiple H3K9me3 enriched loci. The X chromosome territory almost always
contained, or was directly juxtaposed to one of these bright foci (Fig 7, top row). In rare cases,
the X was not associated with the brightest foci, but foci of lesser intensity were still visible in
the X territory (Fig 7, second row). H3K9me3 staining was comparable to wild type in cec-4
and Jem-2 mutants, suggesting that the defects in tethering in these mutants are not related to
lack of H3K9me3.

Notably, H3K9me3 was not absent in met-2 mutants. In fact, met-2 mutants were indistin-
guishable from wild type. This is in contrast to what was previously observed in met-2 mutant
embryos, where H3K9me3 levels were greatly reduced [23]. However, it is similar to what was
observed in the germline, where met-2 was reported to be dispensable for H3K9me3 [48], and
similar to what we reported previously in intestinal nuclei of met-2 mutants [49]. These results
suggest tissue specific differences in the use of HMTs to deposit H3K9me3. Despite near-nor-
mal levels and distribution of H3K9me3 in met-2 mutants, the X chromosomes were decon-
densed, suggesting that met-2 contributes to the regulation of X chromosome structure in ways
other than H3K9me3.

We also note that set-32 mutants contained two types of nuclei. Some nuclei were indistin-
guishable from wild type (Fig 7, row 5) and some had reduced levels of H3K9me3 (Fig 7, row
6). The two set-32 mutant nuclei depicted on Fig 7 come from the same worm, illustrating cell-
to-cell variation within a single animal in this genetic background. These observations suggest
that in contrast to what is seen in embryos [23], in differentiated cells, enzymes other than
SET-25 contribute to the deposition of H3K9me3.

The DCC remains X-bound and the X chromosomes maintain
enrichment for H4K20me1

A possible explanation for the dosage compensation defects in tethering mutants (Fig 1) is disrup-
tion of DCClocalization. To test this possibility we stained worms with X-paint FISH probe fol-
lowed by immunofluorescence using antibodies specific to the DCC subunit DPY-27. Despite
changes in X chromosome morphology, we observed normal localization of the DCC to X chro-
mosomes (Fig 8A). While we cannot exclude minor changes in DCC distribution along the X chro-
mosome, we conclude that the DCC does associate with the X chromosomes in tethering mutants.
An alternative explanation for defects in dosage compensation in these mutants is that DCC
function is disrupted. Previously characterized molecular functions of the DCC include
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Fig 7. Analysis of H3K9me3 levels. Immunofluorescence analysis with antibodies specific to H3K9me3 (green),
combined with antibodies specific to DCC subunit CAPG-1 (red) to mark the location of the X chromosomes. To illustrate
the spatial proximity of the bright H3K9me3 foci to the X territory, single focal planes are shown. Maximum intensity
projections of whole nuclei are shown for reference (right, MIP). The H3K9me3 signal is distributed diffusely in the
nucleus with some peripherally localized bright foci. H3K9me3 signal intensity is only affected in set-25and set-32
mutants. Scale bar, 5 um.

doi:10.1371/journal.pgen.1006341.g007
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condensation of the X chromosome [7, 39], altering chromosome topology [8], and leading to
a different distribution of posttranslational histone modifications, particularly H4K20mel and
H4K16ac [9, 10]. To test whether mutations in tethering genes affect the ability of the DCC to
lead to enrichment of H4K20mel on the X, we co-stained worms with antibodies specific to
the DCC (to mark the location of the X) and antibodies specific to H4K20mel. Results showed
that this chromatin mark continues to be enriched on the X chromosomes (Fig 8B). Therefore,
at least some aspects of DCC function remain intact in tethering mutants. Although wild type
level of enrichment of H4K20mel on the X appears to be required for X chromosome conden-
sation [39], our results indicate that it is not sufficient.

Derepression of X-linked genes in tethering mutants

To test how loss of heterochromatic anchoring affects gene expression, we performed mRNA-
seq analysis (Fig 9). We performed this analysis in L1 stage larval hermaphrodites. By this
stage, somatic cells are differentiated, dosage compensation-mediated chromatin marks are
fully established [9, 50], and gene expression differences resulting from DCC function are easily
detectable using RNA-seq [11]. Based on the low level of male rescue observed upon RNAi-
depletion of tethering genes (Fig 1), we did not expect major disruptions of regulation of X-
linked genes. Therefore, to compare gene expression changes in tethering mutants to gene
expression changes resulting from moderate changes in DCC function, we generated a data set
using L1 hermaphrodite worms in which the DCC subunit DPY-27 was partially depleted by
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Fig 8. DCC localization and H4K20me1 enrichment in tethering mutants. (A) Combined X paint fluorescence in situ hybridization (red) and
immunofluorescence with antibodies specific to DCC component DPY-27 (green). The DCC remains localized on the decondensed X chromosomes of
tethering mutants. (B) Immunofluorescence images with antibodies specific to H4K20me1 (green) and DCC component CAPG-1 (red) to mark the
location of the X chromosome. H4K20me1 remains enriched on DCC-bound X chromosomes. Scale bar, 5 um.

