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Psoriasis (PsO) is an autoimmune disease characterized by keratinocyte proliferation,

chronic inflammation and mast cell activation. Up to 42% of patients with PsO

may present psoriatic arthritis (PsA). PsO and PsA share common pathophysiological

mechanisms: keratinocytes and fibroblast-like synoviocytes are resistant to apoptosis:

this is one of the mechanism facilitating their hyperplasic growth, and at joint level, the

destruction of articular cartilage, and bone erosion and/or proliferation. Several clinical

studies regarding diseases characterized by impairment of cell death, either due to

apoptosis or necrosis, reported cytochrome c release from the mitochondria into the

extracellular space and finally into the circulation. The presence of elevated cytochrome

c levels in serum has been demonstrated in diseases as inflammatory arthritis, myocardial

infarction and stroke, and liver diseases. Cytochrome c is a signaling molecule essential

for apoptotic cell death released frommitochondria to the cytosol allowing the interaction

with protease, as the apoptosis protease activation factor, which lead to the activation

of factor-1 and procaspase 9. It has been demonstrated that this efflux from the

mitochondria is crucial to start the intracellular signaling responsible for apoptosis, then

to the activation of the inflammatory process. Another inflammatory marker, the tryptase,

a trypsin-like serine protease produced by mast cells, is released during inflammation,

leading to the activation of several immune cells through proteinase-activated receptor-2.

In this review, we aimed at discussing the role played by cytochrome c and tryptase in

PsO and PsA pathogenesis. To this purpose, we searched pathogenetic mechanisms

in PUBMED database and review on oxidative stress, cytochrome c and tryptase and

their potential role during inflammation in PsO and PsA. To this regard, the cytochrome

c release into the extracellular space and tryptase may have a role in skin and joint

inflammation.
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INTRODUCTION

Psoriasis (PsO) is an inflammatory skin disease characterized
by plaques of thickened and scaling skin due to keratinocyte
proliferation, chronic inflammation linked to the presence of
several innate and acquired immune cells, and mast cells
activation (1). Psoriatic arthritis (PsA) is a chronic inflammatory
arthritis that may be present in up to 42% of individuals affected
by PsO (2). PsA is clinically characterized by inflammation of
periarticular (e.g., enthesis) and articular structures. PsO and
PsA share common pathophysiological mechanisms: the marked
tortuosity of blood vessels and infiltration of plasma cell and
mononuclear cells are observed in both the psoriatic plaque
and PsA articular space (3). For both diseases, the pathogenesis
is multi-factorial with underlying autoimmune mechanism (4).
Genetic predisposition, as human leukocyte antigens (HLA)-
Cw0602 and the HLAB27 allele, and an altered immune response
can induce inflammation of skin and joints (5). Cytokines, as
Tumor Necrosis Factor-alpha (TNF-α), interleukin (IL)-1β, IL-6,
IL-17, and IL-18, are over-expressed in skin lesions, in peripheral
blood, synovial membrane, and synovial fluid of PsA patients
(6). Moreover, keratinocytes and fibroblast-like synoviocytes
(FLS) exhibit similar resistance to apoptosis, one of the key
mechanism that may facilitate psoriatic plaque growth and the
hyperplasic progression of FLS in the synovium, destruction of
articular cartilage and bone damage. PsA pathogenesis is only
partially understood and the interest in the pathophysiological
role of the synovium is recently growing (7). Pro-inflammatory
mediators, responsible for joint inflammation, may be secreted
at skin level and blocking this pathological communication

may represent a new fascinating therapeutic objective. The
primum movens seems to be the activation of the innate
immunity. Several markers have been studied, among them,
elevated S100A8 and S100A9 levels were observed in fluid
samples from inflamed tissues in PsA synovium and in skin

