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Abstract: DNA methylation is an epigenetic mechanism for gene expression modulation and can
be used as a predictor of future disease risks. A prospective birth cohort study was performed
to clarify the effects of neurotoxicants on child development, namely, the Tohoku Study of Child
Development, in Japan. This study aimed to evaluate the association of prenatal exposure to five toxic
metals—arsenic, cadmium, mercury, lead (Pb), antimony (Sb), and polychlorinated biphenyls (PCBs,
N = 166)—with global DNA methylation in umbilical cord blood DNA. DNA methylation markers,
5-methyl-2′-deoxycytidine (mC) and 5-hydroxymethyl-2′-deoxycytidine (hmC), were determined
using liquid chromatography-tandem mass spectrometry. The mC content in cord blood DNA was
positively correlated with Pb and Sb levels (r = 0.435 and 0.288, respectively) but not with cord blood
PCBs. We also observed significant positive correlations among Pb levels, maternal age, and hmC
content (r = 0.155 and 0.243, respectively). The multiple regression analysis among the potential
predictors demonstrated consistent positive associations between Pb and Sb levels and mC and hmC
content. Our results suggest that global DNA methylation is a promising biomarker for prenatal
exposure to Pb and Sb.

Keywords: global DNA methylation; global DNA hydroxymethylation; cord blood DNA; lead;
antimony; birth cohort

1. Introduction

Prenatal exposure to environmental chemicals, such as heavy metals and polychlori-
nated biphenyls, is a significant concern because it causes developmental abnormalities
in neurological functions [1,2]. In addition, accurate estimation of cumulative exposure
is crucial for studying the relationship between prenatal exposure to these chemicals and
health outcomes. However, the accumulation period and excretion pattern of these chem-
icals differ in their physicochemical properties, complicating the estimation. Therefore,
a universal exposure marker would help evaluate lifetime exposure levels and predict
disease susceptibility and adult outcomes.

Epigenetic DNA methylation plays an essential role in fetal development, during
which epigenetic marks of maternal and paternal genomes are edited drastically [3,4]. In
addition, DNA methylation is involved in various health events, such as aging, cancer, and
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the etiology of cardiovascular disease [3,5–7]. Mammalian DNA methylation is regulated by
the orchestrated activity of DNA methyltransferases (DNMT1 and DNMT3A/3B), methy-
lating 2′-deoxycytidine at the C5 position to produce 5-methyl-2′-deoxycytidine (mC) [8].
DNMT1 mainly catalyzes DNA methylation at hemimethylated sites, where DNA methyla-
tion patterns in the parental strand are maintained in the newly replicated daughter strand.
DNMT3A/3B mediates DNA methylation at hemi- and unmethylated sites. Methylated
DNA in dinucleotide CpG islands of the promoter region recruits methyl-CpG-binding
proteins as transcriptional suppressors to reduce gene expression activity. By contrast,
DNA demethylation proceeds through both passive and active mechanisms. Passive de-
pletion of mC occurs during semi-conserved DNA replication. Ten-eleven translocation
(TET) oxygenases (TET-1/2/3) mediate active mC removal, producing 5-hydroxymethyl-
2′deoxycytidine (hmC) and further oxidized products [9,10]. These oxidized bases are then
erased from the DNA strands by base excision repair enzymes. Many epidemiological
studies have reported the association of environmental exposures [11–13] with semi-global
or site-specific DNA methylation patterns, but studies on global methylation in cord blood
DNA are limited. Assuming that exogenous factors disturb epigenetic regulation dur-
ing prenatal and early life periods, the resulting epigenetic insult may interrupt normal
development and possibly change the susceptibility and risk of future diseases in off-
spring. Therefore, DNA methylation may serve as a candidate biomarker for future health
outcomes [14].

The co-authors performed a birth cohort study called the Tohoku Study of Child
Development (TSCD) in Japan. In the TSCD, hundreds of maternal-fetal matched samples,
including those of umbilical cord blood, have been collected, and chemical exposure levels
have been determined [15–21]. Therefore, the aim of this study was to assess the association
of environmental exposure to five toxic metals, arsenic, cadmium, mercury, lead (Pb),
antimony (Sb), and polychlorinated biphenyls (PCBs), with global DNA methylation in
umbilical cord blood DNA.

