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Abstract: The spatiotemporal patterns of spread of influenza A(HIN1)pdm09 viruses on a coun-
trywide scale are unclear in many tropical/subtropical regions mainly because spatiotemporally
representative sequence data are lacking. We isolated, sequenced, and analyzed 383 A(H1N1)pdm09
viral genomes from hospitalized patients between 2009 and 2018 from seven locations across Kenya.
Using these genomes and contemporaneously sampled global sequences, we characterized the spread
of the virus in Kenya over several seasons using phylodynamic methods. The transmission dynamics
of A(HIN1)pdm09 virus in Kenya were characterized by (i) multiple virus introductions into Kenya
over the study period, although only a few of those introductions instigated local seasonal epidemics
that then established local transmission clusters, (ii) persistence of transmission clusters over several
epidemic seasons across the country, (iii) seasonal fluctuations in effective reproduction number (R)
associated with lower number of infections and seasonal fluctuations in relative genetic diversity
after an initial rapid increase during the early pandemic phase, which broadly corresponded to
epidemic peaks in the northern and southern hemispheres, (iv) high virus genetic diversity with
greater frequency of seasonal fluctuations in 2009-2011 and 2018 and low virus genetic diversity with
relatively weaker seasonal fluctuations in 2012-2017, and (v) virus spread across Kenya. Consider-
able influenza virus diversity circulated within Kenya, including persistent viral lineages that were
unique to the country, which may have been capable of dissemination to other continents through a
globally migrating virus population. Further knowledge of the viral lineages that circulate within
understudied low-to-middle-income tropical and subtropical regions is required to understand the
full diversity and global ecology of influenza viruses in humans and to inform vaccination strategies
within these regions.
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1. Introduction

The novel influenza A(HIN1)pdm09 virus strain emerged in North America during
March—April 2009, spread rapidly among humans, and developed into the first human
pandemic of the 21st century [1-4]. By July 2009, 168 countries reported a total of 162,300
laboratory-confirmed cases and over 1100 human deaths [5-7]. Subsequently, it was esti-
mated that globally over 123,000 deaths from March to December 2009 were associated
with A(HIN1)pdmO09 virus infection [8]. The A(H1IN1)pdm09 virus displaced the seasonal
A(HINT1) virus and has continued to circulate as a seasonal virus in subsequent years, caus-
ing annual seasonal epidemics alongside influenza A(H3N2) and B viruses globally [9-12],
including in Kenya [13-17].

The global surveillance of influenza viruses has resulted in the generation of an ex-
tensive collection of geographically and temporally comprehensive virus sequence data,
which has provided an opportunity to explore the drivers of global spread of influenza
viruses [18-22]. For instance, genomic analysis found that multiple independent introduc-
tions of genetically distinct A(H1IN1)pdm09 virus lineages occurred in most countries; in
the United Kingdom, only two of the many lineages that were introduced at the start of the
pandemic were detected there 6 months later [9,23]. Elsewhere, a pair of A(HIN1)pdm09
virus transmission chains appeared to have persisted in west Africa for almost 2 years [24].
Since the A(HIN1)pdm09 virus became endemic, such spatiotemporal patterns of spread
of A(HIN1)pdmO09 viruses on a countrywide scale have, however, not been determined in
many tropical/subtropical regions where virus circulation patterns do not show a clear
seasonality as they do in temperate countries [25,26]. This is often due to insufficient
spatiotemporally representative sequence data [27,28]. A more complete understanding
of the regional and the global spread of influenza viruses, however, requires deeper and
wider sampling from understudied tropical/subtropical regions [28].

