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A sparse-representation-based direct minimum 𝐿
𝑝-norm algorithm is proposed for a two-dimensional MRI phase unwrapping.

First, the algorithm converts the weighted-𝐿𝑝-norm-minimization-based phase unwrapping problem into a linear system problem
whose system (coefficient) matrix is a large, symmetric one. Then, the coefficient-matrix is represented in the sparse structure.
Finally, standard direct solvers are employed to solve this linear system. Several wrapped phase datasets, including simulated and
MRdata, were used to evaluate this algorithm’s performance.The results demonstrated that the proposed algorithm for unwrapping
MRI phase data is reliable and robust.

1. Introduction

From the MRI complex data, the phase information can be
extracted with a restricted interval (−𝜋, 𝜋]. That is, the phase
value is wrapped. We call it a wrapped phase or the principal
value 𝜓. This relationship between the wrapped phase and
its corresponding true phase 𝜃 can be described by 𝜓 =

𝜔{𝜃} = 𝜃+2𝑘𝜋, where 𝑘 is an integer and 𝜔{⋅} is the wrapping
operator, forcing the value of its argument inside the curly
braces into the range (−𝜋, 𝜋] by adding or subtracting an
integral multiple of 2𝜋 radians from its argument. However,
what is needed is the true unknown phase 𝜃, because this
relates to certain properties of interest, such as the velocity
of the moving spins, the main 𝐵0 field inhomogeneity, and
the magnetic susceptibility variations. Given the wrapped
phase, phase unwrapping is applied to restore the true phase,
obtaining the unwrapped estimate 𝜑. This technique is an
important tool inmanyMRI applications, for example, three-
point Dixon water and fat separation [1], MR venography
[2, 3], motion tracking in a tagged cardiac MRI [4], and field
mapping in EPI [5].

Should the wrapped phases have no inconsistencies, the
process of the phase unwrapping will be merely integrating
the phase gradients over a path that covers the whole domain

of interest.This process is quite simple and path independent.
Nomatter which path is followed, the results will be the same
regardless of the constant offset. However, in practice, there
are always inconsistencies owing to the presence of the noise,
undersampling, and/or object discontinuities. Consequently,
phase unwrapping becomes intractable and path dependent.
The inconsistency is usually called “residue” and is detected
by summing the wrapped phase gradients around each 2 × 2
closed loop in the two-dimensional (2D) array, as shown in
Figure 1. Consider
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(2)

In the literature, numerous two-dimensional (2D) phase
unwrapping approaches have been developed. They can be
classified into four categories: path-following [6–11], min-
imum-norm [12–18], Bayesian/regularization [19, 20], and
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Figure 1: Residue calculation.

parametric modeling [21] methods. Our method belongs to
the second category; thus, we briefly introduce theminimum-
norm methods.

The minimum-norm methods estimate the unwrapped
phases byminimizing the𝐿𝑝-normof the differences between
the gradients of thewrapped and the unwrappedphases.With
𝑝 = 2, this results in least-square algorithms. These employ
the FFT/DCT transforms [18, 22] or/and iterative techniques
[22] to reach an approximation for the least-square solution.
The exact least-square solution is obtained by applying
network programming techniques in [15]. Nevertheless, the
least-square minimization tends to smooth the discontinu-
ities, unless these discontinuities are given in advance as
binary weights. The minimum 𝐿

1-norm algorithms [13, 23]
have a better ability than the 𝐿2-norm ones to preserve the
discontinuities. As 𝑝 approaches zero, the minimum 𝐿

𝑝-
norm method tends to obtain a more reliable result [24, 25].
Thus, the 𝐿0-norm minimization is widely accepted as the
most desirable in practice. However, the 𝐿0-norm minimiza-
tion is a nondeterministic polynomial-time hard (NP-hard)
problem [14] with only approximate, not exact, solutions
being developed in [12, 14]. The conventional minimum
𝐿
𝑝-norm method [12] converts the 𝐿𝑝-norm minimization

problem into a generalized matrix equation with a flexible
option of 𝑝. It yields more accurate solutions than other
methods, except for the cases including some residues closer
to the periphery than to the other residues with opposite
polarity. Additionally, because it is implemented in a dual-
iterative structure (an iteration structure embedded in an
outer one), it can be computationally intense.

