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Abstract: Despite the identification of an expanded CAG repeat on exon 1 of the huntingtin gene
located on chromosome 1 as the genetic defect causing Huntington’s disease almost 30 years ago,
currently approved therapies provide only limited symptomatic relief and do not influence the age
of onset or disease progression rate. Research has identified various intricate pathogenic cascades
which lead to neuronal degeneration, but therapies interfering with these mechanisms have been
marked by many failures and remain to be validated. Exciting new opportunities are opened by the
emerging techniques which target the mutant protein DNA and RNA, allowing for “gene editing”.
Although some issues relating to “off-target” effects or immune-mediated side effects need to be
solved, these strategies, combined with stem cell therapies and more traditional approaches targeting
specific pathogenic cascades, such as excitotoxicity and bioavailability of neurotrophic factors, could
lead to significant improvement of the outcomes of treated Huntington’s disease patients.

Keywords: Huntington’s disease; mutant huntingtin; antisense oligonucleotides; RNA interference;
CRISPR/Cas9; zinc finger proteins; stem cell therapies

1. Introduction

A detailed description of the clinical manifestations of Huntington’s disease (HD)
was given by George Huntington in a paper published in 1872, who also noticed the
mode of transmission, later known as autosomal dominant [1]. Following the description
of the disease, several cases were identified, with a clustering of HD cases identified
by Dr. Amerigo Negrette around Lake Maracaibo, in Venezuela [1], where a group of
researchers identified the defective gene to be located in the first exon of the huntingtin
gene on chromosome 4, which contained an expanded unstable CAG (cytosine-adenine-
guanine) repeat [2]. The normal allele has less than 27 CAG repeats, while individuals
with 40 or more repeats will develop the disease with full penetrance. Individuals carrying
between 27 and 35 CAG repeats usually do not develop the disease but may transmit it to
their offspring.

The gene product, huntingtin (Htt), is a protein composed of 3144 amino acids with a
polyglutamine (polyQ) domain at its NH2 terminus starting at amino acid position 18 and
containing 11–34 glutamine residues [1], expressed at high levels in neurons, but also in
astrocytes, oligodendrocytes, microglia [3], as well as in non-neural tissues [4].

In terms of pathology, HD is characterized by a striking atrophy of the caudate nucleus
and putamen, with astrogliosis and cell loss in the striatum affecting especially the medium
spiny neurons (MSNs), as well as neuronal loss in the cortical layers III, IV and VI in late
stages [5].

The onset of the disease usually occurs in middle age, peaking between 35 and
50 years of age, when patients develop personality changes, involuntary choreic move-
ments, variable degrees of rigidity, incoordination leading to progressive motor dysfunction,
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and a series of psychiatric symptoms, such as depression, anxiety, psychosis, obsessive-
compulsive disorder, cognitive impairment progressing to dementia, and weight loss,
eventually developing life-threatening complications from frequent falls, poor nutrition,
infections, or swallowing difficulties leading to aspiration pneumonia [1]. Due to the higher
risk of expansion of the unstable sequence of CAG repeats during mitosis in spermatogene-
sis compared to oogenesis, paternal transmission may result in earlier onset of symptoms
(before the age of 20) and a more severe disease variant, associating parkinsonian features,
dystonia, and seizures with a more rapid progression (juvenile HD) [1,5]. However, al-
though a larger CAG repeat size correlates with earlier onset, the size of the CAG repeats
explains only about 50% of the variance in age of onset. Several other factors contribute,
such as a number of polymorphisms in genes encoding for glutamic acid, glutamate recep-
tors, or other proteins and enzymes involved in the pathogenesis of HD, or the CAG repeat
size in the normal allele [1].

