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Objective: To establish and evaluate the 3D U-Net model for automated segmentation
and detection of pelvic bone metastases in patients with prostate cancer (PCa) using
diffusion-weighted imaging (DWI) and T1 weighted imaging (T1WI) images.

Methods: The model consisted of two 3D U-Net algorithms. A total of 859 patients with
clinically suspected or confirmed PCa between January 2017 and December 2020 were
enrolled for the first 3D U-Net development of pelvic bony structure segmentation. Then,
334 PCa patients were selected for the model development of bone metastases
segmentation. Additionally, 63 patients from January to May 2021 were recruited for
the external evaluation of the network. The network was developed using DWI and T1WI
images as input. Dice similarity coefficient (DSC), volumetric similarity (VS), and Hausdorff
distance (HD) were used to evaluate the segmentation performance. Sensitivity,
specificity, and area under the curve (AUC) were used to evaluate the detection
performance at the patient level; recall, precision, and F1-score were assessed at the
lesion level.

Results: The pelvic bony structures segmentation on DWI and T1WI images had mean
DSC and VS values above 0.85, and the HD values were <15 mm. In the testing set, the
AUC of the metastases detection at the patient level were 0.85 and 0.80 on DWI and T1WI
images. At the lesion level, the F1-score achieved 87.6% and 87.8% concerning
metastases detection on DWI and T1WI images, respectively. In the external dataset,
the AUC of the model for M-staging was 0.94 and 0.89 on DWI and T1WI images.

Conclusion: The deep learning-based 3D U-Net network yields accurate detection and
segmentation of pelvic bone metastases for PCa patients on DWI and T1WI images,
which lays a foundation for the whole-body skeletal metastases assessment.
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INTRODUCTION

The nature of bone marrow makes it a favorite fertile soil into
which prostate tumors incline to colonize and grow (1, 2); up to
84% of patients with advanced prostate cancer (PCa) experience
bone metastases (3), and more than 80% PCa patients developed
relapse in the bone following treatment of the primary site (4).
The mortality of PCa is 6.6-fold for those with bone metastases
compared to those without bone metastases (5). Accurate
detection and assessment of metastatic burden in bone are of
fundamental importance for radiologists.

Bone scintigraphy (BS) and computed tomography (CT) scans
were endorsed as the standard imaging method in the staging and
follow-up of metastatic PCa (6), while it is gradually clear that the
reduced accuracy of BS and CT in the detection and therapeutic
response evaluation of bone metastases reduces their effectiveness
in therapy management (7). Multiparametric magnetic resonance
imaging (mpMRI) is emerging as a powerful alternative for
metastatic PCa. One of the main strengths of mpMRI is to
achieve a precise evaluation of bone metastasis via the
incorporation of anatomic [e.g., T1 weighted imaging (T1WI)]
and functional imaging sequences [e.g., diffusion-weighted imaging
(DWI)] (7, 8). The value of volumetric measurements for assessing
treatment response has been increasingly discussed, and the
measurements of lesion volume on mpMRI should be undertaken
on high-quality T1WI images according to the METastasis
Reporting and Data System (MET-RADS) for PCa (9).
Additionally, the volume of bone metastasis assessed with DWI
was reported to show a correlation with established prognostic
biomarkers and is associated with overall survival in metastatic
castration-resistant PCa (10). In short, the detection and
delineation of metastases and evaluation of volume change
concerning disease progression or therapy on DWI and T1WI
images are key tasks as part of optimal patient management.

HeavyworkloadofmpMRI images evaluation canbe tiresome for
radiologists, hencebearing the riskofmisseddiagnosis for lesions and
leading to decreased sensitivity. The measurements of all the
metastatic lesions are time consuming, in particular, if multiple
metastases are present. In this context, automated and accurate
segmentation of bone metastases would be highly beneficial.

Driven by the rapid growth in computer science, the
performance of deep learning is on par with or even outperforms
radiologists in visual identification, which can perform automated
data-oriented feature extraction and thus learning directly the most
relevant feature representation from the input images (11, 12). The
U-Net algorithm is one of the most commonly used deep learning-
based convolutional neural networks (CNNs) (13), which shows
potential in detection, segmentation, and classification of metastatic
lesions on MRI images such as brain metastases (14, 15) and liver
metastases (16). Concerning the automated bonemetastasis analysis
using the deep learning technique, the research trend is mainly on
BS (17, 18) and single-photon emission computerized tomography
(SPECT) images (19, 20); less attention has been paid to the
diagnosis of mpMRI (21, 22). To this end, we intend to apply the
3D U-Net (23) algorithm for the segmentation of bone metastases
on mpMRI images. For proof-of-concept, we focused on the
detection and segmentation of bone metastases in the pelvic area.
Frontiers in Oncology | www.frontiersin.org 2
MATERIALS AND METHODS

This retrospective single-center study was approved by the
institutional reviewboard, andwritten informed consentwaswaived.