Surveillance of influenza viruses is ongoing in several parts of Kenya [13,17,29,30].
These are carried out by the Kenya Medical Research Institute (KEMRI), Ministry of
Health, Kenya, KEMRI—Wellcome Trust Research Program (KWTRP), and the USA Army
Medical Research Directorate (USAMRD-K). In 2007, the Ministry of Health, Kenya with
technical support from the Centers for Disease Control (CDC) Kenya country office (CDC-
Kenya) established a National Influenza Surveillance System in response to the 2005
influenza A(H5N1) virus threat. The aims of the surveillance system were to identify
circulating strains of influenza virus, describe the epidemiology and burden of influenza in
Kenya, and serve as a component of an early warning system for pandemic influenza [13].
CDC-Kenya conducts surveillance for influenza and influenza-like illness (ILI) and severe
acute respiratory illness (SARI) throughout the country; these are conducted in sentinel
hospitals, health facilities at demographic surveillance sites, and refugee camps, which
represent varied urban, rural, high mobility, and socioeconomic conditions [13]. The
KWTRP Virus Epidemiology and Control (VEC) team established research collaboration
with CDC-Kenya through a joint study and a countrywide pathway of transmission study
entitled “Studies of the pathways of transmission of respiratory virus disease” (SPReD-
Kenya)—http:/ /virec-group.org/spred-kenya/ (accessed on 10 September 2021), which
also provided samples for this study.

Influenza surveillance activities in Kenya reported at least four separate introductions
of A(HIN1)pdm(9 virus into the country during the pandemic in 2009, with the first
laboratory-confirmed case reported on 29 June 2009 [31,32]. In an effort to fill the gap
in studies that seek to describe the transmission of influenza viruses in tropical settings,
we studied the Kenya-wide patterns of introduction and spread of A(HIN1)pdmO09 virus
since it was introduced into the local population in 2009. We isolated, sequenced, and
analyzed 383 A(HIN1)pdm09 virus codon-complete genome sequences sampled between
2009 and 2018 from seven locations in Kenya alongside contemporaneously sampled global
sequences, to investigate the introduction and spread of A(HIN1)pdm(9 viruses to Kenya.


http://virec-group.org/spred-kenya/
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2. Materials and Methods
2.1. Sample Sources and Molecular Screening

Samples analyzed in this study were collected through two health facility-based
surveillance networks. The first involved continuous countrywide surveillance for in-
fluenza through SARI sentinel hospital reporting. This was undertaken at six sites sup-
ported by CDC-Kenya: Kenyatta National Hospital (KNH), Nakuru County and Referral
Hospital (CRH), Nyeri CRH, Kakamega CRH, Siaya CRH, and Coast General Teaching and
Referral Hospital (Figure S1) [13,14,16,33]. The second was the pediatric viral pneumonia
surveillance undertaken at the Kilifi County Hospital (KCH) (Figure S1) [29].

In the CDC-supported surveillance sites, a total of 41,685 nasopharyngeal /oropharyngeal
(NP/OP) swab samples were collected from SARI inpatient admissions of all ages from June
2009 through December 2018. Samples were stored in viral transport medium (VIM) at
—80 °C prior to processing [13]. Of these, 41,102 swabs were tested for influenza A virus
(IAV), with positive samples subsequently subtyped for A(HIN1)pdm09 and A(H3N2) viruses
using real-time reverse transcription polymerase chain reaction (RT-PCR) [13,14,16]. A total
of 1307 (3.2%) A(HIN1)pdm09 virus-positive samples were obtained. Of these, 418 (31.9%)
A(HIN1)pdm09 virus=positive samples were selected for this analysis on the basis of an
RT-PCR cycle threshold (Ct) of <35.0 (as a proxy for high viral load), an adequate sample
volume for RNA extraction (>140 uL), and a balanced distribution of samples based on
surveillance sites and years.

In the second facility-based surveillance undertaken at KCH from January 2009
through December 2018, a total of 6147 NP/OP swab samples were collected and tested
from children <5 years admitted with syndromic severe or very severe pneumonia [15,29].
Samples were stored in VIM at —80 °C prior to molecular screening. Samples were
screened for a range of respiratory viruses, including IAV, using a multiplex real-time
reverse transcription (RT)-PCR assay employing Qiagen QuantiFast RT-PCR kit (Qiagen,
Hilden, Germany) [34]. An (RT)-PCR Ct of <35.0 was used to define virus-positive sam-
ples [34]. A total of 157 (2.6%) IAV-positive specimens were identified from KCH; however,
these were not subsequently subtyped for A(HIN1)pdm09 and A(H3N2) viruses [29].
Therefore, all IAV-positive specimens were utilized, and only the A(HIN1)pdm09 viruses
were selected for the current analysis.