psoriasis in patients affected by both PsA and PsO (8).
To this regard, inflammatory mediators, at an early stage,
may predict articular involvement helping in preventing joint
damage. Recently, the involvement of oxidative stress in PsO
and PsA pathogenesis has been considered (9). Disruption of
redox signaling, caused by oxidative stress, brings molecular
damage which inevitably impacts on angiogenesis, inflammation,
and function/activation of dendritic cells, lymphocytes, and
keratinocytes (10). Cytochrome c, whose structure is shown
in Figure 1A, is floating into the peripheral mitochondrial
membrane and mediates the electron transfer (eT) throughout
the respiratory chain (11–14). Reactive oxygen species (ROS)
formation induces the release of cytochrome c into the cytosol
(15, 16), where it binds to the apoptosis protease activation
factor (APAf-1) forming with ATP or dATP, the apoptosome;
this complex activates procaspase 9, which triggers an enzymatic
cascade that brings to cell apoptosis (17–19). Several clinical
studies regarding diseases characterized by cell death, either due
to apoptosis or necrosis, reported cytochrome c release from
the mitochondria into the extracellular space and finally into
the circulation. Elevated cytochrome c levels in serum were
found in chronic and acute diseases, including inflammatory
arthritis, myocardial infarction and stroke, and liver diseases

(20–22). Its role as an inducer of skin and joint inflammation has
been proposed. In particular, a link between cytochrome c, skin
inflammation, and keratinocytes proliferation was demonstrated
during ROS production (23). ROS dysregulation and cytochrome
c release have been associated with PsO, and were reported
to be the cause of associated skin inflammation (24). During
inflammation, another relevant pathway involves tryptase, a
trypsin-like serine protease produced by mast cells and stored
in intracellular vesicles. It is a catalytically active tetramer
made of identical subunits, each having the catalytic triad
residues (25) (shown in Figures 1B,C) and represents the major
protein present in mast cells granules (26, 27). The tetrameric
structure and the presence of heparin are necessary in vivo
for the tryptase function (28). Tryptase activates, both in
vivo and in vitro, a number of cells involved during innate
and adaptive immune response, through proteinase-activated
receptor-2 (PAR-2), thus contributing to the perpetuation of
inflammation (29). The activation of PAR-2 brings about, in
some circumstances, apoptosis inhibition (30). Several new
interesting pathogenetic ways have been recently assumed in
Psoriatic disease pathogenesis (23, 25). This review aims at
discussing the role played by two new inflammatory mediators,
as cytochrome c and as tryptase, in regulating extrinsic and
intrinsic apoptotic pathways in PsO and PsA pathogenesis (as
described in Figures 2, 3). The role of oxidative stress, linked to
psoriatic disease pathogenesis, will be highlightened. Moreover,
the review will focus on the relationship of these two molecules
with oxidative stress and their potential role as inflammatory
markers in PsO and PsA.

POTENTIAL ROLE OF CYTOCHROME C
AND TRYPTASE IN PSORIASIS AND
PSORIATIC ARTHRITIS

Cytochrome c, Apoptosis and Chronic
Inflammation
Cytochrome c was found to be one of the key signaling molecules
during programmed cell death-apoptosis. As explained above,
its translocation into the cytoplasm leads to its interaction with
APAf-1 and, in presence of ATP/dATP, to the final activation
of procaspase 9. These stages are crucial for the completion
of the apoptosis (16). In normal conditions, the apoptosis
leads to cells death in dysfunctional cells owing to the strictly
regulated pathways which are vital to maintain the homeostasis.
A disequilibrium in the regulation of the apoptotic way may
lead to defective immune responses and, consequently, to
infections, tumor growth and autoimmune diseases. There are
two intracellular pathways leading to apoptosis: the extrinsic,
mediated by death-receptors, and the intrinsic or mitochondrial
pathway (32). ROS are known to cause mitochondrial damage
and dysfunction, which can cause the rise of cytochrome c
release into the cytoplasm, as part of the intrinsic pathway, and
the activation of the apoptotic pathway (33). In this context,
it has been demonstrated that an increase in the release of
cytochrome c from themitochondria into the cytosol, is regulated
by B-cells follicular lymphoma (Bcl)-2 family proteins (33).
Therefore, the regulatory effect of the Bcl-2 family is essential for
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FIGURE 1 | Three-dimensional structure of Cytochrome c and Tryptase (A) Horse heart cytochrome c structure characterized by X-ray crystallography (6). In the

inset, the fifth and sixth ligands (His 18 and Met 80, respectively) to the Fe-Heme are shown. (B) Human β-tryptase tetramer structure as determined by X-ray

crystallography (11). (C) Tryptase monomer structure: the catalytic triad residues (Ser 195, His 57, and Asp 102) are highlighted.