In this work, a sparse-representation-based direct mini-
mum𝐿

𝑝-norm (SDM𝐿𝑃) algorithm is proposed. It introduces
the user-definedweights into the generalizedmatrix equation
of the conventional minimum 𝐿

𝑝-norm method to improve
the performance of phase unwrapping, because, in this way,

the discontinuities in the unwrapped phase surface can be
confined to the low-quality or zero-weight regions [22]. On
the other hand, the sparse representations of the matrices
in the modified matrix equation and the direct solvers are
exploited in this algorithm to significantly reduce the compu-
tational time of the conventionalminimum 𝐿

𝑝-normmethod
for MRI phase unwrapping.

2. Materials and Methods

2.1. Mathematics Foundation. In general, for an 𝑀 × 𝑁 2D
wrapped phase array, the weightedminimum 𝐿

𝑝-norm phase
unwrapping problem is expressed by [14, 17]
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(3)

where 𝑤𝑥
𝑖,𝑗

and 𝑤𝑦
𝑖,𝑗

are the user-defined weights for corre-
sponding differences and indicate where the phase values are
more reliable than others.The user-defined weights are given
by
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where
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(5)

For each sum, the indexes (𝑖, 𝑗) cover over the 𝑙 × 𝑙 window
centered at the pixel (𝑚, 𝑛). The terms Δ𝜓𝑥

𝑖,𝑗
and Δ𝜓𝑦

𝑖,𝑗
are the

wrapped phase gradients in the 𝑙 × 𝑙 windows and Δ𝜓𝑥
𝑚,𝑛

and
Δ𝜓
𝑦

𝑚,𝑛 are the averages of these wrapped phase gradients. In
this paper 𝑙 = 3.𝑤𝑖,𝑗 is relatively higher in the areas where the
phase changes smoothly.

Through the analogous derivation process in [12, 26],
the minimum 𝐿

𝑝-norm solution of (3) eventually entails the
solution of the following linear system of equations:

𝑅𝑖,𝑗 (𝜑𝑖+1,𝑗 − 𝜑𝑖,𝑗) + 𝐶𝑖,𝑗 (𝜑𝑖,𝑗+1 − 𝜑𝑖,𝑗)

− 𝑅𝑖,𝑗 (𝜑𝑖,𝑗 − 𝜑𝑖−1,𝑗) − 𝐶𝑖,𝑗 (𝜑𝑖,𝑗 − 𝜑𝑖,𝑗−1) = 𝜌𝑖,𝑗,

(6)
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where
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That is to say, when the weighted minimum 𝐿
𝑝-norm

phase unwrapping solution is desired, it can be simpler to find
the solution 𝜑𝑖,𝑗 of (6) instead.

For the setting of the values of data-dependent weights
𝑅𝑖,𝑗 and𝐶𝑖,𝑗 empirically, the weights are always normalized in
the interval [0, 1] in practice. Hence, (7) and (8) are modified
to incorporate this constraint. To avoid | ⋅ |𝑝−2 with 0 ≤ 𝑝 ≤ 2
being extremely great or even infinite, the normalization is
defined by
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Here, setting 𝛼 to be 0.01 radians is a compromise between
accuracy and efficiency [12, 22].

2.2. Sparse-Representation-Based Direct Minimum 𝐿
𝑝-Norm

(SDM𝐿𝑃) Algorithm

2.2.1. Sparse Representation of the Objective. The estimated
phase distribution is shown in Figure 1. To simplify the
algorithm, concatenating the columns of the phase matrix
yields a vector of lengthMN:

𝜙 = [𝜑1,1, 𝜑2,1, . . . , 𝜑𝑀,1, 𝜑1,2, 𝜑2,2, . . . , 𝜑𝑀,2, . . . ,

𝜑1,𝑁, . . . , 𝜑𝑀,𝑁]
𝑇
.