2.2. RNA Extraction and Multi-Segment Real-Time PCR (M-RTPCR) for IAV

Viral RNA extraction and M-RTPCR were conducted as previously described [35].
Briefly, viral nucleic acid extraction from IAV and A(HIN1)pdm09 virus-positive samples
was performed using the QIAamp Viral RNA Mini Kit (Qiagen, Hilden, Germany). Ri-
bonucleic acid (RNA) was reverse-transcribed, and the complete coding region of IAV
genome was amplified in a single M-RTPCR using the Uni/Inf primer set [36] in 25 puL
PCR reactions. Successful amplification was evaluated by running the products on 2%
agarose gel and visualized on a UV transilluminator after staining with RedSafe Nucleic
Acid Staining solution (iNtRON Biotechnology Inc., Seoul, South Korea).

2.3. IAV Next-Generation Sequencing (NGS) and Virus Genome Assembly

Following PCR, amplicons were purified, quantitated, and normalized to 0.2 ng/uL as
previously described [35]. Briefly, following PCR, the amplicons were purified with 1x AM-
Pure XP Beads (Beckman Coulter Inc., Brea, CA, USA), quantified with Quant-iT dsDNA
High Sensitivity Assay (Invitrogen, Carlsbard, CA, USA), and normalized to 0.2 ng/puL.
Indexed paired end libraries were generated from 2.5 uL of 0.2 ng/uL amplicon pool
using a Nextera XT Sample Preparation Kit (Illumina, San Diego, CA, USA) following the
manufacturer’s protocol. Amplified libraries were purified using 0.8 x AMPure XP beads,
quantitated using Quant-iT dsDNA High Sensitivity Assay (Invitrogen, Carlsbard, CA,
USA), and evaluated for fragment size in the Agilent 2100 BioAnalyzer System using the
Agilent High Sensitivity DNA Kit (Agilent Technologies, Santa Clara, CA, USA). Amplicon
libraries were then diluted to 2 nM in preparation for pooling and denaturation for running
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on the Illumina MiSeq (Illumina, San Diego, CA, USA). Pooled libraries were denatured
with sodium hydroxide, diluted to 12.5 pM, and sequenced on the Illumina MiSeq using
2 x 250 base pair (bp) paired-end reads with MiSeq v2 500 Cycle Kit (Illumina, San Diego,
CA, USA). A 5% Phi-X (Illumina, San Diego, CA, USA) spike-in was added to the libraries
to increase library diversity by creating a more diverse set of library clusters. Contiguous
nucleotide sequence assembly from the sequence data was carried out using the FLU
module of the Iterative Refinement Meta-Assembler (IRMA) [37] using IRMA default
settings: median read Q-score filter of 30; minimum read length of 125; frequency thresh-
old for insertion and deletion refinement of 0.25 and 0.6, respectively; Smith—-Waterman
mismatch penalty of 5; gap opening penalty of 10. All generated sequence data were de-
posited in the Global Initiative on Sharing All Influenza Data (GISAID) EpiFlu™ database
(https:/ /platform.gisaid.org/epi3/cfrontend; accessed on 10 March 2021) using accession
numbers listed in the metadata file in the report’s GitHub repository https://github.com/
DCollinsOwuor/H1N1pdm09_Kenya_Phylodynamics/tree/main/Data/; accessed on 11
March 2021.

2.4. Phylogenetic Analysis

Consensus nucleotide sequences were aligned using MUSCLE (https://www.ebi.ac.
uk/Tools/msa/muscle/; accessed on 11 March 2021) and translated in AliView v1.26 [38],
and the individual gene segments of Kenyan sequences were concatenated into codon-
complete genomes using SequenceMatrix v1.7.8 [39]. Phylogenetic trees of A(HIN1)pdm09
virus genomes from Kenya and contemporaneously sampled global sequences were re-
constructed with maximum-likelihood and bootstrap analysis of 1000 replicates. The
best-fit nucleotide substitution models were inferred using IQ-TREE v1.6.11 [40,41] and
those chosen by the Bayesian Information Criterion for each concatenated virus genome
implemented. The phylogenetic trees were visualized and annotated using Figtree v1.4.4
(http:/ /tree.bio.ed.ac.uk/software/figtree/; accessed on 12 March 2021) and ggtree [42].
The full-length hemagglutinin (HA) codon sequences of all viruses were used to charac-
terize A(H1IN1)pdm09 virus strains into genetic groups (i.e., clades, subclades, and sub-
groups) using Phylogenetic Clustering with Linear Integer Programming (PhyCLIP) [43]
and the European CDC Guidelines (https:/ /www.ecdc.europa.eu/en/seasonal-influenza/
surveillance-and-disease-data/influenza-virus-characterisation; accessed on 12 March
2021). Representative reference sequences for genetic clade assignment were included.