Patient Cohort
A cohort of 955 consecutive patients who had undergone pelvic
mpMRI for either clinically suspected or confirmed PCa between
January 2017 and December 2020 was reviewed using our
institutional image archiving system. The exclusion criteria were
as follows: (1) poor image quality (significant motion artifact or
chemical shift artifact), (2) uncomplete MR image set, (3) obvious
destruction of bone structure, and (4) patients with a history of
pelvic fractureor surgery.Finally, the images from859patientswere
included for the 3D U-Net model development of pelvic bony
structures segmentation, including a dataset of patients with PI-
RADS score of 1–2 or biopsy-proven benign prostate hyperplasia
(dataset 1, n=349), a dataset of biopsy-provenPCapatientswithout
bonemetastases (dataset 2, n = 280), and a dataset of biopsy-proven
PCa patients with bone metastases (dataset 3, n = 230).

All three datasets were used to develop a pelvic bony structure
segmentationmodel. Then, a 3DU-Netmodel for bonemetastases
segmentation was developed using datasets 2 and 3. The patients
with primary malignant bone tumors (such as osteosarcoma and
myeloma) or definite benign findings (hemangiomas, bone island)
onpelvic bones (n=27) andpatientswhounderwentPCa treatment
(endocrine therapy, chemotherapy, or radiotherapy, n = 149) were
excluded. In total, 334 patients were enrolled for the model
development, including 168 PCa patients with bone metastases
and 166 PCa patients without bone metastases.

Additionally, 77patientswith biopsy-provenPCawhoperformed
pelvic mpMRI scanning from January 2021 and May 2021 were
acquired; according to the above excluding criteria, 63 patients were
finally recruited for the external evaluation of the 3D U-Net model
including a dataset of 31 PCa patients with bone metastases (dataset
4) and a dataset of 32 PCa patients without bone metastases (dataset
5). The workflow of data enrollment is shown in Figure 1.

Image Acquisition
The pelvicmpMRI acquisitions were performed on three 3.0 TMR
units (Achieva, Philips Healthcare; Discovery, GE Healthcare;
Interia, Philips Healthcare). The standard pelvic mpMRI protocol
at our institution included a T1/T2-weighted sequence, DWI with
b-values of 0, 800, or 1,000 s/mm2 along with reconstructed ADC
images, T1W images obtained using the 2-point Dixon technique
with in-phase (T1WI-IP) and out-phase (T1WI-OP), and dynamic
contrast-enhanced imaging. DWI images with high b-values (b =
800 or 1,000 s/mm2) and T1WI-IP images were selected for PCa
bone metastases analyses in this study. Detailed MR imaging
parameters of DWI and T1WI-IP sequence are shown in Table 1.

Manual Annotation
The manual annotations were performed with an image
segmentation software (ITK-SNAP 3.6; Penn Image Computing
and Science Laboratory, Philadelphia, PA). Under the supervision
of a board-certified radiology expert (with more than 15 years of
November 2021 | Volume 11 | Article 773299
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reading experience), a radiology resident with 3 years of reading
experience evaluated all mpMRI examinations and, section by
section, manually annotated eight pelvic bony structures (lumbar
vertebra, sacrococcyx, ilium, acetabulum, femoral head, femoral
neck, ischium, and pubis) on DWI images and T1WI-IP images.
The bone metastases were included in the annotations, which were
recognized as bone tissue in this bony structure segmentationmodel.
Themanual annotations of the pelvic bony structures were regarded
as the reference standard for the 3D U-Net model evaluation.

To establish the reference standard of bone metastases, the
radiology resident and expert radiologist conducted a review of the
original radiology report and double reviewed the included MR
imaging scans and prior/follow-up imaging before annotation. A
bone lesion was considered as a metastasis if it showed an MR
imaging correlated with adequate image contrast (positive image
Frontiers in Oncology | www.frontiersin.org 3
contrast on DWI images and negative image contrast on those
obtained with the T1WI-IP images). The radiology resident
performed manual annotations of the metastatic lesions on DWI
and T1WI-IP images in a voxel-wise manner (indicated as A1.1).
Then, the expert radiologistmodified the annotations ofA1.1 and the
annotations after modification were indicated as A2.1. Both the
resident and expert radiologist repeated the annotations and
modifications at least 3 weeks later (indicated as A1.2 and A2.2,
respectively). The inter- and intraobserver agreement between the
manual annotations (A1.1 vs. A2.1; A1.1 vs. A1.2; A2.1 vs. A2.2; and
A1.2 vs. A2.2)were estimated usingDice similarity coefficient (DSC).

Thebonymetastatic lesions in the 31PCapatients of the external
dataset were manually annotated by the resident radiology under
the supervision of the expert radiologist, which was taken as the
reference standard for external evaluation of the model.
Model Development
A two-step method for the bone metastases segmentation was
proposed using the 3D U-Net model: the first step with a 3D U-
Net algorithm for pelvic bone segmentation followed by a second
step with a 3D U-Net for bone lesion segmentation within the
segmented pelvic bony structures. Both the CNNs were coded by
Python3.6, Pytorch 0.4.1, Opencv, Numpy, and SimpleITK, and
trained on the GPU NVIDIA Tesla P100 16G.

