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Simple Summary: Acute myeloid leukemia (AML) is a cancer characterized by impaired differenti-
ation and excessive expansion of blood progenitor cells leading to their accumulation in the bone
marrow and circulation. The aim of this review is to describe how these leukemic cells can influence
the immune system, particularly T lymphocytes that originate from the thymus and are involved in
cancers’ and infections’ eradication. We focus on the elderly population, as this disease mainly affects
people over 60 years-old. We discuss how AML cells can modify T lymphocytes’ production and
functions. We also highlight newly developed therapeutic strategies to improve the anti-leukemic
immune response and the clinical outcome of patients.

Abstract: Acute myeloid leukemia (AML) is a heterogeneous disease driven by impaired differ-
entiation of hematopoietic primitive cells toward myeloid lineages (monocytes, granulocytes, red
blood cells, platelets), leading to expansion and accumulation of “stem” and/or “progenitor”-like or
differentiated leukemic cells in the bone marrow and blood. AML progression alters the bone marrow
microenvironment and inhibits hematopoiesis’ proper functioning, causing sustained cytopenia and
immunodeficiency. This review describes how the AML microenvironment influences lymphoid
lineages, particularly T lymphocytes that originate from the thymus and orchestrate adaptive im-
mune response. We focus on the elderly population, which is mainly affected by this pathology. We
discuss how a permissive AML microenvironment can alter and even worsen the thymic function,
T cells’ peripheral homeostasis, phenotype, and functions. Based on the recent findings on the
mechanisms supporting that AML induces quantitative and qualitative changes in T cells, we suggest
and summarize current immunotherapeutic strategies and challenges to overcome these anomalies
to improve the anti-leukemic immune response and the clinical outcome of patients.

Keywords: acute myeloid leukemia; T cells; immunotherapy; thymus function

1. Introduction

Acute myeloid leukemia (AML) is a clonal disorder characterized by the differen-
tiation blockade and rapid proliferation of myeloid primitive cells (hematopoietic stem
cells (HSC), lymphoid/myeloid progenitors and myeloid precursors) due to the trans-
formation of regular hematopoiesis programs [1]. It represents the most common acute
leukemia in the adult population, and its incidence rises with age, with ~3 to 4 cases per
100,000 persons per year worldwide. The median age at diagnosis of AML is estimated
over 60 years old. The accumulation of undifferentiated myeloid cells characterizes the
disease, termed blasts, in the bone marrow (BM) (>20%) and peripheral blood of patients
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leading to altered hematopoiesis associated with anemia, thrombocytopenia, neutropenia,
and immunodeficiency. Depending on the affected myeloid lineage (monocytes, red blood
cells, platelets, and granulocytes) and its maturation stage, AML was first classified into
cytomorphological subtypes (myeloblastic, promyelocytic, erythrocytic, myelomonocytic,
monoblastic, monocytic, and megakaryocytic). However, a molecular classification has
been adopted according to the cytogenetic changes found in leukemic blasts. Some aberrant
karyotypes with translocations, duplications, or deletions of chromosomes were found,
and different patterns of mutations affecting genes involved in the hematopoietic cell
proliferation and differentiation. Although 50% of the patients present a normal karyotype,
the combination of mutations associated with an aberrant karyotype can be complex. Such
AML patients’ clusters can be categorized into favorable, intermediate, and unfavorable
treatment prognosis groups. Overall, different types of AML exist and the World Health Or-
ganization (WHO) has classified them into 6 groups: with recurrent genetic abnormalities,
with myelodysplastic syndrome-related features, therapy related, not otherwise specified,
myeloid sarcoma-associated and myeloid proliferations related to Down syndrome.

Frontline treatment for AML in adults mainly includes chemotherapy agents (notably
cytarabine and anthracyclines–doxorubicin and daunorubicin) or allogeneic hematopoietic
stem cells transplantation (allo-HSCT). Intensive chemotherapy induction and consolida-
tion phases lead to 50 to 80% complete remission (RC) (<5% blasts in the BM) in patients
younger than 60 years old. Clinical responses in patients older than 60 years are more unfa-
vorable with poor overall survival. When present, the cytogenetic abnormalities (mutations
and, or gene fusions) can help to follow-up and detect residual leukemic cells known as
Minimal/Measurable Residual Disease (MRD) after treatment. However, this latter is not
always predictive of the disease evolution, and relapses can occur in 50% of cases between
2- and 48-months post-chemotherapy. Allo-HSCT is the alternative treatment for relapsed
and refractory AML. However, high-risk mortality (~30%) due to the development of acute
Graft-versus-Host Disease (aGvHD) in transplanted recipients further complicates its use.
Thus, considering the 5 year-overall survival rates for AML-affected patients (~30%), there
is an urgent need to develop new therapeutic strategies.

The recent discovery of molecular and cellular mechanisms leading cancer cells to
escape immune surveillance has opened the way to immunotherapy. This review will focus
on cell lymphopoiesis and peripheral response during AML and aging as this pathology
primarily affects the elderly population. Here, we discuss how leukemic cells can worsen
the age-associated thymic involution and peripheral T-cell senescence and we summarize
the current strategy and challenges in developing immunotherapy-based approaches for
treating patients with AML.