2.5. Estimating Population Dynamics of A(HIN1)pdm09 Virus in Kenya from Local
Transmission Clusters

To analyze the introduction and local spread of A(HIN1)pdm09 virus in Kenya, we
first differentiated between “transmission clusters” and “single introductions”. Transmis-
sion clusters were defined as groups of sequences that originated from a single introduction
into Kenya. Ancestral state reconstruction of internal nodes based on Kenyan and global
sequences was used to infer these transmission clusters using a maximume-likelihood
approach in TreeTime [44]. To do so, all the sequences were assigned into two discrete
location states: (i) Kenyan—all Kenyan sequences, and (ii) non-Kenyan—all sequences
from anywhere else from the globe. All sequences that clustered together were considered
to belong in the same transmission cluster if their common ancestral nodes were inferred to
be in Kenya, whereas each individual transmission cluster was considered to be the result
of a single introduction into Kenya. Clusters were named to reflect their placement within
global genetic clades 1-7, for example, KENI-GC7 indicates Kenya cluster I viruses within
global genetic clade 7. According to the identified transmission clusters, we utilized the
metadata file and script available at https://github.com/DCollinsOwuor/HIN1pdm09_
Kenya_Phylodynamics/tree/main/Analysis (accessed on 11 March 2021) to re-estimate
the number of introductions in R programming software v4.0.2. The transmission clusters
were then used to analyze the spread of A(HIN1)pdm09 virus in Kenya using two phylo-
dynamic approaches. First, the effective reproduction number (R.), which is the average
number of secondary cases generated by an infection, was estimated using a birth-death
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skyline (BDSKY) analysis [45], where all individual transmission clusters are assumed to be
independent observations of the same process with the same parameters [46]. Second, the
relative genetic diversity (effective virus population size over time) was estimated using
Gaussian Markov random field (GMRF) coalescent smoothing of the effective population
size [47].

2.6. Spatial Dynamics of AC(HIN1)pdm09 Virus in Kenya

We conducted phylogeographic analysis to assess virus spread among three geo-
graphical regions of Kenya: (i) central Kenya—Nairobi, Nakuru, and Nyeri, (ii) western
Kenya—Siaya and Kakamega, and (iii) coastal Kenya—Mombasa and Kilifi (Figure S1) us-
ing methods implemented in BEAST v1.10.4 package [48]. The analysis was implemented
with an asymmetrical discrete trait approach and applied the Bayesian stochastic search
variable selection (BSSVS) model [49]. Phylogeographic inferences were visualized with
the Spatial Phylogenetic Reconstruction of Evolutionary Dynamics using Data-Driven
Documents (SPREAD3) software v0.9.7.1c [50]. To visualize the geographic spread of the
virus over time, a D3 file was generated using SPREAD3 v0.9.7.1c. A Kenya geo.json file
was used for visualization, and the resulting log files were used to calculate Bayes factor
(BF) values for significant dispersal rates between discrete locations.

3. Results
3.1. IAV Sequencing and Genome Assembly

Among the 418 A(H1N1)pdm09 virus-positive samples that were available from the
CDC-Kenya surveillance system, 414 (99.1%) passed pre-sequencing quality control checks
and were loaded onto the MiSeq (Figure S2). This yielded 344 (83.1%) codon-complete
and 66 (15.9%) partial A(HIN1)pdm09 virus genomes; four of the sequenced genomes
were not successfully assembled due to a low number of IAV sequence reads. For this
analysis, only the 344 codon-complete A(HIN1)pdmO09 virus genome sequences were
included. Among the 157 IAV-positive specimens available from KCH, 94 (59.9%) that
passed pre-sequencing quality control checks were loaded onto the MiSeq; the 63 (40.1%)
specimens that were not sequenced had inadequate sample volumes for RNA extraction
(<140 pL) and failed pre-sequencing quality control checks (Figure S2). A total of 45
(47.9%) A(HIN1)pdm09 virus (39 codon-complete and six partial) and 49 (52.1%) A(H3N2)
virus genomes (46 codon-complete and three partial) were successfully generated from
sequencing. Only the 39 codon-complete A(H1N1)pdm(9 virus sequences were included
in these analyses (Figure S2).