2. Pathophysiology of Huntington’s Disease

Following the identification of the genetic defect, many groups of researchers, using
chemical models [6], various genetic animal models [7], or complex cell lines mimicking
the intercellular signaling and circuitry of the human brain [8], focused on unraveling
the complex mechanisms through which the expression of an abnormal protein (mutant
huntingtin, mHtt) leads to the massive cellular degeneration and the loss of synaptic activity
in HD. Several vicious pathways have been identified [5], but the detailed description of
these pathways is beyond the scope of this review, which is why they will be only briefly
summarized below.

2.1. Excitotoxicity

The striatum receives massive glutamatergic input mainly from the cortex and the
thalamus [9], with glutamate acting on N-methyl-D-aspartate receptors (NMDARs), α-
amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors and kainate receptors. NM-
DARs are tetrameric complexes formed by two GluN1 (formerly known as NR1) and two
GluN2 (or NR2) and/or GluN3 (or NR3) subunits [8]. Mutant Htt alters the transcription
of the GLuN2B gene, leading to an altered structure and increased glutamate sensitivity
of this receptor [10]. In addition, impaired interaction of mHtt with the scaffolding pro-
tein postsynaptic density 95 (PSD95) disturbs the distribution of the NMDARs, with an
increased number of extrasynaptic receptors [10,11]. The binding of glutamate to extrasy-
naptic NMDARs is followed by cellular calcium overload, calcium which is buffered by
mitochondria at the expense of increased oxidative stress, and dephosphorylation and
inactivation of CREB (cAMP-responsive element-binding protein) with the promotion of
pro-death gene expression, as opposed to stimulation of synaptic NMDARs, which leads to the
expression of anti-apoptotic and pro-survival proteins via phosphorylation of CREB [12–14]. In
addition, increased cytosolic calcium activates calpain, which cleaves the GLuN2B subunit
of NMDARs, modulating its surface distribution and increasing the expression of extrasy-
naptic NMDARs [15] in a vicious cascade. Another effect of the increased cytosolic calcium
concentration is calcineurin activation, which induces the dephosphorylation of huntingtin
at Ser421, promotes the toxic role of mutant huntingtin, and activates caspase 3 through the
intrinsic pathway, leading to neuronal apoptosis [16].

2.2. Impairments of the Proteostasis

Proteins are continuously synthesized as linear amino acid chains, which fold into
three-dimensional structures assisted by chaperones. Misfolded proteins are either refolded
into their correct structure or targeted for degradation via the ubiquitin-proteasome system
(UPS) [17,18]. Mutant Htt aggregates sequester chaperones, decreasing their availability
and enhancing abnormal protein folding [19]. A unique α-amine E2 enzyme, UBE3A,
whose activity decreases with age, specifically targets Htt fragments for ubiquitylation and
degradation and could explain the late age of onset of this inherited disease [8]. In addition,
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the eukaryotic proteasome cannot digest large stretches with 9–19 polyQ residues [20], lead-
ing to the overwhelming of the UPS system by aggregation-prone misfolded proteins [21].

Another way of disposing of accumulated misfolded proteins is autophagy, a process
during which a portion of the cytosol containing damaged proteins or organelles are
degraded by lysosomes [22], and whose importance increases with age, as the proteasomal
system’s efficiency starts to fail [23]. An important role in the regulation of autophagy
belongs to the striatal-selective G-protein Rhes, which binds to mHtt and stimulates its
sumoylation, thereby augmenting mHtt toxicity [24]. Normally, Rhes prevents beclin-1 from
its inhibitory binding to Bcl-2, thereby increasing mTOR (mammalian target of rapamycin)-
independent autophagy. Mutant Htt aggregates sequester Rhes, thereby interfering with
its action. Although mHtt aggregates also sequester mTOR, which normally inhibits
autophagy, this compensatory mechanism is not sufficient to enable the neurons to cope
with mHtt toxicity [24]. In addition, particular conformations of mHtt are resistant to
autophagy [25].