Model Development for Pelvic Bones Segmentation
The model of the pelvic bony structure segmentation takes the
combination of DWI images and T1WI-IP images as input, and
each image sequence is used as an independent input data
(Figure 2). The 859 patients were randomly divided into either
training (n = 683), validation (n = 88), or testing (n = 88) sets with a
ratio of 8:1:1. During the image preprocessing, the pixel values in
images were scaled between 0 and 65,535. Then, the images were
resized to 64 × 224 × 224 (z, y, x) by resampling to maintain the
optimal image features, and z-score intensity normalization was
applied to all images. Skewing (angel: 0–5), shearing (angel: 0–5),
and translation (scale: −0.1,0.1) of the images were applied for data
TABLE 1 | MR imaging parameters of DWI and T1WI-IP sequence.

Sequences 3.0 T Discovery 3.0 T Intera 3.0 T Achieva

DWI b-value (s/mm2) 800 1000 800
Imaging matrix 256 × 256 240 × 240 156 × 180
Echo time (ms) 60 78 54
Repetition time (ms) 4,000 4,959 3,300
Field of view (mm2) 450 × 366 480 × 360 512 × 356
Section thickness
(mm)

8 7 7

Number of slices 25 28 24
T1WI-IP Imaging matrix 288 × 192 320 × 200 280 × 180

Echo time (ms) 2.0 2.4 2.4
Repetition time (ms) 3.9 7.5 6.7
Field of view 450 × 360 450 × 350 400 × 400
Section thickness 4 5 2
Number of slices 112 112 120
Bandwidth 166.67 300 450
Flip angle(°) 13 10 10
November 2021 | Volume 11 |
T1WI-IP, T1W images obtained using the Dixon technique with in-phase.
FIGURE 1 | The workflow of data enrollment.
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augmentation. To remove small spurious segmentation, the two
largest connected components of each bone were selected as the
final segmentation.A total of300epochsof trainingwereperformed
until validation loss failed to rise. The Adam optimizer was
employed to minimize loss with a learning rate of 0.0001, a batch
size of 2, and a Dice loss function. Other hyperparameters (such as
weight initializationanddropout for regularization)were randomly
searched and automatically executed in the validation set during
model development.

Model Development for BoneMetastases Segmentation
The volume of interest predicted by the model of pelvic bony
structure segmentation was used as the mask for the bone
metastases segmentation (Figure 2). The network configurations
were set as follows: training epoch, 250; learning rate, 0.01; batch
size, 5; optimizer, Adam optimizer; and loss function, Dice loss.

For post-processing, automatically detected metastases
of <0.2 cm3 during inference of testing set were regarded as
image noise and discarded. The threshold was based on the
resolution of T1WI-IP sequences and is determined by referring
to the smallest annotated metastases (0.356 cm3).

Model Evaluation
Model Evaluation for Pelvic Bony Structure Segmentation
The performance of the network was evaluated by comparing the
segmentations generated by the 3D U-Net based on image data
from the testing set to the corresponding reference standard
represented by the manual segmentations on DWI and T1WI-IP
images quantitatively. The evaluation metrics used for the bony
structures segmentation include the overlap-based metric (DSC),
the volume-based metric [volumetric similarity (VS)], and the
spatial distance-based metric [Hausdorff distance (HD)] (24).

Model Evaluation for Bone Metastases Segmentation
The performance of the bone metastases segmentation model
was evaluated both on detection and segmentation. Detection is
defined as the network’s ability to detect a metastasis annotated
Frontiers in Oncology | www.frontiersin.org 4
by the radiologist. One bone metastasis was considered detected
when the manual annotation and the predicted segmentation
had an overlap >0. Segmentation is defined as its ability to
provide a contour identical to that of the radiologist.

The detection performance of the network was quantified at
the patient and lesion levels. The sensitivity, specificity, accuracy,
positive predictive value (PPV), negative predictive value (NPV),
and area under the receiver operating characteristic curve (AUC)
were used to assess the performance of the model to discriminate
between patients with bone metastases and patients without
bone metastases. To determine the detection accuracy of the
metastases at the lesion level, we compared the lesions obtained
with model predictions and manual annotations to determine
the true-positive (TP), false-negative (FN), and false-positive
(FP) findings. The recall (correctly detected metastases divided
by all metastases contained in reference standard), precision
(correctly detected metastases divided by all the detected
metastases), and F1 score (harmonic mean of precision and
recall) were calculated to assess the detection performance of the
model on a lesion-by-lesion basis. In addition, we determined the
number of distinct metastatic lesions in each case in the testing
set and then divided the data into groups with (a) 1, (b) 2–3, (c)
4–5, and (d) >5 lesions to facilitate subgroup analysis of
metastases detection at lesion level.