2. Materials and Methods
2.1. Study Design, Subjects, and Sampling

The study protocol for the TSCD was described [17]. The medical ethics committees
of the Tohoku University Graduate School of Medicine (Approval number 2017-1-1032),
National Institute for Environmental Studies (Approval number 2018-007), and Meijo
University (Approval number 2012-22) approved the study protocol. Informed consent
was obtained from all the participants. The TSCD was conducted in urban and coastal
areas [19,22] and urban samples were used in this study (See [23] for detailed information
of urban and coastal samples). We enrolled 687 women who provided written informed
consent, and 599 mother–infant pairs were registered in March 2004 (participation rate:
87.2%). We selected subjects (n = 245) who completed data from all the developmental tests,
such as NBAS (Neonatal Behavioral Assessment Scale), BSID-II (Bayley Scales of Infant
and Toddler Development, the second edition), K-ABC (Kaufman Assessment Battery for
Children), and WISC-III (Wechsler Intelligence Scale for Children, the third edition) for
analysis. This study used 166 pairs with complete information on PCBs, mercury, lead, and
other toxic element concentrations; global DNA methylation in cord blood; birth weight;
possible confounders such as gestational age, parity, smoking and drinking habits during
pregnancy; and maternal educational information (Figure 1).

2.2. Analytical Methods
2.2.1. Determination of Toxic Metals and Essential Trace Elements

Total mercury (Hg, ng/g) in whole blood was measured using cold vapor atomic absorp-
tion spectrometry (CVAAS; HG-201, Sanso Seisakusho Co. Ltd., Tokyo, Japan). The analytical
method for CVAAS has been described elsewhere [15,24]. We also determined the toxic metal
levels of arsenic (As, ng/mL), cadmium (Cd, ng/mL), lead (Pb, µg/dL), and antimony (Sb,
ng/mL), and the essential trace element levels of copper (Cu, ng/mL), zinc (Zn, ng/mL),
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and selenium (Se, ng/mL). These elements were measured using inductively coupled plasma
mass spectrometry (7500c, Agilent Technologies, Inc., Santa Clara, CA, USA) [16].

Precision was ensured by using certified reference material (Seronorm Trace Elements
Whole Blood L-2 and 3 prepared by SEROAS, Norway) for quality control. The data quality
for the concentrations of these metals was validated using external quality assurance
programs [25]. These analyses were performed by IDEA Consultants Inc. (Tokyo, Japan).
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2.2.2. Determination of Polychlorinated Biphenyls

All 209 PCB congeners were analyzed using high-resolution gas chromatography/high-
resolution mass spectrometry with the isotope dilution method. The laboratory analytical
methods and quality control procedures used have been described [18]. PCB analyses were
performed by IDEA Consultants, Inc. (Tokyo, Japan). The quality of the PCB analyses
was validated using an external quality assurance program, the German external assurance
scheme at IDEA Consultants Inc. Accuracy was ensured by using a reference serum sample
for quality control; the International Union of Pure and Applied Chemistry No. #28, #52,
#101, #138, #153, #180 of PCB congeners were determined to be 0.310, 0.162, 0.150, 0.220,
0.217, and 0.300 µg/L, compared with the reference value (tolerance range in parenthesis) of
0.284 (0.181–0.388), 0.162 (0.102–0.222), 0.172 (0.126–0.218), 0.242 (0.174–0.310), 0.217 (0.152–
0.281), and 0.307 (0.222–0.392) µg/L, respectively. Moreover, for cross-checking, PCBs were
analyzed by another laboratory. PCB data from the two laboratories showed no significant
difference by a paired t test (t = −2.572, p = 0.062) and a high Pearson product-moment
correlation coefficient (r = 0.869). The calculated limit of detection (LOD) was 0.03 pg/g-wet,
which was identified by the signal-to-noise ratio. We used the lipid basis for the total
concentration of all measured PCB congeners (ΣPCBs), expressed as ng/g-lipid [26].