the control of apoptosis and can determine the cell’s fate (33).
Schultz and colleagues described how deregulation of apoptosis,
linked to the intrinsic pathway, may contribute to autoimmunity
(34). They observed that mainly Fas ligand (FasL) contributes
in the pathogenesis of autoimmune diseases. FasL and other
(TNF) ligands bind death receptors and induce: the release of
cytochrome c and the expression of both flavoprotein apoptosis-
inducing factor and the second mitochondria-derived activator
of caspases, known as DIABLO (inhibitor of anti-apoptotic
factors and activator of procaspase) (34). The consequence is
the activation of caspases with the induction of cell death
through DNA and protein cleavage. Cellular damage may release
potential autoantigens and may be the basis for autoimmunity
and inflammation.

During autoimmune diseases, the regulation of self-reactive
B cells, in order to inhibit autoantibody production, may
be critical. B cells’ tolerance consists in the inhibition of
completely or partially autoreactive B cells by using different
mechanisms. Cell death pathways are the most reliable system
to eliminate autoreactive B cells and to prevent autoimmunity
(35). The presence of autoreactive cells and mitochondrial
markers, as cytochrome c, may be relevant also in PsO
and PsA pathogenesis (22, 36). In PsO, a dysregulation of
cytochrome c has been demonstrated. Indeed, a higher serum and
mitochondrial levels were observed compared to healthy skin;
this contributes to epidermal hyperplasia (37). Concerning PsA,
the result is synovial inflammation and joint destruction (38).
PsA is microscopically characterized by lining layer hyperplasia,
infiltration of B and T lymphocytes, and activation of the
innate immune response that lead to vascular remodeling and
angiogenesis into the joint (39). The characteristic PsA synovitis

has inflammatory infiltration of macrophages, lymphocytes, and
plasma cells that cause FLS hyperplasia and chronically, joint
and bone damage (40). A cytochrome c dysregulation may also
result in an inadequate apoptosis. To this regard, both the FLS
and keratinocytes display a resistance to apoptosis leading to
synovial and epidermal hyperplasia which are the hallmark of
synovitis and psoriatic plaques genesis (41, 42). In this context,
impaired apoptosis may contribute to the perpetuation of the
inflammatory process (43). For this apoptotic resistant state,
Mitomycin C (MMC), which is a bacteric anti-tumor antibiotic,
has been investigated as potential treatment in inflammatory
arthritis. This agent has shown an inhibitory effect on fibroblast
proliferation by inducing apoptosis (39). Furthermore, Yan and
coll. have demonstrated that MMC can decrease cell liability
and provoke apoptosis in FLS obtained from patients affected by
inflammatory arthritis, as rheumatoid arthritis (RA). A possible
mechanism involved in the MMC inhibitory effect on FLS may
regard the intrinsic mitochondrial pathway. To this regard,MMC
stimulates the production of ROS and induces the release of
cytochrome c, and consequently it may activate the caspases’
cascade (33).