(11)

The superscript 𝑇 refers to a matrix transpose.
The wrapped phase differences along the two directions,

Δ𝜓
𝑥 and Δ𝜓𝑦, are also matrices. Their sizes are (𝑀 − 1) ×

𝑁 and 𝑀 × (𝑁 − 1), respectively. As above, we concatenate
the columns of eachmatrix and thenmerge these two vectors
vertically into a single array:
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The length of 𝑑 is (𝑀 − 1)𝑁 +𝑀(𝑁 − 1).

Analogous to the matrix equation used in the weighted
least-squares phase unwrapping algorithm [18], the system of
equations defined by (6) can be represented in matrix form
as follows:

Q𝜙 = 𝑠, (13)

whereQ denotes an𝑀𝑁×𝑀𝑁matrix given by

Q = A𝑇W𝑇WA, (14)

𝑠 = A𝑇W𝑇W𝑑. (15)

A is a matrix consisting of an (𝑀 − 1)𝑁 × 𝑀𝑁 upper
partition and an𝑀(𝑁 − 1) ×𝑀𝑁 lower partition:

A =

[
[
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[
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[
[
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...
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]
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, (16)

whereD1 is an (𝑀 − 1) ×𝑀matrix given by

D1 =
[
[
[
[
[
[

[

1 −1 0 ⋅ ⋅ ⋅ 0 0

0 1 −1 ⋅ ⋅ ⋅ 0 0

0 0 1 ⋅ ⋅ ⋅ 0 0

...
...

... d
...

...
0 0 0 ⋅ ⋅ ⋅ 1 −1

]
]
]
]
]
]

]

(17)

and I is an𝑀×𝑀 identity matrix.
To make the expansion of (13) equal to (6), the matrix

W𝑇W is constructed as

W𝑇W = diag {𝑅1,1, . . . , 𝑅𝑀−1,1, . . . , 𝑅1,𝑁, . . . , 𝑅𝑀−1,𝑁,

𝐶1,1, . . . , 𝐶𝑀,1, . . . 𝐶1,𝑁−1, . . . , 𝐶𝑀,𝑁−1} ,

(18)

where diag{⋅} puts its arguments in order on the
main diagonal. It is easy to see that W𝑇W is an
[(𝑀 − 1) × 𝑁 +𝑀 × (𝑁 − 1)]

2 matrix.
If these foregoing matrices are stored and operated using

a standard matrix structure, this will consume a significant
amount of memory and become unfeasible in standard
computers. For instance, given a 256 × 256 phase image, the
sizes ofA,W𝑇W, andQ are 130560×65536, 130560×130560,
and 65536×65536, respectively.These matrices are obviously
too large (exceeding 230) to be stored and manipulated in a
program. Fortunately, all these matrices are sparse and can be
represented with a sparse structure. We store only nonzero
entries of the matrix together with their indexes. That is, a
3-tuple, (𝑖, 𝑗, 𝑎𝑖𝑗), is applied to uniquely identify a nonzero
entry of the sparse matrix [27, 28], where 𝑖 and 𝑗 are the row
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and column indexes, respectively, and 𝑎𝑖𝑗 denotes the value
of the nonzero entry located in (𝑖, 𝑗). Moreover, to make the
subsequent computation more efficient, the nonzero entries
are ordered first by columns and then by rows. Finally, the
size of the original sparse matrix should also be stored.

It should be noted that, henceforth, A,W𝑇W, and Q will
still refer to the original sparsematrices but will be stored and
operated, respectively, in the corresponding sparse structures.