2. Thymic Involution Due to Aging in Healthy Persons

The thymus is an organ composed of two lobes subdivided in lobules by septa of
connective tissue emerging from the surrounding capsule. It constitutes the primary
lymphoid organ for T cell development and generates new naive antigen-specific T cells
and their output into the periphery. The majority of circulating T lymphocytes (90–95%)
harbor a TCR composed of α and β chains (αβ+ TCR); γδ+ TCR T cells are also present
but to a minor extent. In adults, thymopoiesis begins with the entry of bone marrow
lymphoid-committed progenitors identified as early T-lineage progenitors (ETP) in the
double negative (DN) CD4−CD8− thymocytes. BM cells that seem to be competent for
this process are lymphoid-primed multipotent progenitors (LMPP) and common lymphoid
progenitors (CLP), although their respective in vivo contribution remains to be determined.
Once in the thymus, these cells undergo maturation stages from DN1 to DN4. These DN4
cells begin to differentiate into double-positive (DP) CD4+CD8+ cells and then, single-
positive (SP) CD4+ or CD8+ mature naive T lymphocytes after their T cell receptor (TCR)
rearrangement and the processes of positive and negative selections. These latter are re-
spectively mediated by interactions with the cortical and medullary thymic epithelial cells
(TECs) which provide self-antigen presentation through CMH/HLA class I/II complexes



Cancers 2021, 13, 2385 3 of 20

for the deletion of auto-reactive cells. Thymus tissue reaches its maximum size within the
first 12 months of life, then starts to decline as early as the second year of life at a rate of
approximatively 3% per year until middle age (40 years old), and then 1% per year [2]. In
contrast to mice, where the total thymic size is reduced in aging individuals, in humans, it
remains constant, but the thymic tissue responsible for the generation of T lymphocytes
is gradually replaced by connective and adipose tissues [2,3]. However, although old
individuals’ thymus organization is altered, it maintains a constant thymopoiesis. It allows
lifespan a permanent export of naive T cells that express a diverse antigen receptor reper-
toire [4–6]. Accordingly, this phenomenon was demonstrated by direct visualization and
functional studies of thymocytes isolated from adult thymic tissue [5,6]. The development
of assays quantifying TCR excision circles (signal joint (sj)TREC and their ratio to βTREC),
episomal fragments produced during the TCR gene rearrangements, also allowed the
detection of cells originating from the thymus and their dynamics in the periphery [7].
These sequences are unique to naive αβ+ T cells but are diluted following cell proliferation.
Their frequencies decline with age about ten times greater than the naive subset in CD4+

and CD8+ T cells [8–10]. As best examples, it was shown that centenarians present 2 to
5-fold less naive (CD45RA+CCR7+) cells in CD4+ and CD8+ T populations, respectively,
compared to young subjects and sjTREC can still be detected to a much lesser extent (about
10-fold) [10–12], revealing a functional thymic output.

2.1. Age-Associated Factors Affecting Thymocytes Numbers and Function

Age-dependent defects leading to thymic involution are not fully understood, but
involve both the developing thymocytes and stromal cells’ inter-dependency.

Hematopoietic stem cells (HSCs) are responsible for producing CLP in the BM, which
will then migrate to the thymus. In humans and mice, the proportion of HSCs increases in
the BM with age, accompanied by intrinsic defects in gene expression profiles leading to
different sub-populations, including lymphoid- (Ly-HSC) and myeloid-biased HSC (My-
HSC). In the elderly, a more pronounced increase in My-HSC numbers and higher levels of
differentiated myeloid cells were observed in BM and blood [13,14]. Studies performed
in aged mice have demonstrated that BM-derived CLP were unlikely to be affected in
their migration to the thymus but sorted intra-thymic ETP (enriched in the DN1 fraction)
presented enhanced sensitivity apoptosis and reduced proliferation, particularly though the
increased Ink4a expression [15]. These intrinsic defects led to lower numbers of subsequent
maturation stages of DN2 and DN3 subsets [16,17]. Diminished CD3 expression on DP
and SP thymocytes was also found in aged mice compared with young mice, resulting in
an altered response to mitogen stimuli [18]. Additional studies showed that old lethally
irradiated mice reconstituted with T-depleted bone marrow cells from young counterparts
were still able, even to a lesser extent (about 50%), to produce a normal T-cell progeny. Thus,
the thymic stroma demonstrated a functional capacity to generate mature T lymphocytes.
However, its size and composition were affected by age (more pronounced reduction in
the cortex than medulla area) [19].

2.2. Histological, Cellular, and Transcriptional Changes in the Thymic Stromal Cells with Age

Apart from thymocytes, the thymic stromal microenvironment is composed of fibrob-
lasts, endothelial, mesenchymal (stem cells or pericytes), neural, epithelial cells (TECs),
B cells and medullary macrophages/dendritic cells. The endothelial cells form the post-
capillary venules (PCV) in the cortico-medullary junction that allow the import of thymic
progenitors from the BM and the export of mature T lymphocytes through the expres-
sion of adhesion molecules. The thymic fibroblasts synthesize growth factors that are
essential for thymocyte survival and proliferation (Stem cell factor- SCF), TECs (fibroblast
growth factors- FGF7 and 10) and endothelium (vascular endothelial growth factor-V-EGF)
maintenance. The TECs synthesize and secrete different factors that control thymocytes
survival, proliferation and differentiation. They produce cytokines (notably interleukin-7-
IL-7), growth factors (G-CSF, GM-CSF, insulin-like growth factor 1 (IGF-1)), hormones
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(thymopoietin, thymulin, thymosin, thymic humoral factor (THF), the growth hormone
(GH)) and glucocorticoids (GC). Medullary TECs and macrophages/dendritic cells express
and present self-antigens (from different tissues) to the ongoing differentiating thymocytes.