Tryptase and Chronic Inflammation
Among cells that participate to the inflammatory status, the
role of mast cells during inflammation was well demonstrated
in the literature (44). Mast cells activation into joints and skin
can cause the release of vasoactive mediators, such as histamine,
prostanoids, and cytokines which contribute to inflammation
(44, 45). Moreover, tryptase, released by mast cells, play an
important role in the pathogenesis of inflammatory arthritis
(46). Different pathogenetic mechanisms are linked to tryptase
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FIGURE 2 | Mechanisms involved in Psoriasis arthritis pathogenesis. In a summary view, environmental triggers induce the expression of autoantigens, such as LL37

by keratinocytes, ADAMTSL5 by melanocytes, and lipid antigen by mast cells. This leads to expansion and activation of autoreactive CD8 and CD4T cells. Although

CD4T cells remain within the dermis producing a large plethora of inflammatory cytokines, activated CD8T cells migrate into the epidermis. Subsequently, potentially

upon recognition of autoantigens in the epidermis CD8T cells release other inflammatory mediators, which in turn mediate skin cell homing and remain as resident

memory T cells in the epidermis. All this inflammatory process is maintained and amplified by oxidative stress sustained by production of NADPH-oxidase (NOX),

inducible nitric oxide synthase (iNOS) myeloperoxidase (MPO), malondialdehyde (MDA), nitric oxide (NO), and serum cytochrome c and decreased of antioxidant

status such as superoxide dismutase (SOD), catalase (CAT).

release: it is expressed in high concentration in synovial fluids
from patients affected by RA, PsA, and reactive arthritis (47).
The link between PsA and tryptase is supported also by the
presence of corticotropin releasing hormone receptor 1 in PsA
synovial biopsy. This hormone and its receptor have been

demonstrated in the joints of patients affected by PsA and not in
the control group. This hormone can enhance the intercellular
matrix degradation by inducing tryptase release by mast cells
(48). Intriguingly, a mast cell subset able to produce IL-17 was
detected in rheumatoid synovium (49) and in psoriasis plaques,
resulting to be the prevalent IL-17 producing cells (50, 51).
The relevant role of IL-17 in the pathogenesis of PsO and

PsA is pointed out also by the efficacy of biological drugs as
IL-17 inhibitors for both skin and joint involvement in these

diseases (52–55). To note, tryptase showed to have several

pathogenic roles in PsO and PsA patients: (1) it can induce the
production and release of several pro-inflammatory cytokines,
such as IL-1β, IL-8, TNFα, and IL-6 (56, 57); (2) it stimulates
leukocytes migration into the joints by PAR-2, ICAM-1, CXCR2,
and IL-8, directly causing and amplifying the inflammatory

process (58–60); (3) it activates, by cleavage, proteolytic enzymes,
such as prostromelysin, procollagenase, and MMP-3 which
contributes to matrix degradation (61, 62). Furthermore, it
has been demonstrated that mast cells proteinases, as tryptase,

secreted in excess under the influence of inflammatory stimuli
of specific cytokines, degrade the joint matrix in vitro. Tryptase
damages various matrix components by the activation of matrix
metalloproteinases (62). Mast cells can express several cytokines,

as TNF-α and IL-1β, and various profibrotic cytokines such as
TGF-α and IL-4, suggesting numerous functional roles for Mast
cells during chronic inflammation (63). In particular, synovial
mast cells in vitro release tryptase and activate latent collagenase
(64), participating to the development of the typical PsA synovial
hypertrophy (65).

EVIDENCE FOR AUTOIMMUNE PATHWAYS
AND OXIDATIVE STRESS IN PSORIASIS

The Autoimmune Side of Psoriasis
Pathogenesis
PsO is immune-mediated inflammatory cutaneous disease
characterized by keratinocyte proliferation and chronic
inflammation (58). Recently, evidence has supported that
PsO has an autoimmune pathogenesis and three different
autoantigens have been identified so far: cathelicidin LL37, a
domain thrombospondin type 1 motif-like 5 (ADAMTSL5)
present in metalloproteases, and lipid antigens generated by
phospholipase called PLA2G4D (66, 67). LL37 is a peptide
upregulated in psoriatic skin with antimicrobial properties, LL37
can bind self RNA and DNA in complexes which are able to
activate plasmacytoid and myeloid dendritic cells (68). This leads
to an expansion of LL37-specific T cells producing pathogenic
cytokines such as INF-γ, IL17, and IL-22. LL37 presentation to
CD8 and CD4T cells is mediated by HLA-Class I, in particular
(HLA)-Cw0602 and HLA-Class II molecules respectively (69).
ADAMTSL5 is an autoantigen presented by (HLA)-Cw0602 in
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FIGURE 3 | Mechanisms involved in Psoriatic arthritis pathogenesis. The figure summarizes the pathogenesis of Psoriatic arthritis (PsA). The enthesitis seems to be