2.2.2. Direct Solver. Equation (14) implies that Q is a large
sparse, real, symmetric matrix. Thus, (13) becomes a linear
system of equations involving the large sparse symmetric
coefficient matrix Q. To solve this system of equations, con-
siderable effort has been devoted over the past three decades
[29]. Among these algorithms, the direct solvers that rely on
the explicit factorization of the coefficient matrix are widely
used owing to their generality and robustness. Especially
for a symmetric coefficient matrix, the direct solvers prefer
to adopt the 𝐿𝐷𝐿𝑇 factorization [30], a variant of Gaussian
elimination that can also be considered as an alternative
form of the Cholesky factorization without extracting the
square roots [31]. Under this factorization, the matrix Q is
decomposed into a lower triangular matrix L, a diagonal
matrix D with 1 × 1 and 2 × 2 blocks, and the conjugate
transpose of L. Consider

Q = LDL𝑇. (19)

Then, given the right-hand side 𝑠, the estimated phases in
(13) can be obtained through a forward elimination followed
by the backward substitution [28]. The time complexity is
O((MN)1.5) and the memory complexity is O (MNlog(MN)).
For more details of the direct solvers, please see [32].

2.2.3. Implementation of the Algorithm. During the last two
decades a number of software packages that implement direct
solvers have been developed [33]. If the coefficient matrix is
positive definite, CHOLMOD [34] is adopted, because of its
rapid computation and relatively small amounts of memory
demand. If not, MA57 [35] is strongly recommended.

To accelerate the convergence, the termination condition
is set to no residues for the distinctions [12]. First, the
distinction is defined by

𝐸𝑖,𝑗 = 𝜔 {𝜓𝑖,𝑗 − 𝜑𝑖,𝑗} , 𝑖 = 1, 2, . . . ,𝑀; 𝑗 = 1, 2, . . . , 𝑁.

(20)

Then, we treat these distinctions similarly to the phase
data. Based on the theory that any wrapped phase image can
be uniquely unwrapped (with an arbitrary constant offset)
if it does not have residues [36], we check whether the 𝐸𝑖,𝑗
have residues. Given no residues, we unwrap 𝐸𝑖,𝑗 by a flood-
fill algorithm [37, 38] with a centre start point and no branch
cuts.

Step 1. Choose the start pixel as the point in the location
of 𝑖 = round(𝑀/2) and 𝑗 = round(𝑁/2), where round(⋅)
rounds its argument to the nearest integer. Its phase value is
stored as an unwrapped phase value in the solution matrix.

The four neighbouring pixels are next unwrapped and their
unwrapped phase values are placed in the solution matrix.
These four pixels are inserted in the unwrapped list.

Step 2. Pick a pixel from the unwrapped list and then
eliminate it from the unwrapped list. Unwrap the phase values
of its four neighbouring pixels, avoiding pixels that have been
unwrapped. Insert these pixels in the unwrapped list and put
their unwrapped phase values in the solution matrix.

Step 3. Repeat Step 2 until the unwrapped list becomes
empty.

Unwrapping 𝐸𝑖,𝑗 is signified by 𝜔−1{𝐸𝑖,𝑗}, which is added
back to the estimated phase to obtain the final result.
Consider

𝜑
final
𝑖,𝑗

= 𝜑𝑖,𝑗 + 𝜔
−1
{𝐸𝑖,𝑗} , 𝑖 = 1, 2, . . . ,𝑀; 𝑗 = 1, 2, . . . , 𝑁.

(21)

In summary, the detailed procedure of the SDM𝐿𝑃 phase
unwrapping algorithm is described as below.

Step 1. Set the iteration time 𝑘 = 0. Set the value of𝑝. Initialize
the estimated phases.

Step 2. Compute the weights 𝑅𝑖,𝑗 and 𝐶𝑖,𝑗 from (10).

Step 3. Compute Q and 𝑠 from (14) and (15); then solve (13)
by the direct solver.

Step 4. Compute the distinction 𝐸𝑖,𝑗 by (20). Check 𝐸𝑖,𝑗 for
residues. If there are no residues, continue. If 𝑘 > 𝑘max, end.
Otherwise, set 𝑘 = 𝑘 + 1 and go to Step 2.