The metastases segmentation performance of the network
was assessed using the metrics of DSC, VS, and HD by
comparing the CNN-predicted segmentation and manual
segmentation. Besides, the volume of the bone metastases in
manual annotations and automated segmentations was
calculated to further quantitatively estimate the segmentation
efficacy of the U-Net algorithm.

Model Evaluation on an External Dataset
The external dataset was used to further assess the efficiency of
the model on bone metastases evaluation in the clinical setting.
Given the new mpMRI data of PCa patients, the 3D U-Net was
supposed to determine the existence of bone metastases (M0 or
FIGURE 2 | The two-step 3D U-Net for bone metastases segmentation on DWI and T1WI-IP images. T1WI-IP, T1W images obtained using the Dixon technique with in-phase.
November 2021 | Volume 11 | Article 773299
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M1) and output the number, location, and volume of the bone
metastases with corresponding segmented masks (Figure 2). A
bone lesion was considered as being detected if it was segmented
on at least one of the two MR imaging sequences (DWI/T1WI-
IP). The accuracy of the M-staging of the model was assessed
using the receiver operating characteristic curve analysis, and the
segmentation performance (DSC, VS, HD) and quantitative
measurements (volume) were assessed by comparison with
manual annotations.

Statistical Analysis
MedCalc (version 14.8; MedCalc Software, Ostend, Belgium) and
SPSS (version 22.0, IBMCorp., Armonk, NY, USA) were used for
the statistical analyses. Numerical data of patients’ age were
reported as the mean ± SD (standard deviation), and prostate-
specific antigen (PSA) levels were reported as (median, quartile).
One-way analysis of variance (ANOVA) was used to compare
the characteristics of patients (age, PSA level) among training,
validation, and testing sets. The segmentation performance of the
algorithm (DSC, VS, and HD) between DWI and T1WI-IP
images were compared by paired t-test. The McNemar’s test
was used to compare the detection performance (sensitivity,
specificity, PPV, NPV, recall, and precision) between the two
sequences. Bland–Altman analyses were performed to compare
manual versus automated bone metastases volume. p < 0.05 was
considered indicative of a statistically significant difference.
RESULTS

Characteristics of Patients
The characteristics of patients are shown in Tables 2, 3. The age
and PSA level showed no significant difference among the training,
validation, and testing sets on both models (all with p > 0.05). The
average volume of metastases in the external dataset was 7.39 cm3,
and no difference was found between the external dataset and
Frontiers in Oncology | www.frontiersin.org 5
model development dataset (p = 0.645). Of the 16 PCa patients
with bone metastases in the testing set, 2 patients (12.50%) had
one metastasis, 5 patients (31.25%) had two to three metastases, 4
patients (25.00%) had four to five metastases, and 5 patients
(31.25%) had more than five metastases.

Assessment of Pelvic Bony
Structures Segmentation
As shown in Table 4 and Figure 3, in the testing set of pelvic bone
segmentation model, the DSC and VS values of eight pelvic bony
structures betweenmodel prediction andmanual annotation are all
above0.85 onbothDWI andT1WI-IP images,while themeanDSC
and VS values on T1WI-IP images are significantly higher than
those onDWI images (all with p < 0.05), and theHD is significantly
lower. Thismay be explained by the higher spatial resolution of the
T1WI-IP images. Additionally, as detailed in the Supplementary
materials (Supplementary Tables S1–S4), no significant difference
was found among the patients from different datasets (dataset 1 vs.
dataset 2 vs. dataset 3) anddifferent scanners (3.0TDiscoveryvs. 3.0
T Achieva vs. 3.0 T Intera) on both DWI and T1WI-IP images.
The Inter- and Intraobserver Agreement
of Bone Metastases Annotations
The interobserver agreement of the manual annotations of bone
metastases was assessed by calculating the DSC values between
A1.1 and A2.1, and A1.2 and A2.2. The intraobserver agreement
was assessed by A1.1 vs. A1.2 and A2.1 vs. A2.2. The DSC values
on DWI images were as follows: A1.1 vs. A2.1, 0.90 ± 0.08; A1.1
vs. A2.1, 0.91 ± 0.09; A2.1 vs. A2.2, 0.94 ± 0.05; A1.2 vs. A2.2,
0.91 ± 0.08. In T1WI-IP images, the DCS values were as follows:
A1.1 vs. A2.1, 0.89 ± 0.09; A1.1 vs. A2.1, 0.90 ± 0.09; A2.1 vs.
A2.2, 0.97 ± 0.04; and A1.2 vs. A2.2, 0.92 ± 0.08. The high DSC
values between A2.1 vs. A2.2 confirmed the reliability of the
manual annotations. A2.2 was regarded as the reference standard
for the lesion segmentation model evaluation.
TABLE 2 | Characteristics of patients for the pelvic bony structure segmentation model.