2.3. Mitochondrial Dysfunction

To meet their high energy demands, neurons rely mainly on mitochondrial oxidative
phosphorylation, which implies that the shape, size, and number of mitochondria in the
cells must be regulated through mitochondrial fission and fusion, two opposite processes
regulated by specific proteins: dynamin-related/-like protein 1 (Drp1) and dynamin2
(Dnm2) [26] for fission, and mitofusins 1 and 2 (Mfn1 and Mfn2) as well as optic atrophy
1 (OPA1) for mitochondrial fusion [27]. Mutant Htt, through interaction with Mfn2 and
a calcineurin-related increase in mitochondrial translocation of Drp1, significantly alters
mitochondrial morphology and dynamics [28].

Furthermore, direct interaction of mHtt aggregates with mitochondrial proteins leads
to a decrease in the activity of the electron chain complexes, especially of complexes II,
III, and IV, [5,29], and a reduction in the mitochondrial membrane potential, with the
opening of the mitochondrial permeability transition pore and release of cytochrome
c and apoptosis-inducing factor (AIF), which activate caspase-dependent and caspase-
independent pathways of apoptosis [12].

Given the particular morphology of the neuron, mitochondria must be trafficked along
neuronal outgrowths to meet the local energy demands, a process regulated by dynactin
together with kinesin for anterograde transport and dynein for retrograde transport [18],
anchored to the outer surface of mitochondria by Miro [30]. HAP1 (huntingtin-associated
protein 1) interacts with both kinesin and dynein in regulating cargo transport on micro-
tubules [31] and recruits glyceraldehyde-3-phosphate dehydrogenase (GAPDH) to provide
the necessary energy for transport by producing ATP. The sequestration of GAPDH and
HAP1 into mHtt aggregates significantly impairs mitochondrial trafficking [5].

Mitochondria also have a crucial role in maintaining the calcium homeostasis of
the cell through interacting with the endoplasmic reticulum, which expresses inositol
1,4,5-triphosphate receptors gated by inositol 1,4,5-triphosphate (IP3) and cytosolic cal-
cium. Mutant Htt binds to the carboxy-terminus of the IP3 receptor and increases IP3
receptor responsiveness, allowing Ca2+ release at lower IP3 concentrations [32]. Calcium
released from the endoplasmic reticulum elevates the store-operated Ca2+ channel (SOC)
response [33] and leads to dendritic spine loss [32], in addition to activating a series of
enzymes, such as calpain and calcineurin (discussed above), which can ignite other vicious
pathogenic cascades.

2.4. Oxidative Stress

Oxidative stress, defined as an imbalance between the production of reactive oxidative
species (ROS) and the ability of a biological system to clear these molecules [34], has been
increasingly implicated in the pathogenesis of a range of diseases, neurodegenerative ones
included [14,22].
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The main source of ROS are mitochondria, which even under normal circumstances
allow about 2% of electrons to “leak” from the electron transport chain, serving to produce
ROS. In the case of dysfunctional mitochondria, as shown above, the amount of ROS
produced increases dramatically and further impairs mitochondrial function, leading to
calcium overload and opening of the mitochondrial permeability transition pore, which
triggers apoptosis [35].

ROS also damage proteins, lipids [36], and DNA, repaired mainly through base
excision repair (BER), in which OGG1 (8-oxoguanine DNA glycosylase-1) is responsible
for the excision of 8-oxoguanine. In a transgenic mouse model of HD, an age-dependent
somatic CAG expansion has been demonstrated in the process of removing oxidized DNA
bases, including in post-mitotic neurons, involving the activity of OGG1 [37]. Although this
process is less important in the presence of less than 27 CAG repeats in exon 1 of the Htt
gene, it may contribute to escalating the toxicity of mHtt with age if an increased number
of CAG repeats are present from birth [37].

Furthermore, ROS can stimulate receptors on immune cells and elicit the secretion of
various cytokines which regulate macrophage polarization towards the pro-inflammatory
M1 phenotype, igniting neuroinflammation [38], the role of which in HD [39], amyotrophic
lateral sclerosis [40], or even stroke [41] is increasingly emphasized.