Step 5. Unwrap 𝐸𝑖,𝑗 by the flood-fill algorithm, and form the
final estimated phases by (21).

2.2.4. Evaluation. The following weighted 𝐿0measure is used
to evaluate the quality of an unwrapped solution:

𝜌 =
1

𝑀𝑁
[

[
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𝑁

∑

𝑗=1
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0

+

𝑀
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∑

𝑗=1

𝑤
𝑦
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𝜑𝑖,𝑗+1 − 𝜑𝑖,𝑗 − Δ𝜓

𝑦

𝑖,𝑗



0
]

]

.

(22)

This counts the ratio of pixels where the gradients of the
unwrapped solution mismatch the wrapped phase gradients,
which is what we have also minimized with 𝑝 = 0. Therefore,
the lower weighted 𝐿0 measure indicates the better perfor-
mance.

3. Results and Discussion

Several 2D datasets are used to evaluate the performance of
the proposed SDM𝐿𝑃 algorithm. The actual number of the
iterations of the SDM𝐿𝑃 algorithm varies, depending on the
loops after which the distinctions of each example become
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(a) (b)

(c) (d)

(e) (f)

Figure 2: A 128×128 phase dataset with shear, (a) its wrapped phase, and (b) its residue distribution including 6 residues. Unwrapped phase
image using the (c) SDM𝐿𝑃, (d) conventional minimum 𝐿

𝑝-norm, (e) PUMA, and (f) PHUNmethods. Unwrapping errors are marked with
red arrows.

residue free.The limitedmaximumnumber of iterations 𝑘max
is set to be 20.

The performance of the proposed algorithm is compared
with conventional minimum 𝐿

𝑝-norm algorithm [12] and
other twowidely used 2D algorithms, PUMA [16] and PHUN
[10]. Note that we choose 𝑝 = 0 for the first two methods,
because 𝐿0-norm minimization is more well behaved and
most desired in practice (explained in Section 1). We merely
display the best result we can obtain for the PHUN method
in each example, because the behaviour of this algorithm is
controlled by many parameters and the optimum values of
the parameters vary for each dataset. All these methods are
implemented inMATLAB (MathWorks,Natick,MA) on aPC
(Intel 2 Quad CPU 2.39GHz).

3.1. Simulated Data. We begin with a 128×128 phase dataset
with one shear line located horizontally along the 13th row
below the upper border. The wrapped phase image is shown
in Figure 2(a). Figure 2(b), where the black border is added,
shows its residues marked as black dots.

The proposed method, SDM𝐿𝑃, made no unwrapping
errors for this case, producing a solution (see Figure 2(c))

exactly the same as the true phase. However, while it obtained
the smallest weighted 𝐿0 measure for this example, it con-
vergedmore slowly than the PUMAand PHUNmethods (see
Figure 6). The conventional minimum 𝐿

𝑝-norm and PUMA
methods both yielded extra short vertical shear lines marked
with red arrows in the upper parts of their results (see Figures
2(d) and 2(e)). Figure 2(f) shows the solution achieved by the
PHUNmethod with five unexpected crooked shear lines and
a black spot of outliers whose values are very low (all marked
with red arrows).

Figure 3(a) shows a 257×257wrapped phase shear image
with Gaussian noise (the signal-to-noise ratio is 0.8379 dB).
Its residue distribution is shown in Figure 3(b).