3.2. Spatiotemporal Distribution of Sequenced Samples

The A(HIN1)pdm09 virus was detected throughout the study period in Kenya, with
the number of observed cases fluctuating from year to year (Figure 1A). Different locations
experienced epidemic peaks in different years. However, there were A(HIN1)pdm09
virus detections in all sites, except in mid-2010, 2012-2013, and 2016, when there was
little transmission of A(HIN1)pdm09 virus throughout the different sites (Figure 1A). The
proportion of sequenced samples roughly reflected the overall distribution of positives
that were detected from each site (Figure 1A). All A(HIN1)pdm09 virus genetic groups
were detected in most sites, with their majority detected in five or six of the seven sites,
which suggests that these lineages were in circulation in most of the sites in Kenya without
geographical restrictions during the study period (Figure 1B). Phylogenetic analysis showed
that the sequenced 383 A(HIN1)pdm09 viruses from Kenya comprised seven genetic
groups: clade 7 (n = 97, 25.3%), clade 6 (n = 132, 34.5%), subclade 6C (n = 10, 2.6%),
subclade 6B (n = 47, 12.3%), subclade 6B.1 (n = 38, 9.9%), subgroup 6B.1A (n = 57, 14.9%),
and subgroup 6B.1A1 (n = 2, 0.5%) (Figure 2). These detections varied by surveillance year:
clade 7—2009-2012; clade 6—2009-2011; subclade 6C—2013-2014; subclade 6B—2014-2016;
subgroup 6B.1—2015-2016; subgroup 6B.1A and subgroup 6B.1A1—2018 (Figure 1C).
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Figure 1. Distribution of influenza A(HIN1)pdmO09 virus in Kenya, 2009-2018. (A) Bar plot
showing number of A(HIN1)pdm09 virus-positive samples and sequenced positive samples by
month between July 2009 and November 2018 in Kenya. All collected A(HIN1)pdm09 virus-
positive samples and sequenced samples are indicated by color (all positive samples in gray—

H1N1pdm09_notSequenced; sequenced samples in black—H1N1pdm09_Sequenced) as shown in the

color key. (B) Bubble plot showing the distribution of genetic groups by location in Kenya, 2009-2018.

(C) Distribution of genetic groups by surveillance year in Kenya, 2009-2018. The size of the circles in

panels (B,C) is proportional to the number of samples, as shown in the counts key for the figures.
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Figure 2. Maximum-likelihood phylogenetic tree of 1970 influenza A(H1N1)pdm09 virus sequences from Kenya and

contemporaneously sampled global locations collected between 2009 and 2018. This is a time-calibrated phylogeny with

time shown on the x-axis. Branches are colored on the basis of genetic group membership, as shown in the color key.