doi:10.1371/journal.pgen.1006341.9008
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Fig 9. RNA-seq analysis of gene expression changes in tethering mutants. (A-C) Boxplots show the distribution of log,
expression ratios on the X chromosomes and autosomes (A), as well as all individual autosome (I, Il, Ill, IV, V) and the rest of
the genome (G) between dpy-27(RNAi) and control (A), cec-4(ok3124) mutant and control (B), and met-2(n4256) set-25
(n5021) mutant and control (C). The X chromosome was significantly derepressed compared to autosomes, but the only
autosome that showed derepression compared to the rest of the genome is chromosome V. (D-F) Boxplots show log,
expression ratios on the X chromosome and on individual autosomes in dpy-27(RNAi) (D), cec-4(ok3124) mutants (E), and
met-2(n4256) set-25(n5021) mutants (F). The X chromosome is more derepressed than any individual autosome in all three
backgrounds. Differences in gene expression changes from the X was tested between the X and all autosomes, or the X and
individual autosomes by one-sided Wilcoxon rank-sum test, and between a given autosome and the rest of the genome by
two-sided Wilcoxon rank-sum test (n.s. = not significant, * = p < 0.05, ** = p<0.01, *** =p <0.001).

doi:10.1371/journal.pgen.1006341.9009

RNAI. Note that even though DPY-27 levels were significantly reduced in these worms (S4C
Fig), there was very little lethality associated with the RNAi treatment, indicating that DCC
function was only partially disrupted.

Under these mild dpy-27(RNAi) conditions, we observed a small increase in average X-
linked gene expression compared to gene expression changes on autosomes. These results are
qualitatively similar to previously reported analysis of dosage compensation mediated gene
expression changes [8, 11, 12], but the magnitude of change is smaller, indicating that this data
is an appropriate representation of gene expression changes when DCC function is partially
disrupted. The median log, ratio of expression between dpy-27(RNAi) worms and control vec-
tor RNAi treated worms was significantly higher on the X (0.062) compared to autosomes
(-0.059) (for all expressed genes) (Fig 9A, one-sided Wilcoxon rank-sum test p = 3.09 x 10778,
consistent with a small degree of X depression. Strains carrying mutations in cec-4(0k3124) or
met-2(n4256) set-25(n5021) showed similar X chromosome derepression compared to dpy-27
(RNAi). The median log, ratio of expression between cec-4(0k3124)/control or met-2(n4256)
set-25(n5021)/control was significantly higher on the X (0.095 and 0.057 respectively) com-
pared to autosomes (-0.042 and -0.057 respectively) (Fig 9B and 9C, one sided Wilcoxon rank-
sum test p = 8.07 x 10 ** and p = 8.48 x 107').

To examine whether the observed differences in gene expression might reflect random varia-
tions between chromosomes, we examined the average gene expression change on each autosome
compared to the rest of the genome (Fig 9A-9C). Small gene expression change differences were
in fact observed between any autosome and the rest of the genome, and many of these differences
were statistically significant (two-sided Wilcoxon rank sum test). However, for chromosomes I,
IT, ITT, and IV, the autosome was downregulated, not upregulated, compared to the rest of the
genome (Fig 9A-9C). Chromosome V was the only autosome that appeared upregulated com-
pared to genomic average, both in dpy-27(RNAi) and in tethering mutants, and this derepression
was mild compared the derepression observed for the X chromosome (Fig 9A-9C).

We then compared expression changes on the X chromosome to each autosome individu-
ally (Fig 9D-9F). Again we observed a small yet statistically greater level of derepression on the
X than any of the autosomes in all three backgrounds. Importantly, the X chromosome was sig-
nificantly more upregulated than chromosome V, the only autosome that is derepressed com-
pared to the genomic average (Fig 9D-9F, one sided Wilcoxon rank-sum test p = 8.35 x 10>*
in dpy-27(RNAi), p = 0.00126 in cec-4, and p = 0.000468 in met-2 set-25). These analyses indi-
cate that the greatest degree of derepression is seen on the X chromosome. Furthermore, the
trends were the same in dpy-27(RNAi) and in cec-4 and met-2 set-25 mutants, indicating again
that gene expression changes in tethering mutants are comparable to gene expression changes
in partial DCC depletion conditions. These results suggest that lack of CEC-4, or MET-2 and
SET-25 function leads to similar gene expression changes as a partial depletion of the DCC.

To complement our analysis of average gene expression, we also looked at genes whose
expression changed significantly using DESeq2 analysis (S5A Fig). Consistent with previous
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gene expression studies [22], expression of very few genes changed significantly in cec-4
mutants. However, the same was true for dpy-27(RNAi). In both cases, a slightly higher per-
centage of X-linked genes were upregulated than the percentage of upregulated autosomal
genes, and a slightly higher percentage of X-linked genes were upregulated than downregu-
lated. There were more genes with significant changes in gene expression in met-2 set25
mutants, consistent with a dosage-compensation-independent gene regulatory role for these
genes [22]. The percentage of X-linked genes that met the statistical criteria for significant
upregulation was not greater than the percentage of downregulated X-linked genes in this
background (S5A Fig). Perhaps the subtle changes caused by mild dosage compensation defects
are not sufficient to show statistically significant changes in expression (based on 3 or 4 biologi-
cal replicates) at the individual gene level.