The result of the SDM𝐿𝑃 algorithm in Figure 3(c) is
composed of a two-planar surface tearing along the median
shear line as expected, except for some protrusions on this
line where the phases are severely corrupted by both the noise
and the object discontinuities. The conventional minimum
𝐿
𝑝-norm method offers a slightly worse result, shown in

Figure 3(d), where minor errors (marked with red arrows)
occurred near the top and bottom of the median shear
line. So the weighted 𝐿0 measure values of the SDM𝐿𝑃 and
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(a) (b)

(c) (d)

(e) (f)

Figure 3: A 257×257 noisy phase dataset with shear, (a) its wrapped phase, and (b) its residue distribution including 150 residues. Unwrapped
phase image using the (c) SDM𝐿𝑃, (d) conventional minimum 𝐿

𝑝-norm, (e) PUMA, and (f) PHUNmethods.

conventional minimum 𝐿
𝑝-norm methods are almost the

same (see Figure 6(a)). However, it is noted in this case
that the former converged much faster than the latter. The
unwrapped phase image of the PUMAmethod in Figure 3(e)
has some small-scale, anomalous “layer” artifacts around
the median shear line. The PHUN method generated an
incorrect unwrapped phase image with the left half full of
“layer” artifacts that propagated from the median line to the
surrounding regions or even the image border.

In summary, these two simulation examples, both having
object discontinuities lying in the shear line, demonstrate
the discontinuity-preserving ability of the SDM𝐿𝑃 algorithm.
Additionally, the SDM𝐿𝑃 algorithm did not produce extra-
undesired discontinuities that appeared as shear lines or
“layer” artifacts.

3.2. MR Data. Figures 4(a) and 4(b) show the magnitudes
and phases of a 44 × 44 displacement encoded MR heart
dataset [39], respectively.

The results of the SDM𝐿𝑝, the conventional minimum
𝐿
𝑝-norm, and the PUMA algorithms are shown in Figures

4(d), 4(e), and 4(f). There is no significant visible difference
between these three images. In these unwrapped phase
images, the rough shape of the heart (compared to the
magnitude picture in Figure 4(a)) is dimly visible. We then
examine the corresponding discontinuity maps (added black
borders) that are the distributions of the discontinuities
where pixels (marked in black) differ from a neighbouring
pixel by more than 𝜋 radians. These maps in Figures 4(h),
4(i), and 4(j) have little differences. In addition, the weighted
𝐿
0 measures, depicted in Figure 6(a), of these three methods

are similar. The extremely fast algorithm, PHUN, offered a
solution involving many black spots (see Figure 4(g)) that
correspond roughly to the locations of the residues (see
Figure 4(c)). Also, it created a large number of undesired
discontinuities (see Figure 5(j)).

An MR head example [12] is shown in Figure 5. The
SDM𝐿𝑝, the conventional minimum 𝐿

𝑝-norm, and the
PUMA algorithms all produced plausible unwrapped phase
images, shown in Figures 5(c), 5(d), and 5(e). Moreover,
the discontinuity maps (see Figures 5(g), 5(h), and 5(i))
and weighted 𝐿0 measures (see Figure 6(a)) of these three
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

Figure 4: A 44 × 44 displacement encoded MR heart dataset, (a) its magnitudes, (b) its wrapped phases, and (c) its residue distribution
including 210 residues. Unwrapped phase image using the (d) SDM𝐿𝑃, (e) conventional minimum 𝐿

𝑝-norm, (f) PUMA, and (g) PHUN
methods. Discontinuities in the corresponding unwrapped phase images got by the (h) SDM𝐿𝑃, (i) conventional minimum 𝐿

𝑝-norm, (j)
PUMA, and (k) PHUNmethods.

methods are almost the same. The PHUN method failed to
unwrap this dataset correctly (see Figure 5(f)). Its result has a
large number of undesired discontinuities (see Figure 5(j)).

The weighted 𝐿0 measures and execute time of all meth-
ods in the preceding four examples are compared in Figures
6(a) and 6(b), respectively. For a better visual effect, both
of the ordinate axes are in a logarithmic scale. The SDM𝐿𝑝
algorithm achieved the smallest weighted 𝐿

0 measures for
all four examples above. It significantly reduced the compu-
tational time compared to the conventional minimum 𝐿

𝑝-
norm method. However, the algorithm did not converge fast
enough compared with the PUMA and PHUN algorithms.
From the horizontal comparison of the execute time, it can
be concluded that the execute time of the SDM𝐿𝑝 algorithm
depended partly on the size of the phase dataset. For example,
the SDM𝐿𝑃 algorithm converged in 0.5 seconds for the 44×44
heart dataset, while, for the 257×257 simulated dataset, it took
31 seconds.