3.3. Patterns of Introduction of A(HIN1)pdm09 Viruses into Kenya and Local
Transmission Clusters

We first assessed how the 383 sequences from Kenya compared to 1587 sequences sam-
pled from around the world between 2009 and 2018 (Supplementary Materials—Collation
of contemporaneous global sequence dataset) by inferring their phylogenies. The Kenyan
genomes spanned the existing global diversity (Figure 3), which suggests exchange (most
likely introductions into Kenya) of viruses with other areas around the globe. For example,
phylogenetic tree trunk viruses predominantly originated from North America in 2009,
consistent with the origins of A(HIN1)pdmO09 virus in North America in 2009, which
seeded global viruses in 2009-2010. Subsequently, Asia and Europe appeared to be the
major source populations in 2010-2013 and 2014-2018, respectively (Figure 3). The three
geographical regions also represent sources of introduction of A(HIN1)pdm09 virus into
Kenya in 2009, 2010-2013, and 2014-2018. On the basis of a reconstruction of geographic
ancestry, Kenyan sequences grouped into local transmission clusters within the global di-
versity (Figure 3). We inferred 30 transmission clusters (KENI-GC7 to KENXXX-GC6B.1A)
(Figure 3), which suggests that the sampled sequences were the result of 30 independent
introductions from areas outside of Kenya. However, despite the relatively strong clus-
tering of Kenyan sequences into transmission clusters, there were relatively few (8/30)
introductions that resulted in local epidemics. To investigate if this number was a strict
lower bound for the introductions, we used random subsets of the 383 A(H1N1)pdm09
virus sequences from Kenya to re-estimate the number of introductions (Figure 4). We
found that the number of estimated introductions started to flatten slightly with the num-
ber of sequences subsampled but still grew. This saturating relationship suggests that
the study did not grossly underestimate the full number of A(HIN1)pdm09 virus vari-
ants in this report. Seven of the 30 transmission clusters appeared to have persisted over
several epidemic seasons (Table 1), which provides evidence for multiyear persistence
of individual A(HIN1)pdm09 virus transmission clusters in a specific locality. All seven
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transmission clusters that persisted between 2009 and 2018 consisted of viruses sampled
across Kenya, which suggests that A(HIN1)pdm09 virus persistence in the country was
not constrained geographically.

® Africa

@ Asia

O Europe

©® North America
@ QOceania

® South America

© Kenya

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Figure 3. Time-resolved maximum-likelihood phylogenetic tree of Kenyan and contemporaneously sampled global
sequences collected between 2009 and 2018 showing continent of sequence sampling and Kenyan transmission clusters.
Unique Kenyan clusters are labeled with the prefix KEN, followed by cluster grouping and genetic group; for example,
KENI-GC?7 indicates Kenyan cluster I viruses, which fall within global genetic clade 7. The branches are colored on the basis
of continent of sampling, as shown in the color key. Additionally, the trunk locations are inferred and colored by continent,
which is based on geographic ancestry analyses of sampled sequences to indicate influenza A(HIN1)pdm09 virus origins.
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Figure 4. Number of introductions of A(H1IN1)pdm09 viruses into Kenya depending on how many random sequences from
Kenya were used to infer introductions.
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Table 1. Patterns of persistence of A(HIN1)pdm09 virus transmission clusters in Kenya.

Duration of

t Cluster Clade Sequences From Circulation Locations Detected
Spread
e July 2009 to Nairobi; Nakuru;
KENF-GC-7 7 49 Europe December 2010 1.5 years Nyeri; Siaya; Kilifi
. December 2010 Nairobi; Nakuru;
KENVII-GC7 7 6 North America to March 2012 1.3 years Kakamega
Nairobi; Nakuru;
KENVII-GC6 6 39 North America October 2010 to 9 months Kakamega; Nyeri;
June 2011 . 4
Siaya; Kilifi
Nairobi; Nakuru;
KENX-GC6 6 88 North America October 2009 to 2.2 years Kakamega; Nyeri;
November 2011 . 4
Siaya; Kilifi
; January 2013 to s
KENXII-GC6C 6C 8 Europe January 2014 1 year Nakuru; Siaya
February 2014 Nairobi; Nakuru;
KENXVI-GC6B 6B 34 North America y 2.5 years Kakamega; Nyeri;
to August 2016 o
Kilifi
KENXXIII- 6B 2 . April 2015 to L3 Ilfalimbl" I\I.all\?urui
GC6B.A . urope August 2016 .3 years a amlzﬁgaf,i yeri;

t Cluster, name of transmission cluster; Clade, genetic group membership; Sequences, number of sequences in cluster; From, inferred
geographical source of virus introduction; Circulation, duration of circulation of the cluster in Kenya; Locations Detected, Kenyan locations

where clusters were detected.