Characteristics Model development (dataset 1 + dataset 2 + dataset 3) External dataset p-value

Training set Validation set Testing set p-value

Age (mean ± SD) 68.3 ± 10.5 67.6 ± 10.9 67.8 ± 11.7 0.756 70.7 ± 8.1 0.062
No. of patients 683 88 88 – 68 –

No. of patients with bone metastases 184 23 23 – 34 –

No. of patients without bone metastases 224 16 18 – 34 –

PSA (median, quartile, ng/ml)
T-PSA 10.49

(7.11, 15.99)
9.73

(8.46, 12.68)
11.19

(7.44, 15.75)
0.556 12.25

(8.89, 26.92)
0.199

F-PSA 1.95
(1.04, 6.71)

2.07
(1.08, 5.78)

2.19
(1.02, 5.46)

0.266 1.65
(1.05, 5.26)

0.112

F/T-PSA 0.12
(0.09, 0.17)

0.10
(0.07, 0.20)

0.10
(0.08, 0.18)

0.587 0.12
(0.09, 0.18)

0.399

Scanners
3.0 T Discovery 417 56 57 – 31 –

3.0T Achieva 133 17 15 – 13 –

3.0 T Intera 134 15 16 – 24 –
November 2
021 | Volume 11 | Article
PSA, prostate-specific antigen; T-PSA, total PSA; F-PSA, free PSA; SD, standard deviation.
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The Detection Accuracy of Bone Metastases
The detection performance of the CNN on DWI and T1WI-IP
images at the patient and lesion levels are shown in Table 5. The
detectionperformanceof themodelonDWI imageswasbetter than
onT1WI-IP images concerning the valuesof the evaluationmetrics,
whilenosignificantdifferencewas foundbetween the twosequences
(all with p > 0.05). The results of the subgroup analysis of detection
accuracy at lesion level in the testing set showed the highest recall
and precision values in patientswith singlemetastases, andboth the
recall and precision were above 80% for few metastases (≤5
metastases) and multiple metastases (>5 metastases).

TheSegmentationAccuracy of BoneMetastases
The mean DSC, VS, and HD for the automatic metastases
segmentation are 0.79 ± 0.05, 0.84 ± 0.09, and 15.05 ± 3.61
mm on DWI images and 0.80 ± 0.06, 0.85 ± 0.08, and 13.39 ±
3.20 mm on T1WI images (Figure 4A), which showed no
Frontiers in Oncology | www.frontiersin.org 6
significant difference between the two sequences (p = 0.627,
0.741, and 0.175, respectively).

The volume differences between manual annotation and model
prediction of bone metastases on DWI and T1WI-IP images are
shown inFigures 4B, C. The limit of agreement (LOA) between the
automated and manual segmentation on DWI images was
−8.4–6.6 cm3 and −4.4–4.4 cm3 on T1WI-IP images. Most of the
difference values were within the LOA, which showed that the
volumeofoverallmetastatic lesions in eachpatient betweenmanual
andautomated segmentations agreed closely.Example results of the
automatic bone metastases segmentation are shown in Figure 5.

Detection and Segmentation Accuracy
on the External Dataset
The sensitivity, specificity, and AUC values of the model in
determining the M-staging (M0 or M1) were 93.6% (29/31; 95%
CI, 78.6%–99.2%), 93.8% (30/32; 95%CI, 79.6%–99.2%), and 0.94
TABLE 4 | Segmentation performance of pelvic bony structures.

Bony structures DSC p-value VS p-value HD (mm) p-value

DWI T1WI-IP DWI T1WI-IP DWI T1WI-IP

Lumbar vertebra 0.89 ± 0.05 0.93 ± 0.03 0.001 0.94 ± 0.06 0.96 ± 0.06 0.034 11.45 ± 3.54 10.63 ± 4.66 0.258
Sacrococcyx 0.88 ± 0.04 0.93 ± 0.02 0.001 0.96 ± 0.03 0.98 ± 0.02 0.001 13.36 ± 4.79 9.56 ± 4.53 0.001
Ilium 0.88 ± 0.03 0.94 ± 0.02 0.001 0.97 ± 0.02 0.99 ± 0.02 0.001 13.34 ± 4.15 8.50 ± 3.30 0.001
Acetabulum 0.85 ± 0.04 0.90 ± 0.03 0.001 0.94 ± 0.05 0.96 ± 0.04 0.017 14.95 ± 6.04 10.17 ± 5.60 0.001
Femoral head 0.90 ± 0.04 0.94 ± 0.03 0.001 0.95 ± 0.04 0.97 ± 0.02 0.001 9.00 ± 2.90 4.77 ± 1.51 0.001
Femoral neck 0.88 ± 0.04 0.95 ± 0.03 0.001 0.96 ± 0.04 0.98 ± 0.05 0.015 12.39 ± 4.40 8.50 ± 5.51 0.001
Ischium 0.86 ± 0.04 0.90 ± 0.03 0.001 0.93 ± 0.05 0.96 ± 0.04 0.001 14.88 ± 6.92 14.62 ± 6.27 0.295
Pubis 0.86 ± 0.05 0.88 ± 0.04 0.022 0.92 ± 0.06 0.94 ± 0.05 0.074 14.72 ± 7.08 10.60 ± 4.58 0.001
N
ovember 2021 | Volume 11 | Article
DSC, Dice similarity coefficient; HD, Hausdorff distance; T1WI-IP, T1W images obtained using the Dixon technique with in-phase; VS, volumetric similarity.
TABLE 3 | Characteristics of patients for the bone metastases model.