To further determine whether there is a correlation between the degree of gene expression
change in the tethering mutants and the degree of gene expression change in worms with a par-
tial defect in DCC function, we plotted the log, ratio of expression of the tethering mutants
and control worms against the log, ratio of expression of dpy-27(RNAi) and control vector
worms (Fig 10A and 10B). With a log, cutoff of 0.1 (10%) for upregulation, the largest percent-
age of X-linked genes fell in the quadrant of derepression in both dpy-27(RNAi) and tethering
mutants (32-34% versus 3-19% on other quadrants). For autosomal genes the opposite was
true, and the largest percentage fell in the quadrant of downregulation in both backgrounds
(30-32%, compared to 4-20% in other quadrants). These results indicate a bias toward upregu-
lation of a common set of X-linked genes in DCC-deficient worms and in tethering mutants. A
similar degree of correlation was observed when comparing cec-4 to met-2 set-25 (Fig 10C),
and again the correlation was higher for X-linked genes than autosomal genes. There is a popu-
lation of genes on autosomes whose expression is repressed by MET-2 and SET-25 indepen-
dent of DCC-mediated changes (Fig 10B, red circle), or independent of CEC-4 (Fig 10C, red
circle), consistent with a previous study [22].

To examine correlations between gene expression changes, we performed regression analy-
sis, which showed a moderate positive correlation between tethering mutants and dpy-27
(RNAi) log, ratios for both X and autosomal genes (R-squared values ranged from 0.34 and
0.49, Pearson correlation values between 0.58 and 0.7) (Fig 10D). Additionally, X-linked genes
had slightly higher R-squared and Pearson correlation values compared to autosomal genes.
Correlations of gene expression changes on the X indicate that the genes whose expression is
most affected by depletion of the DCC are also the genes whose expression is most affected in
tethering mutants. Correlations on autosomes may be explained by the observation that defects
in DCC activity affect not only X-linked gene expression, but indirectly also contribute to mod-
ulating autosomal gene expression [12]. A control analysis, gene expression changes in dpy-27
(RNAi) correlated with gene expression changes in an unrelated condition (Ism-1 mutants,
[51]), showed lower R-squared values and lower Pearson correlation values on all chromo-
somes (Fig 10D).

To determine whether gene expression changes correlate with chromosomal changes, we
compared log, ratios of genes located at X chromosome left, middle, and right regions. Regions
were designated based on LEM-2 ChIP-chip signals domains [26]. The region 0 Mb—4 Mb
was designated "left", 4 Mb—15.75 Mb was designated "middle", and 15.75 Mb—17 Mb was
designated "right". Since the middle region of the X chromosome is subject to the greatest
level of decondensation and relocation in tethering and DCC mutants (Fig 4), we hypothe-
sized that genes in the middle of the X would be more derepressed compared to the right and
left arms. However, when examining the distribution of log, ratios in dpy-27(RNAi)/control,
cec-4(ok3124)/control, and met-2(n4256) set-25(n5021)/control, the X chromosome regions
did not show significant differences by two-sided Wilcoxon rank-sum test (S5B Fig, median
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Fig 10. Comparison of gene expression changes in tethering mutants and partial DCC depletions. The magnitude of log, expression ratios
of X-linked (dark) and autosomal linked genes (light) between cec-4(0k3124) mutant and control plotted against dpy-27(RNAi) and control RNAi (A),
met-2(n4256) set-25(n5021) mutant and control plotted against dpy-27(RNAi) and control RNAi (B), and met-2(n4256) set-25(n5021) mutant and
control plotted against cec-4(ok3124) mutant and control (C). Red circles indicate a group of genes that are repressed by MET-2 and SET-25
independent of dosage compensation or cec-4 function. Percent of X-linked (dark numbers) and autosomal genes (light numbers) with greater than
10% (log, of 0.1) change in expression are indicated in each quadrant (D) The R-squared of each regression and the Pearson correlation values are
shown for X-linked genes (X), for each individual autosome (I-V), and all autosomal genes (A) for each comparison. Values for a control analysis
(dpy-27 versus Ism-1 mutants) are also indicated.

doi:10.1371/journal.pgen.1006341.9010
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log, ratio between 0.047 and 0.099 and p-values ranged from 0.09 and 0.90). While surpris-
ing, these observations are consistent with the model that DCC induced changes in X
chromosome structure modulate gene expression chromosome-wide rather than locally

[8, 11-13].

Discussion

In a screen to identify genes with roles in X chromosome dosage compensation, we identified a
group of genes with previously known roles in anchoring heterochromatic domains to the
nuclear lamina: H3K9 HMTSs, the chromodomain protein CEC-4, and the nuclear lamina pro-
tein LEM-2. These genes are collectively required to compact the X chromosomes and tether
them to the nuclear periphery. Compartmentalization of the nucleus in this way may restrict
availability of transcriptional activators for the X chromosomes, thus creating a repressive
compartment to modulate X-linked gene expression. Although H3K9me and nuclear lamina
interactions are enriched at the left end of the X chromosomes, we find that these mutations
disproportionately affect compaction and subnuclear localization of the gene-rich middle por-
tion. Large-scale changes in chromosome morphology are accompanied by only modest
changes in gene expression, suggesting that while nuclear architecture does contribute to mod-
ulating gene expression, it is not the primary determinant.