2.5. Transcriptional Dysregulation

Research has shown that mHtt interacts with several transcription factors and coacti-
vator factors, leading to impaired transcription or altered function of important proteins.
Mutant Htt interacts with the CBP (CREB binding protein)/p300 dimer and inhibits its
acetylase activity, which is essential for Nrf2 (nuclear factor-erythroid 2-related factor-2)
cellular localization and stability [42], thereby interfering with the Nrf2-ARE (antioxidant
response element) pathway which regulates the transcription of a variety of antioxidant
proteins and enzymes [36]. Mutant Htt also inhibits the phosphorylation of CREB [43]
and downregulates the transcription of peroxisome proliferator-activated receptor gamma
coactivator-1α (PGC-1α) through interference with the CREB/TAF4 transcriptional path-
way in striatal neurons [44]. For the repressor element 1(RE1)—silencing transcription
factor (REST), mHtt promotes its nuclear translocation and enables its repressor effect on
target genes, such as the brain-derived neurotrophic factor (BDNF) gene [45]. Furthermore,
by binding to p53 and increasing its transcriptional activity, mHtt upregulates pro-apoptotic
factors, such as Bcl2-associated X protein (BAX) and p53-upregulated modulator of apopto-
sis (PUMA) [46].

2.6. Impaired BDNF Synthesis and Transport

Striatal neurons express low amounts of BDNF mRNA, but striatal medium spiny
neurons (MSNs) receive large amounts of BDNF, necessary for trophic support, from
cortical neurons along the cortico-striatal tract [47]. The interaction of mHtt with REST
leads to accumulation of the REST/NRSF (neuron-restrictive silencer factor) in the nucleus
of cortical neurons and impairment of BDNF transcription [48].

Furthermore, the transport of vesicles containing BDNF to striatal MSNs is impaired
due to the sequestration of the energy-supplying glyceraldehyde-3-phosphate dehydroge-
nase (GAPDH) and other adaptor proteins, such as huntingtin-associated protein 1 (HAP1)
or dynein, into the mHtt aggregates [49,50]. In addition, the activation of axonal c-Jun
amino-terminal kinase3 via stress-signaling kinase results in kinesin-1 phosphorylation
and detachment of kinesin-1 and cargo from microtubules [49].

2.7. Dysfunctions of Glial Cells

Intracellular mHtt aggregates were identified in astrocytes as well [3], where they
might downregulate the expression of Kir4.1 (inwardly rectifying K+) channels, leading to
decreased membrane potential and conductance [51]. These changes alter the sensitivity
of astrocytes to neuromediators and pH [52]. In addition, the observed reduction of
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EAAT2 both at the mRNA and protein level impairs the ability of astrocytes to clear excess
glutamate [53], increasing excitotoxicity, although the involvement of mHtt in producing
these impairments has not been clearly demonstrated.

In oligodendrocytes, the binding of mHtt to the N-terminal myelin regulatory factor
(nMYRF) and mHtt-induced altered PGC-1α expression leads to myelination deficits [54].
Figure 1 summarizes the multiple impairments contributing to the pathogenesis of Hunt-
ington’s disease.

Figure 1. Pathophysiology of Huntington’s disease. The expression of abnormal, mutant huntingtin
(mHtt) makes the protein prone to misfolding and aggregation, leading to impaired proteostasis.
Autophagy is also defective in HD, caused by impaired recognition of cargo and vesicular trafficking.
Mutant Htt interacts with a series of transcription factors, causing impaired transcription of a series
of essential proteins, such as brain-derived neurotrophic factor, or proteins acting as pro- or anti-
apoptotic factors. The mitochondrial dysfunction caused by mHtt, together with the altered calcium
homeostasis, leads to increased oxidative stress, which further impairs mitochondrial function.
Interaction of mHtt with motor proteins causes altered vesicular (yellow circles) and mitochondrial
trafficking along the microtubules to distant sites of the neuron with deficient neuromediator release,
especially of inhibitory neuromediators (light blue circles). In addition, deficient astrocytic function
caused by the decreased function of inwardly rectifying K+ channels (Kir4.1) and diminished clearance
of excess glutamate through reduction of excitatory amino acid transporter 2 (EAAT), together with
altered function and distribution of N-methyl-D-aspartate receptors (NMDARs, blue arrow heads),
creates the premises for excitotoxicity.