2.2.3. Genomic DNA Extraction and Digestion

Genomic DNA extraction and enzymatic digestion were performed as previously
reported [4,27,28]. Briefly, DNA was extracted from cord blood by using a spin column
(High Pure PCR Template Preparation Kit; Roche, Mannheim, Germany) according to
the manufacturer’s instructions. For enzymatic digestion, 1 µg DNA was incubated at
37 ◦C for 3 h with nuclease P1 (4U, Wako Pure Chemical Industries, Ltd., Osaka, Japan)
and alkaline phosphatase (3U, Wako) in 100 µL of buffer mixture (30 mM sodium ac-
etate (pH 5.3) containing 10 mM 2-mercaptoethanol and 20 mM ZnSO4), followed by
the addition of 20 µL Tris-HCl (500 mM, pH8.5) and incubation for another 3 h. After
methanol precipitation, the supernatant containing nucleosides was evaporated to dryness
and stored at −80 ◦C until use. Each digest was reconstituted in 100 µL internal stan-
dard (IS) solution that contained the following stable isotope labeled standards, namely,
5-(methyl-d3)-2′-deoxycytidine (mC-d3, 0.1 nM; Toronto Research Chemicals Inc., Ontario,
Canada), 5-(hydroxymethyl-d2)-2′-deoxycytidine (hmC-d2, 0.1 nM; synthesized in our labo-
ratory [4]), and 15N5-2′-deoxyguanosine (15N5-G, 1 nM; Cambridge Isotope Laboratories
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Inc., Andover, MA, USA), and the aliquot was further diluted 10–100 times with IS solution
before being subjected to LC-MS/MS. Calibration curves were obtained using the following
unlabeled standards: 5-methyl-2′-deoxycytidine (Tokyo Chemical Industry Co., Ltd., Tokyo,
Japan), 5-hydroxymethyl-2′-deoxycytidine (Berry and Associates Inc., Dexter, MI, USA),
and 2′-deoxyguanosine (Sigma-Aldrich Co., St. Louis, MO, USA).

2.2.4. LC-MS/MS Analysis for mC/hmC Quantification

LC-MS/MS analysis was performed using a high-performance liquid chromatograph
(Prominence series, Shimadzu, Kyoto, Japan) equipped with a triple-quadrupole mass spectrom-
eter (API4000 system, AB Sciex, Foster City, CA, USA) [4,28]. Sample aliquots (60 µL) were sepa-
rated at 40 ◦C by using a reverse-phase column (TSKgel ODS-100 V, 4.6 mm × 75 mm × 3 µm;
Tosoh, Tokyo, Japan) in the isocratic mode with a mobile phase (methanol-10 mM ammonium
formate (20:80)) at a flow rate of 0.3 mL/min. Stable isotope labeled nucleosides were used
as internal standards for mC, hmC, and G. Elution of mC, hmC, and G was, respectively, at
4.1, 5.0, and 5.3 min in the isocratic mode (total running time, 12 min). Mass spectral analysis
was conducted in the positive ion mode with nitrogen as the nebulizing gas. Ionization was
performed under the following conditions: curtain gas, 10 psi; collision gas, 8 psi; ion source
gas 1, 60 psi; ion source gas 2, 60 psi; ion source voltage, 4500 V; and ion source temperature,
400 ◦C. Positive ions were acquired in the multiple reaction monitoring (MRM) mode. The
MRM transitions were monitored as follows: mC (m/z 242→126), mC-d3 (m/z 245→129), hmC
(m/z 258→142), hmC-d2 (m/z 260→144), G (m/z 268→152), and 15N5 g (m/z 273→157). The
proportion (%) of C that was mC or hmC in each sample is given by %mC or hmC = [(value for
mC or hmC)/(value for G)]× 100. The mC and hmC values were expressed as the content (ng)
in 100 ng of DNA.