In rodents, thymic atrophy begins as early as 7 weeks of age. Disruption in the thymic
stroma structure is obvious by 3 months of age, with changes in the cortico-medullary
junction and a more pronounced reduction in the cortical than medullary zone. These obser-
vations precede the hematopoietic changes (intrinsic defects in HSC and ETP), which can
be detected at around 7 months. Thus, the stromal population seems to be a primary target
for age-associated defects. Transcriptional gene profiling studies assessed in the different
stromal cell types between 1 and 6 months of age revealed different signatures. Decreased
expression of cell cycle-associated genes was detected for TECs, and pro-inflammatory
genes increase for thymic dendritic cells. The aging process also alters the expression of
growth factors by TECs and fibroblasts [20]. Venables and colleagues showed, in recent
results, that using fluorescent confocal microscopy, cortical TECs (cTECs) could undergo
dynamic size changes with cell projections retraction during thymic atrophy in aged mice
(12 months-old), leading to the reduced cortical area. Total TECs numbers and medullary
TECs (mTECs) morphology were found unchanged during thymic atrophy [21]. In contrast,
Griffith et al. demonstrated the loss of mTECs network and of the tissue-restricted antigens’
expression required for self-reactive thymocyte selections [22].

With age, different types of unilocular and multilocular lipid-laden cells accumulate
within the capsule and septa regions as well as in the perivascular space of PCV [23,24].
These cells produce pro-inflammatory molecules such as leukemia inhibitory factor (LIF),
tumor necrosis factor-α (TNF-α), IL-1, IL-6 and other family members [25]. Their presence
could also lead to lipotoxic “danger associated molecular patterns” as revealed by the
evaluation of lipidomics profiles of the whole thymus between young (4 months-old),
middle-aged (12 months-old), and old (18 months-old) mice [26]. Indeed, high levels
of intra-thymic ceramides and cholesterol were co-localized with macrophages in the
medullary area [26,27]. These molecules were shown to be responsible for the activation of
caspase-1 and the Nlrp3 inflammasome, leading to pro-inflammatory cytokine production
(TNF-α, IL-1β, IL-18, IL-6). Fibroblasts and TECs were shown to all express the IL-1R1. In
contrast, mTECs define the IL1 antagonists (IL-1R2 and IL-1RA), confirming the damaging
action of IL-1 mainly on cTECs [23,27]. Thus, these studies could explain the unbalanced
decline of the cortical over the medullary area with age.

3. Thymus Function in AML-Affected Patients

The thymic size and histology have been poorly evaluated in AML newly diagnosed
patients. Lower numbers of sjTREC in peripheral T cells were observed in AML-affected
patients compared to age-matched healthy individuals, suggesting a dysfunctional func-
tion [28]. However, experimental animal models and organoids will help understand
these features better. As AML blasts invade BM and blood, one can speculate that thymic
function could be affected as far as lymphoid T-cell progenitors migrate from the BM to
the thymus.

4. Leukemic Cells and Medullary Regular Hematopoietic HSC/T-Cell
Progenitors’ Interactions

Hematopoiesis in the BM is dependent on specialized niches (endosteal and peri-
vascular regions) that home and regulate the HSC and progenitors’ proliferation and
differentiation capacities. Clonal leukemia-initiating cells are now known to derive either
from transformed normal HSC and/or downstream progenitors. These latter include
myeloid and/or LMPP or more committed progenitors like GMP (Granulocyte Monocyte
Progenitors), depending on the AML subtype and its associated genetic abnormalities
[29–31]. When cells are affected by the leukemogenic process (mutations, fusion genes),
they co-exist with their regular counterparts and compete for space and niches [29,32].
They were shown to impair normal HSC proliferation and differentiation through direct
secretion of inhibitory molecules and remodel the BM microenvironment to favor their
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survival and growth [33,34] (Figure 1). Primary AML blasts were found to produce large
amounts of diverse cytokines (including GM-CSF, G-CSF, IL-3, IL-6, IL-1α, β, TNF-α,
and SCF) and chemokines (CCL2/3/4/5/13/17/22/24, CXCL1, CXCL2, CXCL5, CXCL8,
and CXCL9 to 11) [35]. Sera and BM levels of these molecules can vary individually in
AML-diagnosed patients without any correlation with age (< or > 65 years old), AML
subtype, and associated genetic anomalies. Using AML patient blasts-derived xenograft
mouse models, the leukemic cells were shown to produce elevated levels of CCL3 in the
BM and to suppress the normal HSC differentiation into erythrocytes [36]. BM stromal
and endothelial cells were recently found to internalize exosomes released by AML blasts.
They led to the down regulation of expressed factors mandatory for the normal HSC
homing (like CXCL12), thus sequestering them away from their niche and disrupting
their function [37]. These exosomes also favor an adipogenic rather than osteogenic and
chondrogenic differentiation from mesenchymal stromal progenitors.

Figure 1. Potential mechanisms leading to thymic atrophy during AML. In the bone marrow (BM),
leukemic cells secrete soluble factors that can directly inhibit HSC proliferation and differentiation.
They can also produce exosomes that modify the stromal and endothelial cells expression profiles
and promote leukemic cells growth and survival. Ultimately, they also compete for spaces and
niches of the normal HSC which are required for their survival and proliferation. The alteration
in HSC proliferation and differentiation leads to reduced numbers of T-cell progenitors migrating
and entering the thymus (ETP) though the blood stream. High concentrations of soluble factors
produced by leukemic cells in the blood can also alter the thymic cells (thymocytes and stromal
cells) functions and differentiation. HSC: hematopoietic stem cells; CAR: CXCL12-abundant retic-
ular cells; MSC: mesenchymal stem cells; ETP: early T-cell lineage progenitors; BM: bone marrow;
PCV: post-capillary venules.