the primum movens of the disease, even if the heterogeneity of systemic involvement and clinical manifestations is extremely wide (31). Genetic and environmental

factors predispose a healthy individual and contribute to the development of the disease. Mitochondrial dysfunction, angiogenesis and increased production of

reactive oxygen species (ROS) seem to be present since the early disease onset. The role of the innate immunity in the tolerance disruption and in the production of a

pro-inflammatory milieu is very early and essential in the pathogenesis of both PsA and Psoriasis. Adaptive immunity participates later by perpetuating and further

increasing the inflammation. Several soluble mediators, such as pro-inflammatory cytokines and proteases, can be found in the synovial fluid and sera of PsA patients.

PsO, the derived peptide can stimulate psoriatic T cells but not
T cells from healthy individuals, resulting in IL17 production
(68). Moreover, ADAMTSL5 and LL37 are increased in psoriatic
lesions and are co-expressed by many immune cells, dendritic
cells, neutrophils, macrophages, and T cells within skin. Both
ADAMTSL5 and LL37 can be decreased by treatment with
IL-17 or TNF-α inhibitors (70). Lastly, there is evidence for

non-peptide autoantigen in PsO. T cells from PsA patients can
recognize also lipid antigens generated inmast cells by PLA2G4D

which are presented by CD1a. PLA2G4D is expressed in psoriatic
skin lesions, but not in skin of healthy individuals (71). PsO
pathogenesis is multifactorial, resulting from a combination of
genetic, epigenetic, and environmental factors which lead to
activation of an abnormal immune response. Working models

for PsO suggest that several immune cells may present these
antigens to autoreactive T cells with following activation and
clonal expansion (60). This mechanism induces cytokines
production, immune cells activation, and cell recruitment which
in turn contributes to the amplification of inflammatory response
and keratinocytes proliferation in PsO.

The Role of Oxidative Stress in Psoriasis
Pathogenesis
In this complex pathogenesis, oxidative stress and free radical
production play a role in skin inflammation (23). It was
demonstrated that a reduction of antioxidant and augmented
oxidant activities in psoriasis exists (72, 73). Moreover, a
reciprocal amplification loop may exist between inflammation

and oxidative stress in PsO. It is known that ROS production
during oxidative stress activates cellular proinflammatory
signaling mostly the JAK–STAT, MAPK/AP-1, and NF-κB
pathways, leading to the production of cytokines, chemokines,
and growth factors which are involved in the pathogenesis
of psoriasis (74–77). Interestingly, activator protein-1 (AP-
1) activates peroxisome proliferator-activated receptor δ

(PPARδ) which is up-regulated in PsO, inducing proliferation
and preventing apoptosis of keratinocytes, via the activation
of heparin-binding EGF-like growth factor (HB-EGF) and
activation of Protein Kinase Ba/Akt1 pathway, respectively
(78, 79).

On the other hand, oxidative stress may originate by
endogenous stimuli such as Th1 and Th17 cytokines, which
are able to induce the production of NADPH-oxidase (NOX),
inducible nitric oxide synthase (iNOS) and myeloperoxidase
(MPO) and from environmental agents that may be also the
cause of inflammation (80). Moreover, it has been recently
demonstrated that MPO can be considered as a marker of
systemic inflammation in Psoriatic disease (81).