2.3. Statistical Analysis

Numerical variables were presented as mean ± standard deviation and as median and
interquartile range. Categorical variables were presented as frequencies (percentages). The metal
and PCB concentrations were logarithmically transformed because of a skewed distribution.
Pearson product-moment correlation coefficients were used to determine the relationships
among global DNA methylation, exposure biomarkers, and basal characteristics. A general-
ized linear model was used to evaluate the association between prenatal chemical exposure
and DNA methylation. We selected potential covariates associated with at least one of the
exposed substance-outcome pairs (i.e., maternal age, gestational age, BMI before pregnancy,
smoking/drinking habits during pregnancy, education, delivery mode, and parity). We also
created a directed acyclic graph [29] for covariate selection (Figure S1). The multicollinearity of
these variables was less than the variance inflation factor five (VIF5). Because samples whose
analytical values were less than the LOD were omitted (79 of 245 samples), the remaining
166 samples were subjected to statistical analysis. Sensitivity analysis confirmed a similar result
for n = 245. Statistical significance was set at p < 0.05. Data analysis was performed using a
software package (JMP16.0, SAS Institute Inc., Cary, NC, USA).

3. Results

The basal characteristics, exposure levels, and DNA methylation status of 166 mother–
infant pairs are shown in Table 1. BMI (20.9 ± 2.5) indicated that the participants were
classified as having a normal weight. The smoking rate during pregnancy (7.2%) was
similar to that reported in the literature [30,31]. By contrast, 31.3% of mothers stated that
they were drinking during pregnancy, and this value is several times higher than that
reported (less than 10%) [32,33]. However, no substantial impairments in the infants were
found in gestational age, birth weight, sex ratio, and Apgar score.

Table 2 shows the relationship between global DNA methylation, exposure biomarkers,
and basal characteristics (n = 166, excluding samples with Sb levels less than the LOD). A
positive correlation was found between Pb, Sb, and Se levels and mC content in cord blood
(Pearson correlation coefficient, r = 0.435 for Pb, r = 0.288 for Sb, and r = 0.168 for Se; Figure 2).
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In addition, we observed a significant positive correlation between the hmC content and Pb
level or maternal age (r = 0.155 for Pb and r = 0.243 for maternal age, Figure 2). By contrast,
no significant differences in global DNA methylation were observed in smoking and drinking
habits during pregnancy, although the population sizes were small.

Table 1. Basal characteristics, exposure levels, and DNA methylation status in this study’s subjects.

n = 166 Mean ± SD
Median (P25–P75) n (%)

Maternal characteristics
Maternal age (years) 31.2 ± 3.8

Body mass index before pregnancy (kg/m2) 20.9 ± 2.5
Smoking habit during pregnancy (smokers, %) 12 (7.2)
Drinking habit during pregnancy (drinkers, %) 52 (31.3)

Delivery type (spontaneous, %) 122 (73.5)
Parity (first, %) 88 (53.0)

Maternal educational level (graduate high school, %) 128 (77.1)
Baby characteristics

Gestational age (weeks) 39.6 ± 1.3
Birth weight (g) 3078.0 ± 329.1

Sex (boys, %) 88 (53.0)
Apgar score 8 (8–9)

Exposure levels in cord blood
Total PCBs (ng/g-lipid) 49.6 (30.3–60.5)

Hg (ng/g) 10.8 (7.0–13.7)
As (ng/mL) 4.42 (2.69–5.52)
Pb (µg/dL) 1.06 (0.80–1.27)
Cd (ng/mL) 0.93 (0.05–1.06)
Sb (ng/mL) 0.93 (0.41–1.28)
Se (ng/mL) 185.6 (158.9–210.6)
Cu (ng/mL) 512.8 (448.5–548.5)
Zn (ng/mL) 2129.7 (1729.7–2236.6)

DNA methylation status
mC (ng/100 ng DNA) 1.11 (1.06–1.15)

hmC (ng/100 ng DNA) 0.011 (0.010–0.012)

Table 2. Pearson product-moment correlation coefficients (r) between relating indicators and
mC/hmC contents (ng/100 ng DNA).