5. Leukemic Cells and Thymic Cells Interactions

Whether leukemic cells could infiltrate the thymus of AML-affected patients and
release these molecules in situ (with or without the help of exosomes) remains to be
elucidated. However, significant chemokine receptors (CCR7 and CCR9) involved in the
migration of immune cells to the thymus were not shown to be expressed by AML blasts;
neither was the secretion of their respective corresponding chemokines (CCL19/21/25). Tan
and co-workers found that AML cells could produce significant amounts of sphingosine-1-
phosphate (S1P) in vitro for their survival and proliferation. Although their blood levels
were found lower in AML-affected patients than in healthy donors, more elevated levels of
sphingosine, sphinganine and ceramides were respectively detected [38,39]. Thus, whether
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these lipidic molecules could also contribute to the thymic involution could be questioned.
Similarly, AML blasts can produce different cytokines (SCF, pro-inflammatory) that could
potentially affect the survival, phenotypes, transcriptional gene profiles and secretomes of
stromal cells, thymocytes and even lipid-laden multilocular cells.

6. Thymic Features in AML-Bearing Mice

Using young mice (6 weeks-old) and an immune-competent AML experimental mouse
model, we recently showed an accelerated and premature involution of the thymus during
leukemic development [40]. This thymic atrophy was characterized by reduced numbers
of thymocyte subsets (notably DP) and peripheral T lymphopenia with increased levels
of activated/memory cells [40]. Leukemic cells infiltrated the bone marrow, blood, lungs,
liver, and spleen, but very few cells (<0.25%) were found in AML-bearing mice’ thymus.
High levels of intra-thymic and systemic (sera) CCL2 chemokine were detected during
AML and were found to be associated with this involution independently of myeloid cells
recruitment [40]. Although HSC proportions in the bone marrow were not evaluated at
that time, we also observed significantly decreased progenitor cells of B-cell, monocyte and
granulocyte lineages during AML [40,41]. These characteristics were not observed in the
spleen, another critical site of hematopoiesis in mice. Splenomegaly was instead due to
increased numbers of differentiated immune cells rather than AML blasts infiltrates [41].
Preliminary and unpublished additional data from our team also reveal reduced numbers
of DN subsets in the thymus of young leukemic mice compared to age-matched control
animals (unpublished data, personal communication). Similar features have already been
described in other cancers. Further analyses are continuing for this AML-induced thymic
atrophy to provide more insights on the specific mechanisms involved and their relevance
for AML-affected patients.

7. Peripheral T-Cells in Healthy Aged Persons

In the elderly, the overall peripheral T-cell compartment is maintained. Still, its com-
position shows a remarkable shift from naive to memory T cells, particularly in the CD8+

subset, when compared to young individuals. Naive T cells are antigen-inexperienced, ex-
press the molecular surface markers CD45RA, CD62L, CD27, CD28, CCR7, CD127, and can
produce interleukin-2 (IL-2) and display unique proliferative response upon stimulation.
Their homeostasis is maintained by two mechanisms: their emigration from the thymus
and the expansion of the peripheral pre-existing naive population. This clonal expansion
was shown to be maintained in the periphery by tonic signaling (through MHC/HLA class
I or II/self-antigens complexes) and cytokines. Both populations can be distinguished
with the help of the CD31 marker as naive CD31+ T cells were shown to contain higher
amounts of sjTREC than CD31− counterparts and enriched in recent thymic emigrants
(RTE) [8,42]. Den Braber and colleagues demonstrated that the average rate of naive T
cells originating from the thymus throughout adulthood was estimated ~11% of the naive
peripheral T cell population [11]. The analysis of the naive TCR repertoire in both young
(20–35 years old) and aged (70–85 years old) persons indicated a significant decline in TCR
richness and higher clonality with age (particularly after 70 years old) [43,44]. Among
the CD4+ T population, the peripherally expanded cells (CD31−) also exhibited a more
restricted repertoire (oligoclonal) than RTE (CD31+) in young and old adults, revealing
the essential role of the thymus in the generation of new TCR specificities [45]. Recently,
Egorov et colleagues noticed changes in the Vβ chain CDR3 region (decreased length
and reduced insertions of random nucleotides) with aging leading to a higher affinity to
self-antigens [43]. Although still controversial, these intrinsic modifications could explain
the holes (absence of certain TCR chains) observed in the repertoire with aging and the
better fitness of certain clonotypes to tonic signaling in the periphery and their selective
expansion [43,44].

Short-lived effector (TEFF) and memory (TM) T cells are generated from naive cells
following the antigens’ initial encounters. TEFF can produce various cytokines depending
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on their polarization, which clear the antigens. TM respond rapidly upon antigens re-
exposure and can be divided into different subsets (central memory, effector memory,
stem cell memory, resident memory . . . ). With age, antigen-specific end-differentiated
effector memory T cells accumulate at the expense of normal TEFF, particularly in the CD8+

compartment. Their proportion rises particularly during latent chronic viral infections such
as cytomegalovirus. These cells present shortened telomeres, restrained TCR repertoire,
lose the expression of CD28, CD27, regain the expression of CD45RA and upregulate CD57,
KLRG-1 and TIGIT. They present a reduced proliferative capacity but enhanced cytotoxicity
by secreting granzymes/perforins and pro-inflammatory cytokines and are characterized
as senescent T cells. The naive T-cell compartment can also comprise senescent cells due to
their constant homeostatic proliferation with age.