Gabr and colleagues demonstrated a positive correlation
between serum malondialdehyde, nitric oxide and serum
cytochrome c levels and disease severity (measured by PASI
score). On the contrary, a negative correlation with superoxide
dismutase (SOD), catalase, and total antioxidant status was
reported (36). Increased levels of mitochondria cytochrome c
were also observed in lesional psoriatic skin compared to non-
affected skin, and this increase is reversed by methotrexate
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(MTX) treatment (37). Indeed, during MTX therapy, an
increased cytosolic cytochrome c level and consequent cleaved
caspase-9 were also observed (37). Apoptotic dysregulation
has been reported in psoriatic keratinocytes, which display a
resistance to apoptosis, contributing to epidermal hyperplasia
(42). Accordingly, in a recent article, after UVB irradiation,
psoriatic keratinocytes showed a less cytosolic cytochrome c
level compared to keratinocytes from healthy skin (82). A
wide type of cells, such as T cells, dendritic cells, neutrophils,
keratinocytes, mast cells, NK cells and macrophages are involved
in PsO pathogenesis with different roles and specific hallmarks
(83). The activation of innate immune system is believed to
play a key role in the initial step of plaque formation, and,
in this context, mast cells contribute producing IL-22 and IL-
17 (52, 84). Furthermore, a high number of mast cells are
present in the affected skin as well as the associated release of
tryptase and histamine (85). Tryptase positive mast cells are
increased in psoriatic lesional skin compared to normal skin, and
tryptase mainly is localized in the dermis, at dermis-epidermal
junction and around blood vessels, as showed by Steinhoff
and collaborators through immunohistochemistry experiments
(45). Tryptase participates to PsO inflammation through specific
cytokines and neuropeptides production. Indeed, Tryptase acts
by PAR2 cleavage, which is highly expressed in mast cells
and in keratinocytes of PsO skin lesions (86–88). PAR2
exerts its inflammatory effects inducing the production of
proinflammatory cytokines such as TNFα, IL-1ß, IL-6, IL-8,
and granulocytes macrophage-colony stimulation factor (GM-
CSF) (57, 87, 89). In details, TNFα is a landmark inflammatory
mediator in PsO, being one of the first target of monoclonal
antibody therapy (90) and GM-CSF is a mediator for maturation
of Langerhans cells and stimulates keratinocytes proliferation
(91, 92). On the other hand IL-6, which is also highly expressed
in PsO, is able to stimulate keratinocytes proliferation (93) and
contributes to the differentiation of Th17 cells which play a key
role in PsO pathogenesis (94). Interestingly, PAR2 is also able to
induce skin inflammation also through neurogenic mechanism,
stimulating sensory C-fibers to produce some neuropeptides such
as calcitonin gene-related peptide and substance P (95).

ROLE OF AUTOIMMUNITY AND OXIDATIVE
STRESS IN PSORIATIC ARTHRITIS

The Autoimmune Side of Psoriatic Arthritis
Pathogenesis
The autoimmune side of PsA pathogenesis has been
demonstrated by the presence of autoreactive T cells in
synovium from PsA patients, which were activated by a
homologous protein antigen, expressed in the synovium (4).
Furthermore, the association with major histocompatibility
complex class I molecules, the loci HLA-Cw6 or HLA-B27
in particular, leads to the presentation by those molecules of
an autoantigen with the consequent production of antibodies
against autoantigens. Additionally, the good response to
immunosuppressive agents and cytokines blockers supports
the involvement of autoreactive cells participating at the