2.8. Neuroinflammation in HD

By promoting the expression of genes encoding for pro-inflammatory cytokines,
mHtt exaggerates the response of microglia to activating stimuli which are recognized via
nucleotide-binding and oligomerization domain NOD-like receptors (NLRs) and toll-like
receptors (TLRs) [41,55], triggering downstream pro-inflammatory cytokine expression.
In addition, degenerating neurons, by releasing danger-associated molecular patterns
(DAMPs), may further increase the inflammatory response [56]. In a vicious cascade,
activated microglia produce cytokines and ROS, which activate astrocytic intracellular
signaling pathways, such as the NF-κB, mitogen-activated protein kinase (MAPK), or the
Janus kinase/signal transducer and activator of transcription (JAK/STAT), and lead to re-
active astrocytes which further release cytokines and chemokines [57]. Table 1 summarizes
the pathogenic cascades described above.
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Table 1. Pathogenic cascades involved in Huntington’s disease.

Pathogenic
Mechanism Action of mHtt Resulting Abnormalities References

Excitotoxicity

• Altered transcription of the GluN2B
subunit of NMDARs

• Impaired interaction with PSD95
• Increased cytosolic Ca2+ concentration

• Abnormal sensitivity and distribution
of NMDARs, favoring
extrasynaptic NMDARs

• Activation of calpains and calcineurin,
leading to apoptosis

[10,11]
[15,16]

Impaired
proteostasis

• Sequestration of chaperones in
mHtt aggregates

• Sequestration of Rhes into
mHtt aggregates

• Enhanced abnormal protein folding,
overwhelming of the UPS

• Decreased autophagy
[17,18]
[24]

Mitochondrial
dysfunction

• Direct interaction with Mfn2
• Increased mitochondrial

Drp1 translocation
• Reduced complex II, III, and IV activity
• Direct interaction with

mitochondrial proteins
• Sequestration of GAPDH and HAP1

into mHtt aggregates
• Binding to the IP3R on the ER

• Impaired mitochondrial fusion
• Increased mitochondrial fission
• Altered cellular energy supply
• Mitochondrial depolarization, opening

of the MPTP, release of
pro-apoptotic factors

• Impaired mitochondrial trafficking
• Ca2+ release from ER stores, increases

in cytosolic Ca2+ concentration, loss of
dendritic spines

[28]
[28]
[29]
[12]
[5]
[32]

Oxidative stress

• mHtt-induced mitochondrial
dysfunction increases ROS production,
leading to oxidative damage to proteins,
lipids, and DNA

• Mitochondrial calcium overload,
opening of the MPT

• BER, OGG1 activity triggering further
expansion of the CAG repeats in the
HTT gene

[35]
[37]

Transcriptional
dysregulation

• Impaired transcription of CREB,
PGC-1α

• Nuclear translocation of REST
• Increased transcriptional activity of p53

• Impaired synthesis of
endogenous antioxidants

• Repression of BDNF gene transcription
• Upregulation of pro-apoptotic factors,

such as BAX, PUMA

[36]
[44,45]
[46]

Reduced BDNF

• Nuclear translocation of REST,
accumulation of REST/NRSF in nuclei

• Sequestration of GAPDH, HAP1, and
dynein into mHtt aggregates

• Impaired BDNF synthesis
• Impaired BDNF transport from cortical

neurons to the striatum
[44,45,48]
[49]

Dysfunction of
glial cells

• Downregulates the expression of
astrocytic Kir4.1 channel

• Binds to nMYRF in oligodendrocytes

• Alteration of astrocytic membrane
potential and sensitivity
to neuromediators

• Myelination deficits

[52]
[54]