8. Peripheral T-Cell Phenotypes and Functions in AML-Affected Patients

AML-affected patients can present lymphopenia in the periphery or reduced T lym-
phocytes with a predominant proportion of effector/memory over naive cells. The analysis
of sjTREC contents in peripheral T cells has described lower numbers of sjTREC than
age-matched healthy individuals [28], suggesting a diminished thymic output during AML.
However, further studies (notably on CD31 subsets) are still missing to provide more
precise insights on the naive T-cell pool kinetics. When measuring TCR repertoire diversity,
research groups have demonstrated oligoclonal and skewed αβ+T-cell repertoires with
holes and overrepresentation of some Vβ clonotypes in AML-affected patients, whatever
their age [46,47]. Similar results were found by Jin and co-workers when exploring the γδ+

T-cell repertoires [48]. These findings suggest (1) an increased deletion of leukemia-specific
T-cell clones in the thymus leading to tolerance and/or (2) the preferential expansion of
some TCR subfamilies through leukemia-associated antigen(s) (LAA) stimulation in the
periphery. Some HLA class I- and II-restricted epitopes from LAA have been identified, but
understanding of their clinical specific T-cell responses in patients are still limited [49,50].
It also remains unknown whether these circulating LAA and their derived peptides can
be adequately presented by thymic epithelial cells for the thymus positive and negative
selections during AML. Whether autoreactive T-cell clones could also expand through
epitope spreading in this inflammatory- and lymphopenic-induced AML environment
remains to be determined. In addition to these observations, peripheral CD4+ and CD8+ T
cells exhibit various dysfunctional properties. Alterations in their TCR signaling, in their
phenotype, in their gene expression profiles, and their inability to form synapses with AML
blasts have been described [51,52]. Leukemic cells are associated to localized or systemic
immunosuppressive effects on T cells. Accordingly, T cells from AML patients demonstrate
features of T cell exhaustion and senescence.

8.1. Exhausted T Cells (TEX)

Cytotoxic CD8+ T cells (CTLs) are the main effectors for eliminating leukemic cells.
They produce different cytokines such as IL-2, interferon-γ (IFN-γ), TNF-α and cytolytic
granules (granzymes and perforins). CD8+ TEX cells present elevated expression of PD-1
(CD279) and other co-inhibitory receptors (IR) such as: CTLA-4 (cytotoxic T lymphocyte
antigen-4/CD152), Lag-3 (lymphocyte-activation gene 3), Tim-3 (T cell immunoglobulin
domain 3), CD244, CD160, KLRG-1 (killer cell lectin-like receptor subfamily G) and TIGIT
(T cell immunoreceptor with Ig and ITIM domain) [53–55]. They can co-express one or all of
the IR depending on their exhaustion severity. They exhibit reduced proliferation, cytotoxic
activity and impaired cytokine production. They typically lose their IL-2 production first,
followed by the TNF-α output and IFN-γ, according to their exhaustion state [55,56]. TEX
also present a higher sensitivity to death with upregulation of apoptotic genes such as
CASP1 and FASLG. Other studies have demonstrated the role of transcription factors in
T-cell exhaustion including Eomes and Tbet. CD8+ TEX differentially express Eomes and
Tbet (Eomes+ Tbetlo) during AML [57]. The accumulation of such CD8+ TEX in patients at
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diagnosis or after allo-HSCT was shown to be predictive of their resistance to chemotherapy
treatment or relapse, respectively [58,59].

8.2. Other Effects of Leukemic Blasts on T Cells’ Proliferation, Function and Survival

Additional suppressive mechanisms of human AML blasts on peripheral T cells can
affect their activation, proliferation (leading to anergy) and survival. Among them, the
high expressions of the indoleamine 2,3-dioxygenase (IDO) and arginase, two enzymes
released by leukemic cells in the PB favor tryptophan and arginine depletions, respectively
[60,61]. Kynurenines production after tryptophan catabolism by IDO is associated with the
inhibition of proliferation (or anergy) or apoptosis of surrounding T cells. Similarly, the
secretion of arginase 2 deprives T cells from arginine required for their proliferation [60].
AML blasts and CD8+ T cells compete for glutamine uptake in the microenvironment
as this amino acid is critical for leukemic cells’ survival and cytolytic function of CD8+

lymphocytes, respectively. Thus, as leukemic cells grow, they deprive T cells of their
needed glutamine, impairing their anti-tumor response [62–64].

Soluble Tim-3 and Gal-9 molecules released by AML blasts inhibit CD8+ T-cell expan-
sion [65] as well as interactions (notably though VISTA molecules) with myeloid-derived
suppressor cells (MDSC) which increase in the PB during AML [66,67]. Reactive oxygen
and nitrogen species (ROS) released by leukemic blasts and MDSC are also responsible
for inhibition of T cells’ proliferation through the chemical alteration of the TCR or IL-2
receptor signaling.

8.3. Role of Regulatory T Cells

Regulatory T cells (Tregs), a CD4+ T-cell subset, are critical for maintaining peripheral
homeostasis and tolerance against self-antigens and suppressing over reactive harmful
immune responses. Yet, they can also suppress anti-tumor specific T-cell responses. They
can originate either from the thymus (natural Tregs- nTregs) or be induced from naive
CD4+ T cells in the periphery (inducible Tregs- iTregs). nTregs mediate their suppressive
activity via diverse cell contact-dependent or -independent mechanisms, iTregs through
the production of TGF-β and/or IL-10 [68]. Different studies have shown increased
Treg frequencies in BM and blood of AML patients at diagnosis compared to healthy
volunteers [69,70]. Their association to poor prognosis at diagnosis is still controversial but
they were shown to persist after intensive chemotherapy and could be more predictive
of relapses [71,72]. Such increased frequencies of peripheral (splenic) Tregs were also
observed in our experimental AML-bearing mouse model [40]. nTregs derived from AML
patients present an enhanced suppressive activity compared to healthy volunteers. AML-
associated nTregs express high levels of both immunosuppressive ATP ecto-nucleotidase
CD39 and cAMP that ultimately inhibit conventional T cells proliferation [73]. Elevated
levels of TGF-β, IL-10 and IL-35 were also detected in the peripheral blood plasma of
AML patients compared to healthy donors. IL-35 was found to be produced by nTregs
and shown to inhibit effector T cell proliferation while promoting nTregs and AML blasts
expansions [74]. IDO produced by leukemic cells can generate iTregs in vitro and was
expressed by mesenchymal stem cells (MSC) derived from AML patients [61,75]. Similarly,
PD-L1+ or ICOSL+ AML blasts could generate iTregs and could also favor the proliferation
of PD1+ or ICOS+ nTregs [61,76]. Finally, Wang and collaborators recently highlighted the
role of the TNF-α/TNFR2 signaling pathway in the in vitro expansion of AML-derived
nTregs [77]. Conjointly, TNF-α could also contribute to the ICOSL molecule up-regulation
on AML blasts [76]. nTregs could also induce senescent CD4+ or CD8+ T cells (CD27low