autoimmune process (96). Histologically, the PsA synovium
presented both clonal and non-clonal T cells (97), and the
link between skin and synovium T cells-clones (98) has been
demonstrated. This indicates that a common antigen might drive
the T cell response in both the target organs. Concerning the
joint-enthesal complex, a group of cross-reactive PsA-specific
antibodies, directed against peptides expressed in both the
psoriatic skin and the inflamed enthesis, has been demonstrated
by Dolcino and collaborators (99). Moreover, recent evidence
suggests that PsA synovial biology involves several type of
immune cells. The same histological heterogeneity observed in
RA synovium has also been detected in psoriatic synovial tissue
(100). In particular, lymphocytes infiltrates, in PsA synovium,
tend to aggregate in lymphoid agglomerates, supporting
the presence of an ectopic lymphoid neogenesis (LN), and
autoantibody production (100). Conigliaro et al. previously
reported an abnormal distribution of peripheral blood B
cells in both RA and PsA patients (101). Peripheral B cells
were reduced in PsA patients and their level were restored
after anti-TNF treatment suggesting a role of B cells in PsA
pathogenesis (101). During inflammation, several protein
modifications may occur supporting the strong link between
autoimmunity and inflammation. Among them, the effects
of carbamylation on proteins and its effect in inflammatory
arthritis has been recently investigated. Carbamylation is
a post transcriptional modification on lysine, the effect on
protein function and biochemical properties includes a change
of the ability in polymerization, sensitivity to proteinases,
and binding avidity to antibodies (102). To date, it is well
known that carbamylation happens during inflammation,
after the release of MPO by neutrophils, generating a pro-
inflammatory loop. Carbamylated proteins are recognized by
circulating antibodies, the anti-carbamylated protein (anti-
CarP) antibodies that have been identified in patients with
RA, also before the clinical onset of the disease (38). The
presence of anti-CarP antibodies in sera from PsA patients
with active disease, in the absence of rheumatoid factor and/or
other known autoantibodies specificities, was demonstrated
(96, 102). Interestingly, the circulating anti-CarP antibodies
levels showed to be a good diagnostic test for PsA patients
in comparison to healthy subject. A further support of an
autoimmune origin is the discovery of a peptide antigen, called
the PsA antigen, recognized by IgG derived from PsA patients’
sera. This peptide shows homologies with peptides expressed
both in skin and enthesis, as a further demonstration that an
immunologic disequilibrium has a role in the pathogenesis of
PsA (99).

The Role of Oxidative Stress in Psoriatic
Arthritis Pathogenesis
The activation of innate immunity is believed to have a role in
PsA pathogenesis (96). In particular, the monocyte/macrophages
population has a relevant role during inflammation at the
enthesal level: it participates to the tolerance disruption in
PsA patients and activates the release of mediators linked to
the oxidative stress (103, 104). The oxidative damage in PsA
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is mainly due to a dramatic production of ROS that saturate
the compensatory antioxidant enzymes and molecules, such as
glutathione and SOD (105). The substantial producers of ROS are
present in themitochondrial membrane, NADPH oxidase and eT
chain. The consequence of the unbalanced production of ROS is
the leakage of cytochrome c from mitochondria, which activates
the caspases cascade leading to apoptotic cell death (105). This
reaction occurs also in cells populating inflamed joints, like
synoviocytes, chondrocytes, lymphocytes and monocytes. To
note, oxidative stress can lead to cyclooxygenase-2 andMMP9/13
expression and modulates apoptotic pathways and NF-κB. All
of them are relevant mediators during inflammatory arthritis
pathogenesis (106–109). Recent studies have highlighted the
possible role of oxidative stress in PsA. Altered levels of oxidative
metabolites, for example carbonyl groups, F2-isoprostanes,
hydroperoxides, and sulfhydryl groups, were detected in PsA
patients when compared to healthy donors (110–112). A similar
study, showed a higher serum peroxide concentration and a
lower antioxidant capacity in sera from patients affected by RA,
PsA, and PsO in comparison with healthy individuals (113).
The connection between circulating ROS and inflammation was
investigated in RA, PsA, and ankylosing spondylitis patients in
whom ROS in sera were higher when compared to controls
(113, 114). Interestingly, after anti-TNFα treatment, a reduced
value of circulating ROS was detected (114). Furthermore,
the circulating peripheral blood mononuclear cells in patients
with inflammatory arthritis have high levels of peroxidated
lipid and altered polarization of the mitochondria membrane;
these alterations correlate with patients disease activity (115).
Furthermore, oxidative stress takes part also in the pathogenesis
of comorbidities that may affect PsA patients. Patients with
PsA have an accelerated atherosclerosis, and so a higher
cardiovascular risk compared to healthy subjects (116). In this
context, oxidative stress plays a relevant role in the pathogenesis
of atherosclerosis: it induces the oxidative modification of LDL.
The oxidized LDL takes part in many phases of atherogenesis
and are strictly related to the inflammatory process (117).
Moreover, oxidative modifications of LDL have been linked
to the presence of TNFα and HDL may be altered during
inflammation. Modified HDL lose their capacity to remove
cholesterol from atherosclerotic lesions and have a reduced
antioxidant activity (118). During inflammation, the release
of TNFα is one of the main contributor of increased ROS
production, and this is strongly related to disease activity
(119). Then, the presence of ROS supports oxidative stress,
further stimulating in this way cell damage and atherogenesis
(113). Recent findings demonstrated that ROS were found not
only into the blood stream and in circulating cells, but also
into the joint. In synovial fluid of PsA patients, a higher
ROS production, angiogenesis, and, DNA damage was found
when compared to an osteoarthritis group (120–122); this is
a further demonstration that oxidative stress has a role in the
pathogenesis. Interestingly, a role of hypoxia was proven during
inflammatory arthritis pathogenesis. A negative correlation
between pO2 in synovial fluid of RA and PsA patients and