Characteristics Model development (from dataset 2 and dataset 3) External dataset p-value

Training set Validation set Testing set P value

Age (mean ± SD) 69.6 ± 10.4 65.9 ± 11.2 68.7 ± 8.9 0.548 70.7 ± 8.1 0.268
No. of patients 266 34 34 – 63 –

No. of patients with bone metastases 134 18 16 – 31 –

No. of patients without bone metastases 132 16 18 – 32 –

PSA (median, quartile, ng/ml)
T-PSA 13.04

(9.10, 20.1)
12.65 (10.13,18.50) 13.95

(12.95, 23.5)
0.305 12.25

(8.89, 26.92)
0.941

F-PSA 1.29 (1.01,5.41) 1.36
(1.08, 4.38)

1.48
(1.07, 4.73)

0.993 1.65
(1.05, 5.26)

0.091

F/T-PSA 0.07
(0.09, 0.18)

0.09
(0.07, 0.16)

0.09
(0.04, 0.11)

0.356 0.12
(0.09, 0.18)

0.573

Average volume of metastases (median, quartile, cm3) 7.50
(5.47, 31.60)

7.98
(2.72, 31.75)

8.05
(2.93, 31.03)

0.945 7.39
(1.23, 28.23)

0.645

No. of metastatic lesions
1 30 (22.39%) 4 (22.22%) 2 (12.50%) – 5 (16.13%) –

2-3 36 (26.86%) 6 (33.33%) 5 (31.25%) – 6 (19.35%) –

4-5 24 (17.91%) 4 (22.22%) 4 (25.00%) – 8 (25.81%) –

>5 44 (32.84%) 4 (22.22%) 5 (31.25%) – 12 (38.71%) –

Total lesions 664 86 89 – 144 –

Scanners
3.0 T Discovery 172 17 20 – 31 –

3.0T Achieva 71 10 8 – 13 –

3.0 T Intera 23 7 6 – 24 –
PSA, prostate-specific antigen; T-PSA, total PSA; F-PSA, free PSA; SD, standard deviation.
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(95%CI, 0.85–0.98) on DWI images and 87.1% (27/31; 95%CI,
70.2%–96.4%), 90.6% (29/32; 95%CI, 75.0%–98.0%), and 0.89 (95%
CI, 0.85–0.98) on T1WI-IP images. The AUC values between the
two sequences showed no significant difference (p = 0.368).

At lesion level, the segmentation accuracy of themodel for bone
metastases achieved averageDSC,VS, andHDvalues of 0.79 ± 0.06,
0.83±0.08, and16.03±9.74mmonDWI images, 0.81±0.06, 0.82±
0.07, and 17.20 ± 6.73 mm on T1WI-IP images (Figure 6A). The
mean volumes of manual annotation and model prediction were
15.35 and 14.10 cm3 on DWI images and 15.68 and 14.40 cm3 on
T1WI-IP images. The volume difference is shown in Figures 6B, C.
DISCUSSION

In this work, we developed a two-step deep learning-based 3D
CNN for automated detection and segmentation of bone
metastases in PCa patients using whole 3D MR images (DWI
Frontiers in Oncology | www.frontiersin.org 7
and T1WI-IP images), in which the first 3D U-Net focuses on the
segmentation of pelvic bony structures and the second one on
bone metastases segmentation. On heterogeneous scanner data,
the first CNN performed excellent segmentation of pelvic bony
structures on both DWI and T1WI-IP images (all with DSC >
0.85), which provides a reliable foundation for the subsequent
bone metastases segmentation. Furthermore, our result showed
that the proposed CNN provided an AUC of 0.854 and 0.795 on
DWI and T1WI-IP images for bone metastases detection at the
patient level, and high overlap between automated and manual
metastases segmentations was observed (DSC = 0.79 and 0.80 on
DWI and T1WI-IP images, respectively). Additionally, by testing
on an external dataset, this work demonstrates the CNN’s
potential ability of M-staging in clinical practice (with AUC of
0.936 and 0.889 on DWI and T1WI-IP images).

mpMRI has been identified as an essential and crucial
imaging modality in PCa diagnosis and metastases evaluation
(25, 26). The importance of DWI and T1WI in the detection and
FIGURE 3 | Split violin plots of DSC, VS, and HD (mm) for pelvic bony structures segmentation. DSC, Dice similarity coefficient; HD, Hausdorff distance; T1WI-IP,
T1W images obtained using the Dixon technique with in-phase; VS, volumetric similarity.
TABLE 5 | Detection accuracy of bone metastases at patient and lesion levels.