CD28low SA-β-gal+) in vitro and in vivo. These latter exhibit a suppressive activity (iTregs)
but also produce significant amounts of pro-inflammatory cytokines (IFN-γ and TNF-
α) [78]. This phenotype could be reversed in the presence of TLR8 ligands and MAPK
signaling inhibitors [78].
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8.4. Senescent T Cells

Different groups have likely shown an increased percentage of CD8+ T cells with a
senescent phenotype (CD28−CD57+INFγhigh TNFαhigh) in AML-affected patients com-
pared to age-matched healthy donors. Such increase was observed in refractory patients or
at relapse after the chemotherapy treatment (standard induction regimen) [79,80]. Whether
these senescent T cells are LAA-specific and naturally derived or induced by nTregs during
AML remains to be elucidated. However, their generation’s mechanism would provide
insights into their possible functional reversion by immunotherapy.

Thus, AML blasts exert T-cell subversion through multiple mechanisms (Figure 2), but
a recent longitudinal study underlined the restoration of these CD8+ T-cell dysfunctions
after chemotherapy in responder patients [79]. These findings are now opening the way to
new immunotherapeutic strategies that could inhibit reversible leukemic cells deleterious
effects on immune T-cell response. Such treatments would also offer less toxicity, convenient
infusion and better tolerability in the elderly.

Figure 2. Principal mechanisms leading to peripheral T-cell dysfunctions during AML. In periphery
or BM, T cells can present exhausted, anergic and senescent phenotypes with dysregulated func-
tional activities (reduced levels of proliferation, cytotoxicity and cytokines production). Leukemic
blasts are mainly responsible for these defects through persistent antigen presentation, inappro-
priate co-stimulatory signaling and induction of Tregs (ICOSL, PD-L1). Natural Tregs are also
recruited abundantly and can participate in these processes. nTreg cell: natural regulatory T cell;
iTreg cell: induced regulatory T cell; IL: interleukin.

9. Strategies to Boost the T-Cell Immunity in Old AML-Affected Patients
9.1. Rejuvenating the Thymic Function?

The thymic function only modestly contributes to the naive T-cell compartment con-
tent (estimation of ~11%) in the elderly but remains essential for its repertoire diversity
(polyclonality). AML-affected patients present an altered thymic output as revealed by
reduced sjTRECs numbers and the exact mechanisms involved in this impairment must
be determined. This thymic output becomes even more important in cases of lympho-
depletions that occur after treatment with chemotherapeutic agents and allo-HSCT. Inten-
sive chemotherapy induction treatment is followed by early CD4+ and CD8+ T lymphocyte
recovery within the first month [72]. It was shown that some residual peripheral T cells
persisted through chemotherapy and underwent homeostatic expansion. However, they in-
cluded high frequencies of nTregs (due to their slow proliferation), and their TCR repertoire
was found oligoclonal [72]. As chemotherapeutic agents are known to damage the thymus
structure on both maturing thymocytes and TECs (particularly mTECs) and delay the
thymic output, it remains unknown if this latter could participate in the T lymphocyte com-
partment recovery and long-term remission [81,82]. Accordingly, different recent studies
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suggest that maintaining a practical thymic function in the elderly population could lead to
better survival [83,84]. Thus, therapies aiming at improving the thymic T-cell production
would be promising in preventing or treating age-related diseases. Strategies aimed at
boosting the thymic function have encountered, so far, satisfactory results in preclinical
models and clinical trials, even if transient [85]. Indeed, the thymic size and structure of
the involuted thymus can momentarily be restored by administering growth factors or
hormones (GH, IGF-1, FGF7), usually expressed either by stromal cells or differentiating
thymocytes for their survival, differentiation, and proliferation. Their expression decreases
with age, and they have been considered a treatment to counteract age-associated thymic
involution and its effects. However, such an approach also has systemic effects, and the
proliferation of AML blasts has to be considered, as IGF-1 was shown to favor their ex-
pansion in vitro [86]. The recent discovery of TEC progenitor cells (TEPC) residing in the
thymus and their in vitro generation from induced pluripotent stem cells have opened the
way to new therapeutic strategies to re-establish permanent thymopoiesis [87]. Normal
HSCs and their niches are thought to be preserved (even in low numbers) during AML,
and successful elimination of leukemic cells can restore their functions. A limiting point
resides in the age of these HSC in the elderly and their intrinsic defects (myeloid-bias
development of the progenitors, transcriptional changes . . . ). However, Haynes et al.
found that CD4+ T cells generated from old HSCs in the young thymic microenvironment
were functional [88]. One could then speculate about the infusion of such autologous
TEPC in order to regenerate the thymic TEC compartment and its inter-connection with
maturing thymocytes. Time considerations and doses and accurate antigen presentation
for self-tolerance need to be taken into account, but these investigations offer great promise
for improving T-cell response.