Models of the effect of heterochromatic anchors on X chromosome
morphology

The observation that the middle of the X chromosome is more sensitive to loss of heterochro-
matic anchors (Fig 4), can be explained by postulating the existence of redundant anchors,
previously proposed to exist in differentiated cells [22, 23] (Fig 11, model 1). In this model,
two types of anchors maintain peripheral localization of the X chromosome. Heterochro-
matic tethers are enriched at the left end of the X [23, 26], but the rest of the chromosome
must also be weakly tethered. Additional anchors also tether the left end. When heterochro-
matic anchors are lost, the left end remains near the periphery due to the additional anchors,
but the rest of the X chromosome decondenses and relocates centrally. However, if we
assume that these tethers are not sex- and chromosome-specific, the model fails to explain
why the X chromosome in males (Fig 5) and the autosomes in hermaphrodites (Fig 6) are
not sensitive to the loss of heterochromatic tethers. To explain why only the DCC-bound X is
affected, we propose an alternative model (Fig 11, model 2): (1) heterochromatic anchors at
the left end of the X nucleate a compact chromatin structure, and (2) the activity of the DCC
propagates this structural organization to encompass the entire chromosome. In the absence
of the DCC, but in the presence of heterochromatic tethers (for example, the male X), the left
end maintains its compact structure and peripheral localization. However, the rest of the
chromosome decondenses and moves more centrally. In the presence of the DCC, but with-
out heterochromatic anchors (tethering mutants), redundant anchors keep the left end at the
periphery, but the DCC is unable to compact the rest of the chromosome and bring it to the
periphery. Since autosomes are not bound by the DCC, they are not affected by the loss of
heterochromatic tethers.

Correlation between compaction, subnuclear localization and gene
expression

Chromatin compaction and subnuclear localization are believed to be coordinated with gene
expression levels to a certain degree [14-16]. We analyzed chromatin condensation, subnuclear
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Model 1

VL~ X Chromosomes
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Fig 11. Model showing the effects of tethering and DCC function on X chromosome compaction and
nuclear localization. Model 1: In differentiated cells, heterochromatin tethers (black anchors) and additional
mechanisms (blue anchors) tether the left end of the X chromosome to the nuclear lamina. When heterochromatic
tethers are lost, the left end of the X remains near the periphery, but the rest of the chromosome relocates to a
more central position. Model 2: In wild type cells, the DCC organizes the X chromatin into topologically associating
domains (TADs) and uses heterochromatic anchors to compact the X chromosome and bring it to the nuclear
periphery. In the absence of the DCC, the left end of the X remains peripheral and compact due to the action of the
tethering proteins, and its TAD structure is maintained. The rest of the X chromosome loses its TAD organization,
decondenses and moves more internally. When heterochromatic anchors are lost, redundant tethers keep the left
end of the X near the nuclear lamina, but the DCC is unable to compact the rest of the chromosome and bring it to
the periphery.

doi:10.1371/journal.pgen.1006341.g011

localization, and gene expression changes in DCC-depleted animals and in tethering mutants.
We observed elevated levels of X-linked gene expression (Fig 9), decreased compaction (Figs 2
and 4), and relocation to a more central position (Figs 3, 4 and 5), both in the absence of the
DCCand in tethering mutants, providing support for the hypothesis that these processes are
coordinated. However, the correlation is not perfect. The degree of gene expression change did
not correlate well with the degree of decondensation and/or subnuclear relocation. At the
whole chromosome level, the X chromosomes in tethering mutants decondensed to a degree
comparable to DCC mutants (Fig 2). Similarly, the degree of relocation was greater in tethering
mutants than in partial loss-of-function DCC mutant, and comparable to the positioning in
XO animals that completely lack DCC function (Figs 3 and 5). However, gene expression
changes in tethering mutants are much less significant than in DCC mutants (Fig 9). Similar
conclusions were reached when we analyzed different regions of the X chromosome: relocation
and decondensation was most significant in the middle of the X chromosome (Fig 4), but gene
expression changes were comparable in all regions of the chromosome (S5 Fig). A higher reso-
lution study may reveal a stronger correlation, but at the level of whole chromosomes, or large
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chromosomal domains, the correlation between gene expression change, chromosome deconden-
sation and subnuclear localization is limited. A recent study showed that chromatin decondensa-
tion, even in the absence of transcriptional activation, is sufficient to drive nuclear reorganization
[52]. Similarly, in cec-4 mutants, decondensation of transgenic arrays is coupled to their reloca-
tion within the nucleus, but it is accompanied by only minimal changes in gene expression [22].
This is reminiscent of our results, where chromatin decondensation and relocation in general cor-
relate, but the degree of condensation does not reflect the degree of gene expression change.

We believe these results reflect that fact that repression by the DCC involves multiple mech-
anisms, and disruption of condensation and subnuclear localization is not sufficient to cause
major changes in gene expression. Other DCC-mediated changes, for example enrichment of
H4K20mel on the X chromosome, are intact in tethering mutants (Fig 8), and are sufficient to
maintain repression. However, it should be emphasized that loss of tethers (and/or the accom-
panying change in X chromosome packaging and nuclear organization) does result in gene
expression changes that are biologically significant. While the gene expression change is mod-
est (Figs 9 and 10), it is sufficient to rescue a significant proportion of males in our genetic
assay (Figs 1 and S1). Thus, chromatin condensation, subnuclear localization, and tethering to
the nuclear periphery, may not be the primary determinants of gene expression change, or may
act redundantly with other factors, but they do contribute to stabilizing gene expression pro-
grams in development [22] and during dosage compensation (this study).