Neuroinflammation
• Promotes the expression of

pro-inflammatory cytokines

• Microglial M1 polarization
• Activation of the JAK/STAT and

MAPK pathways
[41]
[57]

Many vicious cascades triggered by the expression of mHtt and contributing to
the pathogenesis of Huntington’s disease have been described, including the following:
NMDARs—N-methyl-D-aspartate receptors; PSD95—postsynaptic density 95; UPS—ubiquitin-
proteasome system; Mfn2—mitofusin 2; Drp1—dynamin-related protein 1; MPTP—
mitochondrial permeability transition pore; GAPDH—glyceraldehyde-3-phosphate dehy-
drogenase; HAP1—huntingtin-associated protein 1; IP3R—inositol 1,4,5-triphosphate recep-
tor; ER—endoplasmic reticulum; ROS—reactive oxygen species; BER—base excision repair;
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OGG1—8-oxoguanine DNA glycosylase-1; CREB—cAMP-responsive element-binding pro-
tein; PGC-1α—peroxisome proliferator-activated receptor gamma coactivator-1α; REST—
repressor element 1(RE1)—silencing transcription factor; NRSF—neuron-restrictive silencer
factor; BDNF—brain-derived neurotrophic factor; Kir4.1 channels—inwardly rectifying
K+ channels; nMYRF—N-terminal myelin regulatory factor; JAK/STAT pathway—Janus
kinase/signal transducer and activator of transcription pathway; and MAPK—mitogen-
activated protein kinase.

3. Therapeutic Strategies in Huntington’s Disease

To date, drugs currently used in the treatment of HD address the symptoms of the
disease and aim to control the motor and behavioral abnormalities, but only have limited
benefits and do not address disease progression [58]. The search for more efficient therapies
has been marked by promising results in preclinical research and many clinical failures.
The novel gene-silencing approaches would be the most logical strategies to be applied to
HD carriers, thereby preventing the expression of the mutant protein and preventing all
the downstream pathogenic cascades, but they are still in their infancy. Until the precise
beneficial and unwanted effects are clarified, together with the proper delivery methods, it
is likely that research targeting the described pathogenic cascades will continue. However,
it appears that drugs directed against single mechanisms did not meet expectations, and a
cocktail of drugs targeting multiple mechanisms would be more rewarding [36].

3.1. Therapeutic Strategies Targeting Pathogenic Cascades

Below we briefly summarize in Table 2 the preclinical and clinical results obtained
with molecules targeting some of the above-mentioned pathogenic cascades, although it
is sometimes difficult to systematize them into distinct classes, many of these molecules
having multiple targets. Further, we will briefly discuss some more promising approaches,
focusing mainly on the novel gene-silencing approaches.

Table 2. Overview of preclinical research and clinical trials with molecules targeting specific
pathogenic cascades involved in Huntington’s disease.

Targeted
Mechanism Molecule Effect Trials Results References

mHtt
aggregation

Epigallocatechin 3
gallate

Suppresses Htt
aggregation

Clinical trial
(NCT01357681, ETON trial) Not published [59]

Resveratrol

Activates AMPK,
SIRT1, increasing
PGC-1α and Nrf2
mRNA expression

Mouse models
Clinical trial

(NCT02336633, REVHD)
Not posted [60,61]

[62]

Rapamycin

Inhibits mTOR and
activates autophagy,

promoting mHtt
aggregate clearance

Drosophila and mouse HD
models, toxicity precludes

human use

Decreased accumulation of
mHtt aggregates, improved

motor performance
[63]

mHtt cleavage

Minocycline Inhibits caspase 1
and caspase 3

R6/2 mice
Clinical trial

(NCT00029874)

Improved phenotype
Negative results

[64]
[65]

Nilotinib

Inhibits a tyrosine
kinase involved in

apoptosis, autophagy
modulator

Clinical trial (NCT03764215,
Tasigna-HD) No published results [62,66]

Excitotoxicity Riluzole

Inhibits glutamate
neurotransmission,
enhances EAAT2

activity

Transgenic mice, primate
HD model

HD patients
(NCT00277602)

Improved abnormal
movements, reduced striatal
atrophy, increasing survival
Transient improvement of

chorea

[67,68]
[69,70]
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Table 2. Cont.