9.2. Improving Anti-Leukemic T-Cell Immunity in the Periphery?

Several immunotherapeutic drugs have been investigated alongside chemotherapy
in recent years. Here we summarize some of the most promising immunotherapies in
AML (Figure 3).

Figure 3. Promising immunotherapies for the treatment of AML. New immunotherapeutic strategies
are under development for the treatment of AML: monoclonal and bi/trispecific antibodies (inhibition
of immune checkpoints, targeting of leukemic cells), CAR-T or –allogeneic NK cells against AML
blasts surface markers, and improvements in allo-HSCT.

10. Immune Checkpoints Inhibitors

Immune checkpoints regulate self-tolerance and protect tissues from damage under
normal physiological conditions. It is now well known that tumors exploit these mech-
anisms to escape immune surveillance [89]. Because many of the immune checkpoints
are triggered by ligand-receptor interactions, they can be blocked by antibodies (mAb)
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or modulated by soluble forms of ligands or receptors. It is now clear that immune
evasion mechanisms are active in patients with AML. Moreover, T-cells express various
immune checkpoints in AML [90], paving a rationale for immune checkpoint therapies in
this disease.

The checkpoints with active ongoing trials using mAb in AML are CTLA-4, PD-1,
TIM-3, and TIGIT.

CTLA-4 is the first discovered immune checkpoint. It is a competitive agonist of
CD28/B7 costimulatory interaction [91,92]; it thus acts as an inhibitor of T cell effec-
tor function. Ipilimumab is a mAb targeting CTLA-4 with active clinical trials in AML
(NCT02530463, NCT01757639). The programmed cell death 1 (PD-1)/PD-L1 axis plays a
significant role in immune evasion and T-cell exhaustion in AML [93–96]. Mainly found in
CD8+ T cells, PD-1 prevents the tumors’ active killing [96,97]. The blockade of PD-1/PD-L1
interaction restored T cells function in a mouse model of AML [95]. Trials with different
antibodies block the PD-1/PD-L1 axis: Pidilizumab [98], Nivolumab [99], pembrolizumab,
durvalumab, and atezolizumab (reviewed in [90]) are currently in progress to determine
efficacy. TIM-3 is a co-inhibitory receptor that binds Galectin-9 and negatively regulates
T cell function [97,100]. The first phase 1b trial to evaluate the efficacy of TIM-3 blockade
and dual TIM-3 and PD-1 blockade in AML/MDS (NCT03066648) is underway.

Understandably, blocking a single checkpoint inhibitor is not enough. Indeed, many
ongoing trials focused on combinatory therapies (NCT03066648, NCT02530463,
NCT01757639).

11. Bispecific Antibodies

Blockade of several targets might result in better efficacy; hence the ability of bispecific
antibodies (BsAb), tri-specific or multipotent antibodies that can engage with multiple
epitopes represents a promising platform to enhance therapeutic efficacy. For example,
bi-specific T cell engagers (BiTE) consist of two scFvs, and one engages with T cells. Simul-
taneously, the other is directed against the tumor antigen such as CD33, thereby engaging
endogenous T cells with CD33+ AML blast for T-cell-mediated killing. Many different BiTE
have shown their efficacy in preclinical studies in AML [101–103]. The suitable target for
the BiTE is an antigen highly expressed on AML cells but nearly absent on normal cells.
Most of the BiTE used in clinical trials against AML targets CD123, or CD33 [104]. There
are several early-stage trials using BiTEs (NCT02152956; NCT02715011; NCT02730312;
NCT03214666; NCT02520427; NCT03224819; NCT03144245; NCT03038230). Targeting of
CD33 by AMG330 and AMV564 BiTE (NCT02520427 and NCT03144245) will also affect
MDSC. Whether their deletion will favor AML cure is still unclear, as their levels in BM
could either be associated to MRD or relapse following chemotherapy induction [105,106].
The ongoing clinical study results will elucidate how safe and effective this approach is to
treat AML. Nevertheless, a standard limitation of all T-cell redirecting therapy, including
BiTE, is the cytokine release syndrome (CRS) [107]. Importantly, systemic T cell dysfunction
and lack of broad AML target antigen remain a challenge for BiTE based therapies.

12. Adoptive Cell Transfer
12.1. Hematopoietic Stem Cell Transplantation (HSCT)

Allogeneic HSCT treatment is the transplantation of multipotent hematopoietic stem
cells from an HLA-compatible donor. After remission, allo-HSCT shows excellent results
in young patients [108] due to the particularly potent immunotherapeutic efficacy of
the allogeneic graft-versus-leukemia (GVL) effect; unfortunately, in elderly patients, the
effectiveness is less clear [109]. Multiple approaches are under investigation to improve
the after-transplantation overall survival [109] in elderly patients. They range from the
combinations with different chemotherapies [110] and radiotherapies to enhance T cells’
metabolic activity restoring the GVL [111].
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12.2. Adoptive T Cells

The direct use of adoptive T-cell involving expansion of autologous T cells has shown
great potential in mediating durable and complete remission in chemo-refractory cancer
patients. Development of CAR-T cells are T cells equipped with a Chimeric Antigen
Receptor. Chimeric receptors are composed of an extracellular domain that binds the target
antigen (mainly an ScFv from an antibody) and an intracellular domain consisting of the
TCR signaling (CD3z) and different combinations of costimulatory features. Equipping T
cells with a CAR makes every T cell active against the tumor.