The role of condensin in interphase nuclear organization

Condensin has been implicated previously in chromosome territory organization in a variety
of organisms [39, 53, 54]. In condensin mutant fission yeast, disruption of condensin-depen-
dent intrachromosomal interactions disturbed chromosome territory organization [55]. We
previously showed that the dosage compensation condensin complex is required for compac-
tion of the X chromosomes in interphase in C. elegans [39]. Our current data reveal that inter-
phase chromosome compaction requires not only the DCC, but also nuclear lamina anchors.
We favor the interpretation that heterochromatic tethers and the DCC cooperate to compact
the X chromosomes (Fig 11, model 2). Although low resolution, our FISH analysis supports
this hypothesis. The X chromosomes appear compact and in a well-defined peripheral territory
only when tethered and DCC-bound. In both DCC and tethering mutants, the X paint signal
becomes more diffuse with less well-defined borders (Fig 2, [39]). Chromosome I paint signals
in wild type worms qualitatively are more comparable to X paint signals in DCC mutants or
tethering mutants than to X paint signals in wild type (Fig 6). The two ends of chromosome I
are anchored to the nuclear periphery, and remain anchored in tethering mutants, while the
middle domain is more centrally located even in wild type worms, reminiscent of the organiza-
tion of X chromosome in tethering mutants and in males (Fig 6, [39]). Overall, these observa-
tions suggest that the DCC and heterochromatic anchors work together to compact and
peripherally relocate the middle domain of the X chromosomes not directly tethered to the
nuclear periphery.

It is interesting to note that we observe significant chromosome decondensation despite
normal DCC binding to the chromosome (Fig 8). Current models of DCC binding to the X
include a recruitment step to rex sites [12, 56, 57], which have very high levels of DCC binding
[12, 58], and tend to define TAD boundaries [8]. From these rex sites to DCC spreads to dox
sites enriched at promoter regions [12, 58]. From our low-resolution immunofluorescence
analysis, DCC binding seems unaffected in tethering mutants. Yet, despite near normal levels
of DCC, the X chromosome is not compacted, indicating that in the absence of heterochro-
matic tethers, DCC function appears to be compromised.
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Our results also reveal parallels with recent genome-wide chromosome conformation capture
(Hi-C) analysis of dosage compensated X chromosomes [8]. Hermaphrodite X chromosomes are
packaged into a structure with regularly spaced boundaries between topologically associated
domains (TADs). In the absence of the DCC, boundaries become less well defined and TAD
organization weakens, except at the left end of the X, which is the domain that is tethered to the
nuclear lamina [8] (Fig 11, model 2). This parallels our observations that in DCC mutants the left
end of the X chromosome remains less affected than the rest of the chromosome. It is likely that
the observed changes in TAD formation [8] and chromosome compaction and subnuclear locali-
zation (Figs 2-5, [39]) in the absence of the condensin-like DCC reflect the same underlying
changes in chromosome structure analyzed at different resolutions and using different methods.

If TAD formation, chromatin condensation, and subnuclear localization indeed correlate,
our results would predict that TADs at the left of the X chromosome would also be less dis-
rupted in tethering mutants than along the rest of the X chromosome. These results and pre-
dictions would suggest that nuclear lamina anchors (both the anchors mediated by H3K9me3
and the yet uncharacterized anchors) are able to impose this level of organization (TAD forma-
tion) on the tethered portion of the chromosome. Autosomes in general lack regularly spaced
TADs, except at the tethered ends of chromosome arms [8]. This observation is consistent with
our observations of peripherally located chromosome I arms (Fig 6), and our suggestion that
nuclear lamina anchors are sufficient to form regularly spaced TADs in the anchored domain.

Changes in nuclear organization during cellular differentiation and
development

The mechanisms of anchoring appear to be different in embryonic cells compared to differenti-
ated cells. Repetitive heterochromatic arrays require H3K9 methylation and CEC-4 for peripheral
localization in embryonic cells but not in differentiated cells, suggesting that differentiated cells
have other mechanisms in place for tethering genomic regions to the nuclear envelope [22, 23].
Whether heterochromatin and CEC-4 mediated anchors continue to function in differentiated
cells remained unclear [22], yet our results are consistent with this possibility. The left end of the
X chromosome remains in the vicinity of the nuclear lamina in the absence of H3K9me3, LEM-2,
or CEC-4 in fully differentiated cells, suggesting the existence of additional anchors (Fig 4). How-
ever, X chromosome morphology does change in the absence of these proteins, indicating that
tethers mediated by them continue to influence chromosome structure in differentiated cells.