level of macroscopic synovitis, disease activity, sublining layer
thickness, and cells infiltration were demonstrated. In addition,
hypoxic intra-articular environment and oxidative stress induce
the production of pro-inflammatory cytokines (106). Ng and
coll. confirmed this link by demonstrating a high expression
of NOX in RA and PsA synovial tissue, which correlates with
intra-articular pO2 and angiogenesis. A reduction of NOX
expression was observed after 3 months of anti-TNFα treatment,
in association with raised pO2 and a lower disease activity (123).
The oxidative stress, measured as rate of mitochondrial DNA
(mtDNA) mutations, is increased in RA and PsA synoviocytes;
and it is correlated to high reactive ROS, reduced expression
of cytochrome c oxidase, and low level of intra-articular pO2
(8). As a further evidence of the link between inflammation
and oxidative stress, Harty et al demonstrated that the levels
of mitochondrial DNA (mtDNA) point mutations in synovial
tissue from patients with inflammatory arthritis was related to
in vivo hypoxia and oxidative stress levels (124). The authors
described a correlation between mtDNA mutation rate, the
expression of TNFα and macroscopic arthroscopic signs of
inflammation in RA and PsA patients. Patients were then
treated with anti-TNFα, and only in anti-TNFα-responders
the mtDNA mutations frequency was reduced. Moreover, the
addition of recombinant TNFα in RA and PsA synoviocytes
culture induces mtDNA mutations (124). These data suggest
that antioxidant agents may be potentially useful as an add-
on treatment to conventional therapies in the management
of inflammatory arthritis and in autoimmune diseases
(125, 126).

CONCLUSIONS

All studies converge to establish that in autoimmune diseases as
PsO and PsA, oxidative stress, cell apoptosis and inflammation
may lead to cytochrome c released from the mitochondria
into the extracellular space. The future perspective given by
data from the literature is that serum cytochrome c can be
measured and used for diagnosing and assessing cell death
during systemic diseases. The role of cytochrome c has been
associated with autoimmune diseases and its release from
mitochondria into the cytoplasm may be considered as a
marker of inflammation and autoimmunity. Besides, several
evidence suggests that mast cells activation is implicated in PsO
and PsA pathogenesis. Those cells and the release of tryptase
support the relevant role of innate immunity in PsO and PsA
development. In this context, both cytochrome c and tryptase
are detected during the inflammatory process. They may act as
potential triggers in the perpetuation of the pro-inflammatory
loop. In this context, mediators released from mast cells or
mitochondrial activity may be used as marker of disease or
as target in the treatment of autoimmune diseases. However,
further studies are needed to better understand the potential
contribution of cytochrome c and tryptase in autoimmune
disease pathogenesis during oxidative stress and their potential
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correlation with disease activity and as markers of treatment
efficacy.
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