3.4. Estimating Population Dynamics of A(HIN1)pdm09 Virus in Kenya from the Local
Transmission Clusters

We estimated the effective reproduction number to be between 1 and 1.5 throughout
the study period when we quantified the amount of local transmission on the basis of local
transmission clusters (Figure 5A). We inferred seasonal fluctuations in Re between 2009
and 2018, with annual peaks in Re usually occurring at the end of the year and annual
drops in R, following the annual peaks, with the estimated median often being below 1
(Figure 5A). The low R. values throughout 20092018 are consistent with the occurrence
of smaller epidemics in Kenya throughout the study period. Coalescent reconstruction
of A(HIN1)pdm09 virus occurrence in Kenya revealed (i) seasonal fluctuations in rel-
ative genetic diversity after an initial rapid increase during the early pandemic phase,
which broadly corresponded to epidemic peaks in the northern and southern hemispheres,
(ii) higher genetic diversity (genetic diversity >10), with greater frequency of seasonal
fluctuations observed during 2009-2011 and 2018, and (iii) lower genetic diversity (vari-
ation occurring between 1 and 10 in genetic diversity), with relatively weaker seasonal
fluctuations sustained from 2012-2017 (Figure 5B).

3.5. Regional Spread of A(HIN1)pdm09 Virus in Kenya

To infer the patterns of spread of A(HIN1)pdm09 virus among three geographical
regions of Kenya (central Kenya, western Kenya, and coastal Kenya), we summarized
and visualized its geographic spread over time on the basis of significant rates of spread
between the geographical regions. We observed significant rates of spread from western
Kenya to central and coastal Kenya. Additionally, we observed supported rates of spread
from coastal Kenya to western and central Kenya (Figure 6).
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Figure 5. Population dynamics of influenza A(HIN1)pdmO09 virus from Kenya, 2009-2018. (A) Estimates of the effective
reproduction number through time inferred from all local clusters jointly by using BDSKY analysis. The primary y-axis
shows the number of sequenced samples, while the secondary y-axis shows the effective reproduction number (Re). The
dark pink section of the R, values is the mean R, estimate, whereas the light-pink margins denote the 95% confidence
interval; time in years is shown on the x-axis. (B) Estimates of the relative genetic diversity through time for influenza
A(HIN1)pdm09 virus from Kenya, 2009-2018, resolved using GMRF analysis. The dark-blue line is the mean estimate, and
the blue margin denotes the 95% interval. The relative genetic diversity is shown on the y-axis, while time is shown on the
x-axis. BDSKY, birth—death skyline; GMRF, Gaussian Markov random field.
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Figure 6. Networks of spread of influenza A(HIN1)pdm09 virus reconstructed using sequence data
from Kenya, 2009-2018. Asymmetric pathways of spread between geographical regions of Kenya
(central Kenya, western Kenya, and coastal Kenya) were inferred. Colored arrows indicate significant
routes of spread from one location state to another, while line thickness represents the degree of
statistical support. Red arrows are shown to indicate decisive routes of spread with Bayes factor (BF)
support >1000; green lines represent very strongly supported routes with 100 < BF < 1000; blue lines
indicate strongly supported routes 10 < BF < 100; purple dotted lines indicate supported routes with
3 <BF<10.

4. Discussion

We observed multiple A(HIN1)pdmO09 virus introductions into Kenya over the study
period, although only a few of those introductions instigated local seasonal epidemics
that then established local transmission clusters, some of which persisted over several
epidemic seasons across Kenya. Furthermore, we show that the seasonal epidemics were
associated with a lower number of infections (low estimates of R.), consistent with esti-
mates from other regions for A(HIN1)pdm09 virus during seasonal epidemics [51], as
well as with seasonal fluctuations in virus genetic diversity. Additionally, the spread of
A(HIN1)pdm09 virus in Kenya was characterized by countrywide transmission following
virus introduction.

Genomic analysis of virus sequence data from Kenya during the pandemic in 2009
reported the introduction of clade 2 and clade 7 viruses in Kenya, although clade 2 viruses
did not circulate beyond the introductory foci, while clade 7 viruses disseminated country-
wide [52]. Here, through detailed genomic analysis, we extend these earlier observations
to show that clade 7 and clade 6 viruses were introduced into Kenya during the pandemic,
disseminated countrywide, and persisted across multiple epidemics in multiple locations
as local transmission clusters. A key question in influenza virus evolution and epidemiol-
ogy is whether viral lineages can persist at low levels of circulation on local and regional
scales or whether new virus strains must be continually reseeded from a globally sustained
gene pool [24]. The intensive sampling of viruses during the pandemic in 2009-2010
enabled the molecular epidemiology of IAV to be examined at such a high resolution
that the introduction, persistence, and/or fade-out of individual transmission clusters in
specific localities could be determined [5,22]. Our analysis revealed sustained persistence
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of seven A(HIN1)pdm09 virus transmission clusters for over 2 years, although increased
sampling is required to confirm that isolates from other localities are not interspersed
within these clusters.