Our results are reminiscent of the findings in differentiating mouse cells [59]. In early devel-
opment, lamin B receptor (Lbr) is the predominant mediator of interactions with the nuclear
lamina. Later in development, lamin-A/C-dependent tethers appear, sometimes accompanied
by the loss of Lbr-mediated mechanisms. Loss of peripheral localization of heterochromatin is
only observed when both types of tethers are absent [59]. It will be interesting to uncover the
nature of the additional anchors in differentiated C. elegans tissues and how these anchors
affect X chromosome morphology and dosage compensation. However, it is possible that the
additional anchors will be cell-type specific, consistent with the observation in mammalian
cells where various tissue-specific transmembrane proteins are used to anchor genomic regions
to the nuclear lamina [60]. Tissue-specific differences between anchoring mechanisms are also
consistent with observations that point mutations in lamin can exhibit tissue-specific defects in
humans [61] as in C. elegans [21].

Summary

In a screen for genes that promote dosage compensation in C. elegans, we identified a group of
genes implicated in anchoring heterochromatin to the nuclear lamina. When these genes are
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not functional, the X chromosome decondenses and moves away from the nuclear periphery.
Decondensation and subnuclear relocation mostly affects the gene-rich middle portion of the
X chromosome, while the tethered left end is less affected. We propose that the DCC uses these
heterochromatic anchors to condense and position the X chromosome near the nuclear periph-
ery. Moving the X chromosome into this peripheral compartment contributes to lowering X-
linked gene expression levels. Establishment of this nuclear compartment as a way to regulate
the X chromosome is consistent with previous observations [8, 12, 13] and our results (this
study), which found no correlation between DCC binding, DCC induced chromosomal
changes, and repression of gene expression.

Materials and Methods
C. elegans strains

Strains were maintained as described [62]. Strains include: N2 Bristol strain (wild type); MT16
973 met-1(n4337)1; VC967 set-32(0k1457)1; VC1317 lem-2(ok1807) 1I; MT13293 met-2
(n4256) 111; PFR40 hpl-2(tm1489) I1I; MT17463 set-25(n5021) I1I; EKM 104 set-25(n5021) I11;
him-8(mn253) IV; EKM99 met-2(n4256) set-25(n5021) I11; RB2301 cec-4(0k3124) IV; TY4403
him-8(e1489) IV; xol-1(y9) sex-1(y263) X; TY1072 her-1(e1520) V; sdc-2(y74) X; EKM71 dpy-
21(e428) V; RB1640 set-20(0k2022) X; VC2683 set-6(0k2195) X; PER60 hpl-1(tm1624) X. Males
were obtained from strains that carry a mutation in him-8, a gene required for the segregation
of the X chromosome in meiosis, mutations in which lead to high incidence of males, but do
not affect the soma. All strains were fed OP50 and grown at 15°C to avoid temperature sensi-
tive sterility associated with some mutations in some the strains.

RNA Interference (RNAI)

E. coli HT115 bacteria cells carrying plasmids that express double stranded RNAi correspond-
ing to the gene of interest, were grown from a single colony for 8-10 hours at 37°C and 125 pL
were plated onto NGM plates supplemented with IPTG (0.2% w/v) and Ampicillin (1ug/ml)
and allowed to dry overnight. For imaging experiments, worms were grown on RNAI plates for
two generations at 15°C as follows: L1 worms were placed on a plate and allowed to feed until
they reached L4 stage whereby 2-3 L4 worms were moved to a new plate and allowed to lay
eggs for 24 hours. F1 worms were grown to 24 hours post L4 for fixation. The male rescue
RNAI screen was described in detail in [35]. Briefly, him-8(e1489)IV; xol-1(y9) sex-1(y263) X
worms were treated with RNAI as before. For results shown on Fig 1, L4 worms from the PO
generation were allowed to lay eggs for 24hr at 20°C, the parents were removed, and embryos
were counted. For results shown on S1 Fig, PO worms were fed RNAI food for an additional
day, until they reached young adult stage before egg collection began. Worms were grown at
20°C and males were counted and removed for 2-4 days after eggs were laid. Male rescue was
calculated by dividing the number of observed males by the number of expected males. The
him-8(e1489)IV strain consistently yields 38% male progeny so the expected number of males
was assumed to be 38% of the embryos laid. Male rescue was calculated as: (Observed number
of males)/ (0.38 x number of eggs laid).

Antibodies

The following antibodies were used: rabbit anti-H3K9me3 (Active Motif #39766), rabbit anti-
H4K20mel (Abcam ab9051), rabbit anti-DPY-27 [4], rabbit anti-beta tubulin (Novus NB600-
936). Anti-CAPG-1 antibodies were raised in goat using the same epitope as in [4]. Secondary
anti-rabbit and anti-goat antibodies were purchased from Jackson Immunoresearch.
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Immunofluorescence

Immunofluorescence experiments were performed as described [4]. Young adult worms were
dissected in 1X sperm salts (50 mM Pipes pH 7, 25 mM KCl, 1 mM MgSO4, 45 mM NaCl and
2 mM CaCl2, supplemented with 1 mM levamisole), fixed in 2% paraformaldehyde in 1X
sperm salts for 5 minutes and frozen on dry-ice for 10 minutes. For anti-H4K20me1 and anti-
CAPG-1 staining, worms were fixed in 1% PFA. After fixation, slides were frozen on a dry ice
block for 20-30 minutes, washed three times in PBS with 0.1% Triton X-100 (PBST) before
incubation with diluted primary antibodies in a humid chamber, overnight at room tempera-
ture. Slides were then washed three times with PBST, incubated for 4 hours with diluted sec-
ondary antibody at room temperature, washed again twice for 10 minutes each with PBST, and
once for 10 minutes with PBST plus DAPI. Slides were mounted with Vectashield (Vector
Labs). Antibodies were used at the following concentrations: CAPG-1, 1:1000; DPY-27, 1:100;
H4K20mel, 1:200; H3K9me3, 1:500.