Level Metrics DWI T1WI-IP p-value

Patient-level Sensitivity (%) 87.5 (61.7–98.4) 81.3 (54.4–96.0) 0.847
Specificity (%) 83.3 (58.6–96.4) 77.8 (52.4–93.6) 0.852
Accuracy (%) 85.3 (68.9–95.1) 79.4 (62.1–89.9) 0.789

PPV (%) 82.4 (56.6–96.2) 76.5 (50.1–93.2) 0.847
NPV (%) 88.2 (63.6–98.6) 82.4 (56.6–96.2) 0.852
AUC 0.85 (0.69–0.95) 0.80 (0.62–0.91) 0.442

Lesion-level Recall (%) 91.01 (81/89) 88.76 (79/89) 0.874
Precision (%) 84.38 (81/96) 86.81 (79/91) 0.857
F1-score (%) 87.6 87.8 –

Subgroup analysis
1 Recall (%) 100 (2/2) 100 (2/2)

Precision (%) 100 (2/2) 100 (2/2)
2–3 Recall (%) 92.9 (13/14) 85.7 (12/14)

Precision (%) 86.7 (13/15) 85.7 (12/14)
4–5 Recall (%) 94.7 (18/19) 84.2 (16/19)

Precision (%) 85.7 (18/21) 88.9 (16/18)
>5 Recall (%) 88.9 (48/54) 90.7 (49/54)

Precision (%) 82.8 (48/58) 85.9 (49/57)
November 2021 | Volume 11 | Article
AUC, areaunder the receiver operating characteristic curve;NPV,negative predictive value; PPV,positive predictive value; T1WI-IP,T1W imagesobtained using theDixon techniquewith in-phase.
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quantification of osseous metastasis in patients with PCa has
been widely recognized (9, 27). In this study, to avoid the
limitation of the application of the CNN if one of these
sequences is unavailable, we trained the two-step 3D U-Net
CNN using DWI and T1WI-IP images as independent input
data. The enrolled participants performed the mpMRI
examinations on one of the three different 3.0-T MR scanners
with different protocols, and the b-values of the DWI images were
different (b = 0, 800 or 0, 1,000 s/mm2). In a previous publication
(28), we proposed a deep learning-based approach for the
segmentation of normal pelvic bony structures. It was the proof-
Frontiers in Oncology | www.frontiersin.org 8
of-concept study for the possibility to detect skeletal metastases
located on the pelvic bones. In this study, we used two 3D U-Nets
in cascade. The first model was trained to segment the pelvic bony
structures. Taking the areas predicted by the first model as the
mask, the second model was trained to segment the metastatic
lesions on the pelvic bones. The combination of the two 3D U-
Nets offers the potential for efficient bone metastases location and
quantification. It is important to note that the two-step deep
learning model has been widely used to improve the accuracy and
stability of the system, such as lymph node detection (29) and PCa
segmentation (30).
A

B

D

C

FIGURE 5 | Examples of pelvic bony structure and bone metastases segmentations. (A) Two metastases of acetabulum annotated by radiologists were corrected
segmented by the model on T1WI-IP images (true positive). (B) Four of five metastases annotated by the radiologists were corrected segmented by model on T1WI-
IP images; one metastasis on the right ilium was missed (the white arrow pointed, false negative). (C) All the four metastases of femoral head and ischium annotated
by radiologists were correctly segmented by the model on DWI images (true positive). (D) One metastasis of lumbar vertebra was segmented by the model by error,
which was not annotated by the radiologists (false positive). T1WI-IP, T1W images obtained using the Dixon technique with in-phase.
A B C

FIGURE 4 | The segmentation accuracy of bone metastases in the testing set. (A) Split violin plot of DSC, VS, and HD of the bone metastases on DWI and T1WI-IP
images. (B) The Bland–Altman plot of the volume difference between manual annotation and model prediction on DWI images. (C) The Bland–Altman plot of the
volume difference between manual annotation and model prediction on T1WI-IP images. DSC, Dice similarity coefficient; HD, Hausdorff distance; T1WI-IP, T1W
images obtained using the Dixon technique with in-phase; VS, volumetric similarity.
November 2021 | Volume 11 | Article 773299
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The high number of FP lesions poses a common drawback in
automated detection of metastatic lesions, which has been
reported to be approximately seven to eight per scan for brain
metastases (31, 32). In the present study, by providing high-
quality pelvic bone segmentation masks on DWI and T1WI-IP
images, the FP interference from other tissues within the pelvic
region (such as metastatic lymph nodes, colon, bladder, etc.) can
be effectively eliminated. Moreover, a simple post-processing
step was added to avoid FP findings by rejecting all structures
with a volume <0.2 cm3, which was smaller than the smallest
annotated metastases.