Targeted
Mechanism Molecule Effect Trials Results References

Memantine
Antagonizes
extrasynaptic

NMDARs

Chemical animal HD
models

Transgenic mouse models
Memantine + risperidone in

single HD patient

Reduced striatal neuronal loss
Worsened outcome

Slowed down progression of
motor symptoms and

cognitive decline

[71]
[72,73]

Lamotrigine Glutamate antagonist Chemical mouse models
Clinical trial

Restored antioxidative
defense mechanisms,
improved behavior

Null results

[1]
[74]

Tetrabenazine,
Deutetrabenazine,

Valbenazine

Inhibits vesicular
monoamine

transporter type 2
(VMAT2), decreases

dopamine in
the striatum

HD patients (NCT01451463;
NCT00219804)
(NCT01795859)

HD patients (NCT04102579,
KINECT-HD),
NCT04400331

Diminished chorea
No published results

[75,76]
[62,77,78]

Dextromethorphan NMDAR antagonist
Clinical trial

(NCT03854019), in
combination with quinidine

No results released [62]

Mitochondrial
dysfunction and
oxidative stress

Creatine
Stimulates

mitochondrial
respiration

R6/2 mouse models
HD patients (NCT00026988)

NCT01412151, CREST-X
NCT00712426, CREST-E

Neuroprotective, slowed
down the development of

neuropathology
Reduced markers of oxidative

DNA damage
No clinical benefit
No clinical benefit

[79]
[80]

[62,68]
[81,82]

Coenzyme Q10
Interacts with ROS,

improves ATP
production

HD patients, NCT00608881,
2CARE No clinical benefit [83]

Eicosapentaenoic
acid (EPA)

Binds to
mitochondrial PPAR,

inhibits caspases,
downregulates the

JNK pathway

HD patients, NCT00146211,
TREND-HD No clinical benefit [84–86]

Metformin Activates AMPK

In vitro and fly models
R6/2 mice

HD patients
(NCT048266920, Test-ing

METformin)

Neuroprotective effect
Increased lifespan

Ongoing, assessing its effect
on cognitive decline

[87]
[88]

[62,89]

Fenofibrate

Activates PGC-1α,
promotes

mitochondrial
biogenesis

HD patients
(NCT03515213) ongoing [62]

Triheptanoin
Increases acetyl-CoA,

a substrate of the
Krebs cycle

HD patients, NCT02453061,
TRIHEP3 No results released [62,90]

Increase in BDNF

Selective serotonin
reuptake inhibition

(paroxetine,
fluoxetine, sertraline,

amitriptyline)

Activates the
MAPK/ERK

signaling pathway,
BDNF/tyrosine

kinase B pathway

Mouse models Improved HD symptoms [91–94]

Immunomodulators:
laquinimod,

glatiramer acetate

Reduces NF-κB
activation,

upregulates BDNF
Mouse models

Improved mitochondrial
function, reduced

pro-inflammatory cytokines,
increased BDNF levels

[95,96]

Intranasal delivery of
BDNF, PACAP38

Enhances synaptic
plasticity mouse models

Improved behavior,
attenuated memory deficits,

reduced HD neuropathology
[97–99]

Transcriptional
dysregulation Sodium butyrate Modulates HDACs R6/2 mice

Improved motor performance,
extended survival, reduced

HD pathology
[100,101]
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Table 2. Cont.