Fluorescence In Situ Hybridization (FISH)

Slides were prepared as for immunofluorescence through the PBST washes following fixation.
Slides were then dehydrated with sequential 2 minute washes in 70%, 80%, 95% and 100% eth-
anol before being allowed to air dry for 5 minutes at room temperature. Full X-paint probe and
chromosome I paint probe preparation was described in detail in [39, 63]. The X-left probe
contained DNA amplified from the following YACs: Y35H6, Y47C4, Y51E2, Y02A12,
Y105G12, Y97B8, Y76F7, Y40,H5, Y43D5, Y18F11, Y89H11 (covers the region from 0.1Mb to
4.2 Mb of the chromosome). The X-mid probe contained DNA amplified from the following
YACs: Y18Cl11, Y50C2, Y70G9, Y44D2, Y102D2, Y97D4, Y97D9 (covers the region from
7.4Mb to 11.0 Mb). The X-right probe contained DNA amplified from the following YACs:
Y31A8,Y52C11, Y42D5,Y53A6, Y7A5, Y46E1L, Y50B3, Y25B5, Y43F3, Y52F1, Y68A3 (covers
the region from 14.0 Mb to 17.6 Mb of the chromosome). The Chromosome I left probe was
made from the following YACs: Y73F10, Y50C1, Y65B4, Y18H1, Y73A3, Y34D9, Y48G8,
Y52D1,Y71G12,Y102E12, Y71F9, Y115A10, Y44E3, Y74A12, Y74A11, Y39E12, Y40G6,
Y110A7 (covers the region from the 0.2-4.6 Mb of the chromosome); chromosome I middle
probe was made from the following YACs: Y70C6, Y46D1, Y54B12, Y101C10, Y39A9, Y53F1,
Y97F9,Y97D1, Y97E2, Y43C3, Y43E2, Y49G9, Y102E5, Y106G6 (covering the region from 4.6
Mb—10.1 Mb); the chromosome I right probe was made form the following YACs: Y71BS,
Y19G12, Y37F4,Y95D11, Y53A2, YA7H9, Y47H10, Y45E10, Y91F4, Y50A7, Y43D10, Y40B1,
Y63D3, Y112D2, Y54E5 (covering the region fro 10.1-15.07 Mb). 10 microliters of probe was
added to each slide, covered with a coverslip and placed on a 95°C heat block for 5 minutes.
The heat block was then cooled to 37°C slowly and the slides were moved to a 37°C incubator
in a humid chamber and incubated overnight. Slides were washed as follows: 3 washes of 2X
SSC/50% formamide for 5 minutes each; 3 washes of 2X SSC for 5 minutes each; 1 wash of 1X
SSC for 10 minutes. All washes were performed in a 39°C water bath. Finally, the slides were
washed once with PBST containing DAPI for 10 minutes at room temperature before mount-
ing with Vectashield.

Quantification

Volume Quantification: Chromosome volumes were quantified as in [39]. Briefly, using the
Mask: Segment function of Slidebook, a user-defined threshold is determined that separates
signal from background and auto-fluorescence. The same level of background was used for all
nuclei based on observed background. Masks were calculated for each channel with DAPI
being the primary mask and the X paint being the secondary mask. Nuclear volume was
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calculated by taking the number of voxels (volumetric pixels) for the DAPI channel to deter-
mine total DNA content (morphology: volume (voxels)). The overlapping voxels between the
X and the DAPI was determined by using a cross mask of the DAPI and X paint signals (cross
mask: mask overlaps) in Slidebook. The percent nuclear volume occupied by the X was deter-
mined by dividing the number of X voxels by the total number of DAPI voxels.

Three-zone assay quantification: Concentric ovals of equal area were drawn over one focal
plane from the center of the Z stack that contained the largest amount of X FISH signal. Masks
were made from each of these zones using the Advanced operations > Convert regions to
mask objects function in Slidebook. A single plane from the X chromosome mask set for vol-
ume quantification was used here. The amount of X signal in each of the zones was calculated
using the cross mask: mask overlap function in Slidebook where the zone mask was the pri-
mary mask and the X mask was the secondary mask. The total voxels for all three zones were
summed and the voxels in each zone were divided by the total to determine what percentage of
the X signal was located in each zone.