Our CNN not only detects almost all metastases but also
incorrectly marks other objects as metastases. Most of these FPs
were caused by objects that showed a similar radiological
appearance to metastatic lesions on DWI and T1WI-IP images.
As shown in Figure 5D, the high-intensity spinal cord on DWI
images within the mask of the lumbar vertebra was detected as
metastases by mistake. In addition, the objects that were not or
scarcely represented in the training set and thus had an
appearance unknown to the network could result in FP as well.
These unknown appearances could be other lesions or conditions
such as incidental cysts. An inspection of the 15 FP findings on
DWI images showed that nine of the FPs were the spinal cord
and nerve root structure, and six of the FPs were benign lesions:
four cysts and two hemangiomas. The 12 FP objects on T1WI-IP
images included eight spinal cord and nerve root structures,
three cysts, and one blood vessel structure.

The FN metastases missed by the CNN networks were the
small ones, as can be seen in Figure 5A, which might be due to
the few occupied voxels compared with large metastases.
Additionally, on a subgroup analysis, our results suggest that
the networks perform well on patients with few metastases (≤5
metastases) and multiple metastases (>5 metastases) in terms of
recall and precision, which boosts the clinical utility of the CNN.

Automated segmentation can help radiologists in dealing
with an increased number of image interpretations while
maintaining high diagnostic accuracy and, simultaneously, may
also assist in evaluating treatment response during oncological
follow-up. Volumetric assessment proves to be a promising tool
for quantification of tumor burden and treatment response
evaluation, which is superior to user-dependent conventional
Frontiers in Oncology | www.frontiersin.org 9
linear measurements because metastatic lesions are irregular
(33). Compared with manual segmentation, our proposed
CNN achieved a high volumetric correlation on both the
testing set and the external dataset, which is crucial to help
treatment decision-making and potentially improve patient care.

TNM is considered to be one of the most pivotal factors in
evaluating the prognosis of PCa, and the existence of bone
metastases is a decisive index for the M-staging (34). Concerning
M-staging, on the external dataset, our model achieved an AUC of
0.936 (95%CI, 0.845–0.982) on DWI images and 0.889 (95%CI,
0.845–0.982) on T1WI-IP images, which demonstrated that the
two-step 3D U-Net algorithm could be used in a clinical context.
Besides, the output of the automated segmentation result to the
structure report essentially combines visualization, quantification,
and segmentation into one step, producing results that can be
directly displayed to the radiologists.

U-Net has been proven to possess the potential for bone
metastases segmentation. Lin et al. (19) built two deep learning
networks based on U-Net and Mask R-CNN to segment hotspots
in bone SPECT images for automatic assessment of metastasis.
Their results showed that the U-Net-based model achieved better
segmentation performance with a precision and recall value of
0.76 and 0.67 than the Mask R-CNN model (precision, 0.72;
recall, 0.65). In addition, Chang et al. (35) demonstrated the
capability of U-Net in segmenting spinal sclerotic bone
metastases on CT images with a Dice score of 0.83. In this
study, we explored the feasibility of the 3D U-Net network for
pelvic bone metastases segmentation on DWI and T1WI-IP
images, and our results further confirmed the segmentation
accuracy of the U-Net for bone metastases. However, the
comparisons among a couple of other architectures may be
helpful to choose an optimal model for metastases
segmentation and detection. In the future, we should further
explore the performance of other models.

While this study shows high accuracy and performance using
CNNs for bone metastases segmentation, several potential study
limitations exist. First, the study has a typical drawback of
retrospective setting. Testing of the network performance on
prospective multicenter data remains a key step towards
understanding its clinical value. Second, the relatively small
number of patients needs to be noted. Only patients with PCa
A B C

FIGURE 6 | The segmentation accuracy of bone metastases on an external dataset. (A) Split violin plot of DSC, VS, and HD of the bone metastases on DWI and
T1WI-IP images. (B) The Bland–Altman plot of the volume difference between manual annotation and model prediction on DWI images. (C) The Bland–Altman plot of
the volume difference between manual annotation and model prediction on T1WI-IP images. DSC, Dice similarity coefficient; HD, Hausdorff distance; T1WI-IP, T1W
images obtained using the Dixon technique with in-phase; VS, volumetric similarity.
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were included here, which potentially limits the transferability of
our CNN to a broad range of bone metastases of other primary
tumors (rectal cancer, bladder cancer, etc.). In this context,
future studies are needed to evaluate the feasibility of the CNN
for bone metastases segmentation of other tumors. Third, in
clinical practice, the detection of the lesion by the radiologist is
usually done by simultaneous review of anatomical and
functional MR images. Besides the Dixon T1WI-IP and DWI
images, the Fat or Water images from the Dixon sequence and
the short time inversion recovery sequence may also be helpful
for the bone metastases evaluation (36, 37). Last, the choice of
pelvic examinations as the anatomic target to detect bone
metastases and assess the positive–negative status of the
patients in terms of metastases is insufficient in clinical
practice. The axial and probably whole skeleton, at least from
skull to thighs, is necessary, as metastases affect the red marrow-
containing areas. Future research is needed to allow for the
whole-body bone metastases assessment.
CONCLUSION

In summary, our study shows that the deep learning-based 3D
U-Net network can automatically detect and segment bone
metastases on DWI and T1WI-IP images with high accuracy
and thus illustrates the potential use of this technique in a
clinically relevant setting.
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