The final example is the transverse section of a 5-sliceMR
knee dataset, as shown in Figure 7. The size of each slice is

256 × 256. The measurements were made with a 0.5T MRI
scanner (Ningbo Xingaoyi Co., LTD., China).

Excellent results with no phase errors, shown in the
third row of Figure 7, are derived from the unwrapping by
the SDM𝐿𝑃 algorithm.The conventional minimum 𝐿

𝑝-norm
algorithmworked well, except for generating two undesirable
shear lines in the fourth slice. The PUMA algorithm yielded
undesired results in the third and fourth slices with some
shear lines but successfully unwrapped the other slices. The
PHUN method made some unwrapping errors in all slices,
shear lines in the first, third, and fourth slices, and white
patches of outliers, whose values are very high, in the second
and fifth slices. All the truncations and outliers are marked
with yellow and green arrows, respectively, in Figure 7.

As above, the weighted 𝐿
0 measures and execute time

of all the methods for this multislice dataset are compared
in Figures 8(a) and 8(b), respectively. The SDM𝐿𝑃 method
returned the smallest weighted 𝐿

0 measures for all slices.
Additionally, it yielded these results in 19.62 ± 0.99 seconds,
slower than the PUMA and PHUNmethods.
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(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

Figure 5: A 256 × 256MR head dataset, (a) its wrapped phases, and (b) its residue distribution including 1929 residues. Unwrapped phase
images using the (c) SDM𝐿𝑃, (d) conventional minimum 𝐿

𝑝-norm, (e) PUMA, and (f) PHUNmethods. Discontinuities in the corresponding
unwrapped phase images got by the (g) SDM𝐿𝑃, (h) conventional minimum 𝐿

𝑝-norm, (i) PUMA, and (j) PHUNmethods.
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Figure 6: A comparison of the (a) weighted 𝐿0 measures and (b) execute time of the SDM𝐿𝑃, conventional minimum 𝐿
𝑝-norm, PUMA, and

PHUNmethods in unwrapping the preceding four datasets.
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Slice 1 Slice 2 Slice 3 Slice 4 Slice 5

Figure 7: The transverse sections of a 5-slice MR knee dataset. The magnitude and wrapped phase images are shown in the first and second
rows, respectively. Unwrapping results of the SDM𝐿𝑃, conventional minimum 𝐿

𝑝-norm, PUMA, and PHUNmethods are followed in a top-
down order. Undesirable shear lines are marked with yellow arrows. The patches of outliers are marked with green arrows.

4. Conclusions

In this work, we developed a sparse-representation-based
direct minimum 𝐿

𝑝-norm (SDM𝐿𝑃) algorithm for the 2D
phase unwrapping.

The user-defined weights are introduced in the objective
function to improve the discontinuity-preserving ability of
the SDM𝐿𝑃 algorithm. Furthermore, the sparse structures

are used to represent the matrices involved in the objective
function to accelerate the computation and decrease the
memory space. Finally, the SDM𝐿𝑃 algorithms computed
effectively and efficiently by employing direct solvers.

The proposed algorithm does produce excellent, reliable
results with a very small weighted 𝐿0 measure; it even allows
phase images with large discontinuities through the whole
phases to be unwrapped correctly. Moreover, benefiting from
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Figure 8: A comparison of the (a) weighted 𝐿
0 measures and

(b) execute time of the SDM𝐿𝑃, conventional minimum 𝐿
𝑝-norm,

PUMA, and PHUNmethods in unwrapping the multislice dataset.

using the sparse representation and well-developed direct
solvers, the SDM𝐿𝑃 method converges much faster than the
conventional minimum 𝐿

𝑝-norm method. However, it is not
fast enough. Further research can be devoted to reducing the
execution time.
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