mRNA-seq

Worms were synchronized by bleaching gravid adults to isolate embryos and allowing worms
to hatch overnight. Newly hatched L1 larval worms were plated and grown for 3 hours on
NGM plates with OP50. To the worm pellet, ten volumes of Trizol were added and RNA was
extracted and precipitated using the manufacturer's instructions. Total RNA was cleaned using
the Qiagen RNeasy kit. Non-stranded mRNA-seq libraries were prepared using TruSeq RNA
Library Preparation Kit. Single-end 50-bp sequencing was performed using Illumina HiSeq-
2000. Reads were trimmed for quality using the TrimGalore program from Babraham Bioin-
formatics (http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) and aligned to
the C. elegans genome version WS235 with Tophat v 2.0.13 (Trapnell et. al. 2012). Default
parameters allow up to 20 hits for each read. Gene expression was quantified using Cufflinks
v2.2.1 with use of “rescue method” for multi-reads and supplying gene annotation for WS235.
Gene count estimation was performed using HT'Seq-count tool v0.6.0 in the default “union”
mode (Anders et. al. 2014). Differential expression analysis was performed using DESeq2
v1.6.3 in R version 3.2.3 (Anders and Huber 2010; R Development Core Team 2012). All analy-
ses were performed with genes that had average expression level above 1 RPKM (fragments per
kilobase per million, as calculated by Cufflinks).

Western blot

From the worm suspension collected for RNA-seq experiments, 50 pL of L1s were used for pro-
tein analysis. For CAPG-1 antibody validation, 50 pL of mixed stage worms were used. Equal
volume of sample buffer was added (0.1 M Tris pH 6.8, 7.5 M urea, 2% SDS, 100mM B-ME,
0.05% bromophenol blue), the suspension was heated to 65°C for 10 minutes, sonicated for
30-seconds twice, heated to 65°C for 5 minutes, 95°C for 5 minutes, then kept at 37°C until
loading onto SDS-PAGE gel. Proteins were transferred to nitrocellulose and probed with the
appropriate antibodies.

Supporting Information

S1 Fig. Additional male rescue analysis. A limited number of genes were analyzed in each
experiment (A, B, and C), but using four independent biological replicates. Note that RNAi
feeding of parents was extended by 24 hours compared to the experiment shown on Fig 1. This
led to higher levels of male rescue overall, but the trend remained the same. OP50 is the normal
bacterial food source, without any plasmid to produce RNA. With the exception of set-6 and
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set-20, RNAI of all genes rescued significantly more males than control vector RNAI. It is
important to point out that the few males rescued on vector RNAI plates were small and sickly,
while the males rescued using RNAI of the other genes appeared more normal size and had bet-
ter mobility. Error bars indicate standard deviation based on four replicates. Asterisks indicate
statistical significance using Student t-test, n.s. = p>0.5, * = p<0.05, ** = p<0.01, *** =
p<0.001. Numbers of embryos counted and p-values (compared to vector RNAi) are shown in
the table below each graph.

(TIF)

S2 Fig. Chromosome volume measurements in hypodermal nuclei of hermaphrodites. (A)
X chromosome paint FISH (red) in diploid tail tip hypodermal nuclei (DAPI, blue) of her-
maphrodite adult worms. The X chromosomes are compact and peripherally localized in wild
type (N2), but are decondensed and more centrally located in mutants. Scale bar, 1 um. (B)
Quantification of X chromosome volumes normalized to nuclear size (n = 17-26 nuclei). Error
bars indicate standard deviation. ***= p<0.001 by Student's t-test (N2 compared to appropriate
mutant).

(TIF)

S3 Fig. X paint FISH images in irregularly-shapednuclei. (A) Representative irregularly
shaped nuclei in the various backgrounds. The X is compact and peripherally located in N2
hermaphrodites and is decondensed and more centrally located in tethering mutants and in
males. (B) Table indicating the percent of nuclei in each background that were suitable for
analysis using the three-zone assay.

(TIF)

S4 Fig. Antibody validation and RNAi-depletion control. (A) Immunofluorescence analysis
of the newly developed CAPG-1 antibody in nuclei of control vector RNAi-treated worms
shows two territories corresponding to the X chromosomes. In capg-1(RNAi) nuclei, the signal
is below level of detection, similar to what has been observed previously with other antibodies
to DCC components. (B) On a western blot, the antibody recognizes a protein of the predicted
size (131 kD) in control vector RNAI treated worms, but not in CAPG-1 RNAI treated worms.
Tubulin was used as loading control. (C) Western blot analysis of three control and three dpy-
27(RNAi) samples, indicating levels of DPY-27 depletion. Tubulin is shown as a loading con-
trol.

(TIF)

S5 Fig. Additional analysis of gene expression changes. (A) Numbers and percentages of
genes with significantly changed levels of gene expression (DESeq2, padj<0.1 and padj<0.05)
on the X chromosome and the autosomes in each background. (B) Boxplots show the distribu-
tion of log, expression ratios on X chromosome regions between dpy-27 and control RNAi,
cec-4(0k3124) mutant and control, and met-2(n4256) set-25(n5021) mutant and control.
Expression differences between X regions were tested by two-sided Wilcoxon rank-sum test.
No significant differences were found.

(TIF)

S1 File. List of mRNA-seq data sets and their GEO accession numbers (tab 1), average
RPKM expression levels for mRNA-seq data sets (tab 2), and DEseq2 analysis results for
differential expression (tab 3).

(XLSX)

S1 Table. Statistical analysis of X chromosome FISH data using the three-zone assay.
(PDF)
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S2 Table. Statistical analysis of chromosome I FISH data using the three-zone assay.
(PDF)
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