n = 166
mC

(ng/100 ng DNA)
hmC

(ng/100 ng DNA)
r r

Maternal characteristics
Maternal age (years) 0.089 0.243 *

Body mass index before pregnancy (kg/m2) −0.047 −0.072
Baby characteristics

Gestational age (weeks) 0.033 −0.096
Birth weight (g) 0.052 −0.027

Birth length (cm) 0.128 0.067
Exposure levels in cord blood

PCBs (ng/g-lipid) −0.090 0.050
Hg (ng/g) 0.038 −0.074

As (ng/mL) −0.058 −0.123
Pb (µg/dL) 0.435 ** 0.155 *
Cd (ng/mL) −0.010 −0.129
Sb (ng/mL) 0.288 ** 0.125
Se (ng/mL) 0.168 * 0.008
Cu (ng/mL) 0.089 0.044
Zn (ng/mL) 0.036 −0.063

Values were Pearson product-moment correlation coefficients (r). * p < 0.05, ** p < 0.01.
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The associations between the predictors and global DNA methylation are shown in
Table 3. We found consistent positive associations between Pb, Sb, and Se levels and mC
content in cord blood among potential predictors. In addition, cord blood Pb levels and
maternal age were positively associated with the hmC content. These predictors explained
39.9% of the mC content in cord blood, whereas the hmC content was lower (18.1%).

Table 3. Relations of exposure levels and possible confounders to mC and hmC content (ng/100 ng
DNA): Results of multiple regression analysis.

n = 166

mC (ng/100 ng DNA) hmC (ng/100 ng DNA)

Standardized
Regression Coefficient, β

[95% CI]
p Value

Standardized
Regression Coefficient, β

[95% CI]
p Value

Exposure markers
PCBs (ng/g-lipid) −0.083 [−0.239, 0.073] 0.294 0.118 [−0.064, 0.300] 0.203

Hg (ng/g) 0.110 [−0.033, 0.253] 0.130 −0.053 [−0.219, 0.113] 0.530
As (ng/mL) −0.085 [−0.224, 0.054] 0.228 −0.120 [−0.282, 0.042] 0.144
Pb (µg/dL) 0.524 [0.381, 0.666] <0.0001 0.227 [0.061, 0.394] 0.008
Cd (ng/mL) −0.056 [−0.195, 0.084] 0.430 −0.143 [−0.305, 0.020] 0.086
Sb (ng/mL) 0.388 [0.255, 0.521] <0.0001 0.192 [0.037, 0.348] 0.016
Se (ng/mL) 0.153 [0.009, 0.297] 0.038 0.042 [−0.126, 0.211] 0.622
Cu (ng/mL) −0.001 [−0.167, 0.164] 0.988 0.064 [−0.130, 0.257] 0.517
Zn (ng/mL) −0.134 [−0.310, 0.042] 0.134 −0.194 [−0.400, 0.011] 0.064

Possible confounders
Maternal age 0.093 [−0.055, 0.240] 0.216 0.176 [0.003, 0.348] 0.046

Gestational weeks −0.031 [−0.172, 0.110] 0.665 −0.028 [−0.193, 0.137] 0.739
Parity −0.020 [−0.178, 0.139] 0.808 0.057 [−0.128, 0.242] 0.545

Education levels 0.156 [−0.015, 0.326] 0.074 −0.128 [−0.327, 0.071] 0.207
BMI before pregnancy −0.013 [−0.143, 0.117] 0.848 −0.057 [−0.209, 0.095] 0.457

Smoking habit during pregnancy 0.145 [−0.131, 0.421] 0.302 −0.052 [−0.374, 0.271] 0.752
Drinking habit during pregnancy −0.046 [−0.184, 0.093] 0.516 −0.053 [−0.215, 0.109] 0.516

Contribution rate, R2

Adjusted R2
0.399
0.334

0.181
0.093

R indicates the multiple correlation coefficient.
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4. Discussion