Nonmolecular epidemiological studies have hinted at climate-driven patterns of
influenza virus spread in Africa, for example, in Kenya [53] and Uganda [54], where
climatic factors have been shown to influence the seasonality of influenza viruses. Therefore,
persistence in such African countries might be facilitated by climatic variability, which can
generate temporally overlapping epidemics in neighboring regions [24]. Such patterns
have been associated with global migration and persistence of influenza viruses in East and
Southeast Asia [19]. Our findings support a shifting metapopulation model of circulation of
influenza viruses in which viruses may pass through any geographical region for a variable
amount of time rather than perpetually circulate in fixed locations, whereby new virus
strains can emerge in any geographical region, with the location of the source population
changing regularly [19]. Wider and deeper sampling of viruses from understudied tropical
and subtropical regions is, therefore, required for a more complete understanding of the
regional and the global spread of influenza viruses.

Inclusion of regional and global genome sequences deposited in GISAID significantly
improved the power of our phylogenomic analyses, which showed that the Kenyan di-
versity was part of the global continuum. For example, we showed widespread mixing
of Kenyan lineages with global viruses from Africa, Asia, Europe, North America, South
America, and Oceania. The use of NGS technology to generate virus sequence data from
Kenya enables further scrutiny of the available data to answer other key molecular epi-
demiological questions. For example, the sequencing depth achieved with NGS may allow
for analysis of minority variant populations. Therefore, NGS may facilitate more focused
selection of vaccine strains based on strains in circulation in specific regions, which may
improve the effectiveness of vaccines.

The study had some limitations. Firstly, the samples analyzed in this study were
collected from hospitalized patients with SARI (CDC-Kenya) or viral pneumonia (KCH).
This strategy avoided NGS of samples from outpatient cases that may have been critical
in reconstructing the patterns of introduction and spread of A(HIN1)pdm09 virus in
Kenya. Secondly, the analysis in this report only involved the coding regions of the
A(HIN1)pdm09 virus gene segments. Although noncoding regions are considered to be
conserved, mutations that affect viral replication may occur, and this information may not
have been captured in this study. Thirdly, the paucity of sequence data from other African
countries limited the analysis of regional patterns of persistence of influenza viruses, since
persistence may be facilitated by climatic variability that generates temporally overlapping
epidemics in neighboring countries. Lastly, the prioritized samples were selected on the
basis of anticipated probability of successful sequencing inferred from the sample’s viral
load as indicated by the diagnosis Ct value. Such a strategy ultimately avoided NGS
of some samples that may have been critical in reconstructing the patterns of spread of
A(HIN1)pdm09 virus and persistence of transmission clusters.

In conclusion, although the intensity of influenza surveillance in Africa still lags
behind that of other continents, our findings suggest that considerable influenza virus
diversity circulates within the continent, including virus lineages that are unique to the
region, as reported for Kenya; these lineages may be capable of dissemination to other
continents through a globally migrating virus population. Further knowledge of the viral
lineages that circulate within understudied tropical and subtropical regions is required to
understand the full diversity and global ecology of influenza viruses in humans and to
inform vaccination strategies within these regions.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/
10.3390/v13101956/51: Figure S1. Map of Kenya showing the influenza sentinel surveillance sites
for SARI used in this study. SARI, Severe Acute Respiratory Illness; GTRH, General Teaching and
Referral Hospital; CH, County Hospital; CRH, County and Referral Hospital; NH, National Hospital,
Figure S2. Sample processing flow for CDC-Kenya and KCH surveillance of IAV positive specimens,
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2009-2018. Next generation sequencing generated 344 and 39 codon complete A(HIN1)pdmO09 virus
sequences from the CDC-Kenya and KCH surveillance studies, respectively, which were used for
this analysis. CDC, Centers for Disease Control; KCH, Kilifi County Hospital; IAV, influenza A virus.
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