Nevertheless, more than 25 active clinical trials use this technology to treat AML
[112,113]. CLL-1, CD123 and CD33 are the most used targets [114]. CD33 and CD123 are
the most promising targets as their expression is ubiquitous in AML blast. Several case
reports and pilot studies report the use of CAR T cells in AML [115–117]. Unfortunately,
CD33 and CD123 are also expressed on healthy HSCs/progenitors and the CAR efficacy
is limited by TME [118]. In the effort to avoid severe myeloablation, recently a trial used
mRNA-based CAR-T cells. The transient expressions of the CAR do not lead to any effects
on the treated patients [115]. A possible approach to this issue could be the co-expression
of inducible caspase 9 (iCasp9) in T cells. This construct fuses the intracellular domain of
caspase 9, a known pro-apoptotic protein, to a drug-binding domain from FK506- binding
protein. Administration of a synthetic molecule drug (AP1903) leads to rapid ablation
of T cells [119,120], however at the moment there are no CAR-T trials in AML using this
technology. CAR-T in AML is less efficacious than its ability to mediate durable response in
B-cell leukemia and lymphomas [114]. Efforts are ongoing to boost the CAR effectiveness
in AML. New-generation CARs rely on gene encoding addiction for a cytokine to activate
innate immunity and sustain the CAR action [121–124]. Many different strategies have
been developed to diminishing the risk of either “on-target, off-tumor” toxicities or off-
target recognition. Roybal et al., show how the synthetic notch receptor allows the CAR
expression only after recognizing another antigen [125]. Others linked the activation to
the simultaneous recognition of both the antigens [126]. Bi-specific CARs, in which the
ectodomains are composed by two different ScFv capable of recognizing two different
antigens [127–129] are promising candidates to target dual antigens on AML blast, hence,
increasing specificity and efficacy. The AML microenvironment seems to be one of the
main obstacles to overcome to bring CAR-T cells to success in AML settings [130]. The
“commuting CAR” are chimeric receptors able to transform an inhibitory signal into an
activating one. It is not surprising that a CAR able to bind TGFβ showed to be effective in
modulating the TME [131,132]. CAR Switch receptor can mitigate the immune-checkpoint
function. CTLA4:CD28 and PD1:CD28 CAR can increase CAR-T cell effectiveness [133,134].
The addiction of the CD28 intracellular domain transforms the immune-checkpoint into a
costimulatory molecule, able to sustain the CAR-T action.

12.3. Adoptive NK Cells

Natural killer (NK) cells are innate lymphoid cells specialized in controlling tumor
growth and metastasis. NK cells do not require pre-stimulation to perform their effector
function, resulting from a balance between activating and inhibitory signals received from
cell surface receptors. Tumor cells express molecules that either stimulate or suppress NK
cells’ responses by engaging their relative activating or inhibitory receptors [135]. Tumor
cells that down-regulate the expression of activating receptors ligands off their surface
escape the immune surveillance and, for that matter, cytotoxicity by NK cells [136]. NK
cells might recognize the missing expression of the MHC when they encounter mismatched
allogeneic cells, referred to as missing self-recognition [136].

NK cells are activated against killer immunoglobulin-like receptor (KIR) ligand-
mismatched cells. AML is susceptible to alloreactive NK cells in vitro [137]. Moreover,
in haploidentical transplants on AML patients, donor versus recipient NK cell alloreac-
tivity reduced relapse risk [138]. Various approaches have been attempted: short term
activated or longer term expanded NK cells, from sources including apheresis product,
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HSCs differentiated NK to irradiated NK cell lines. From the early attempt in 2005 [139] it
was clear that the TME and the persistence of the NK cells is a priority to have a robust re-
sponse, as demonstrated by the depletion of Tregs by the IL-2 diptheria toxin protein [140].
Multiple clinical studies tried different ways to systemically administrate IL2 or IL-15 in
order to improve the NK cells function and persistence [141–145]. Although the results
were promising, the effects were not enough to achieve complete remission in the majority
of the patients. Even the NK-92 cell line was used in a phase I trial as it appeared to
be a safe and off-the-shelf approach. But the low persistence and the limited response
led to a stop of the program [146]. One promising attempt was the use of cord blood
derived NK cells, but in the absence of cytokine administration, low persistence and a poor
level of chimerism was stated [147]. Although NK cells offer a suitable platform for cell
immunotherapies in AML and an alternative to T cells in CAR therapies [148], CAR-NK
cells have only recently been used in an AML setting [149,150]. Unfortunately, the pool
of available targets for a CAR remains limited in AML and can lead to NK cells fratricide.
CD33 expression was stated in one subset of activated NK cells [151,152]. Several reports
assessed the in-vitro function of CD123 CAR in NK cells, but failed to show a robust
response in mouse models [149,153–155]. NKG2D CAR enhances NK cell activity and
are not subject to downregulation encountered with endogenous NKG2D in AML [156].
NK-92 and primary CAR-NK cells equipped with NKG2D CAR have been evaluated
pre-clinically. Moreover, activated NKG2D-CAR-NK cells appeared to outperform CAR-T
cells in one animal model [157,158]. This leads to the recently opened phase I clinical
trial of a haploidentical donor derived CAR-NK product targeting NKG2DL in MDS and
AML (NCT04623944).

CAR-NK cell therapies in AML are still in an early stage of development, but promis-
ing results and new approaches of the forementioned issues can greatly improve the effects
in the near future.

13. Conclusions

Although T-cell quantitative and qualitative deficiencies characterize AML, they
have been reversible and restored through treatment. However, the actual treatments
(chemotherapy, allo-HSCT) remain largely unchanged over the past decade and lead
to high mortality rates. Immunotherapy now represents a highly promising AML cure
approach, notably for the elderly. The increasing knowledge of the mechanisms leading
to anti-leukemic T-cell response escape (thymic dysfunction, exhaustion, regulatory T
cells involvement) will delineate how best to integrate these therapies for optimal patient
survival (time considerations, combinations . . . ). A plethora of clinical trials is ongoing to
test these different strategies and success will surely be achieved.
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