DNA methylation is an epigenetic mechanism for gene expression modulation and can
be used as a predictor of future disease risks. Several large-scale studies have evaluated
the association between prenatal chemical exposure and DNA methylation [34–36]. Most
of those studies have measured the site-specific, not the global, DNA methylation status
by using a bead-chip DNA microarray. The pyrosequencing technique is a powerful tool
for estimating semi-global DNA methylation levels based on the methylation status in
the LINE-1 retrotransposon [37]. Several groups have used this technique to study the
relationship between chemical exposure and DNA methylation [38–44]. In this technique,
unmethylated cytosine is distinguished from methylated cytosine based on bisulfite conver-
sion, during which unmethylated cytosine is converted to uracil, and methylated cytosine
reacts poorly with bisulfite. However, resistance to bisulfite conversion is also observed with
hydroxymethylated cytosine, making it impossible to differentiate this base from methylated
cytosine [45]. ELISA is another choice for determining global DNA methylation [46–48].
However, as epigenetic variations in cord blood DNA seem to be relatively low, the accuracy
and precision of ELISA assays would be insufficient to assess epigenetic fluctuations during
fetal development [49]. In this study, the LC-MS/MS method [2,18] was used for the first
time for absolute quantification of mC and hmC levels in cord blood DNA.

The TSCD, whose aim was to evaluate the effect of prenatal exposure to environmental
chemicals on neurological development, provided us with valuable cord blood samples. This
study determined the association of prenatal exposure to five toxic metals (As, Cd, Hg, Pb,
and Sb), three essential trace elements (Se, Cu, and Zn), and PCBs with the mC/hmC content
in cord blood. Multiple regression analysis showed a statistically significant association
between Pb or Sb exposure and DNA methylation (mC and hmC content) (Table 3). The
association of LINE-1 methylation with maternal patellar Pb levels has also been shown [44].
Although blood Se level was weakly associated with mC content, Se level in serum/plasma,
where Se-containing proteins exist, should be measured to understand the exact meaning
of the association. Taken together, these findings and the previous report suggest that Pb
exposure alters global DNA methylation; however, further studies are necessary.

The impact of Pb exposure on developmental cognitive functions has been extensively
studied. In a meta-analysis of children’s IQ and blood Pb levels, Wu et al. reported that
full-scale IQ scores dropped by 6.60 points in children with blood Pb levels ≥10 µg/dL [50].
In addition, several epidemiological studies have suggested no proven lower limit of Pb
exposure, because a decrease in cognitive function has been observed in children with
relatively low blood Pb concentrations (<10.0 µg/dL) [21,51,52]. Although the blood Pb
levels in preschool children globally decreased to less than 6.0 µg/dL, the children suffer
from Pb exposure, especially in countries with a medium/low UN human development
index [53]. The Human Biomonitoring Commission of the Federal Environment Agency
in Germany concluded that any setting of an “effect threshold” for blood Pb levels would
be arbitrary and unjustified [54]. As a result, the Commission suspended the human
biomonitoring values for Pb in the blood of children and adults. The United States Centers
for Disease Control and Prevention also announced a reduction in the blood Pb reference
value for children from 5 to 3.5 µg/dL in Oct. 2021 [55]. Nevertheless, there are no
valuable biomarkers for estimating the impact of low lead exposure. This study found
that global DNA methylation was strongly associated with cord blood Pb ranging from
0.39 to 4.84 µg/dL (Table 3). Our results suggest that global DNA methylation could be a
promising biomarker for the adverse health effects of prenatal Pb exposure.

This study has limitations. First, although we found relationships between environ-
mental chemicals, such as Pb and Sb, and global DNA methylation, we did not assess
the methylation of individual genes and other chemicals. Second, the sample size was
small, and Pb exposure was narrow and not high. Third, the uncontrolled confounding
variables have remained in our analysis (Figure S1). Further studies with larger sample
sizes and more comprehensive approaches than those used in this study are necessary to
verify these results.



Toxics 2022, 10, 157 8 of 11

5. Conclusions

We determined the relationship between environmental chemical levels (As, Cd, Hg,
Pb, Sb, and PCBs) and the mC/hmC content in cord blood DNA. The cord blood Pb and
Sb concentrations were positively associated with mC and hmC content. Notably, the
Pb exposure level was relatively low, ranging from 0.39 to 4.84 µg/dL. Although further
studies are necessary, global DNA methylation could be a suitable biomarker for estimating
Pb exposure and predicting future health outcomes.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/toxics10040157/s1, Figure S1: Directed acyclic graph showing the
hypothesized relationship among prenatal chemical exposure, DNA methylation, and covariates. Ht,
Hematocrit value; v1, variable 1; v2, variable 2.
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