Targeted
Mechanism Molecule Effect Trials Results References

Synthetic molecules,
such as 4b, RGFP966

Promotes pyruvate
dehydrogenase

activity, improves
mitochondrial
dysfunction

Transgenic mice Improved motor performance,
reduced striatal atrophy [102–104]

Selistat, nicotinamide HDAC inhibition,
SIRT1 inhibitor Transgenic mice

Improved motor
performances, increased

BDNF levels
[105–107]

Acronyms: AMPK—5’ AMP-activated protein kinase; SIRT1—sirtuin 1; PGC-1α—peroxisome proliferator-
activated receptor gamma coactivator 1-alpha; Nrf2—nuclear factor erythroid 2–related factor 2;
mTOR—mammalian target of rapamycin; EAAT2—excitatory amino acid transporter-2; NMDAR—N-methyl-D-
aspartate receptor; PPAR—peroxisome proliferator-activated receptor; JNK—c-Jun N-terminal kinase; BDNF—
brain-derived neurotrophic factor; MAPK—mitogen-activated protein kinases; ERK—extracellular signal-
regulated kinase; PACAP38—pituitary adenylate cyclase-activating polypeptide 38; NF-κB—nuclear factor-
kappa-light-chain-enhancer of activated B cells; HDAC—histone deacetylase.

The most commonly prescribed drugs for HD are medications to reduce chorea,
namely tetrabenazine and deutetrabenazine. They both inhibit vesicular monoamine
transporter type 2 (VMAT2) [108], thereby decreasing the amount of available dopamine
and diminishing choreic movements by inhibiting dopaminergic signaling. Based on the
results of two randomized controlled trials [75,77], tetrabenazine and deutetrabenazine
are the only two FDA-approved drugs for the treatment of chorea in HD [89]. The side
effects are not negligible. Tetrabenazine, possibly by depleting other monoamines, such
as serotonin and norepinephrine, can cause depression, anxiety, and increase suicidal
risk [109], while deutetrabenazine does not potentiate depression but also increases the risk
of suicide [77] in patients already prone to psychiatric disturbances. The currently ongoing
study, NCT02509793, aims to assess the effect of tetrabenazine-induced serotonin depletion
on impulsivity and depression [109], while 2 other trials, NCT04301726 and NCT04713982,
will analyze the effect of deutetrabenazine on dysphagia (NCT04301726) and on speech
and gait [62]. Valbenazine, the most selective enantiomer for VMAT2, currently approved
for the treatment of tardive dyskinesia [110], has been tested in a phase 3 clinical trial
(KINECT-HD, NCT04102579) to evaluate its efficacy, safety, and tolerability in HD for the
treatment of chorea, but the results have not been released yet [62].

Antioxidants have been actively pursued in many neurodegenerative diseases in which
oxidative stress has been shown to be involved [22], as well as in ischemic stroke [34]. How-
ever, due to ROS being involved in complex pathogenic cascades, the one target-one drug
approach has been marked by many failures. Dietary antioxidants have many beneficial
actions and would be more likely to succeed [111], but they have poor bioavailability and
must be engineered to overcome this drawback. Resveratrol is a nonflavonoid polyphenol
that acts in various neurodegenerative diseases by activating metabolic sensor/effector pro-
teins, including AMP-activated protein kinase (AMPK), sirtuin 1 (SIRT1), and PGC-1α [60].
Sirtuins (SIRT 1–7) are a group of NAD+ (nicotinamide adenine dinucleotide)-dependent
lysine deacetylases, which can initiate a series of adaptive responses and regulate the
metabolic efficiency of the cell [112]. In vitro studies have shown that resveratrol promotes
SIRT1 deacetylase activity [113], while in transgenic mouse models of HD, modest increases
in PGC-1α and Nrf-1 mRNA expression were achieved with resveratrol preparations [61].
Other dietary antioxidants, such as polyphenols, showed promising results in chemical rat
HD models: quercetin restored the activities of catalase and superoxide dismutase 1 [114],
while curcumin exhibited free radical scavenging properties in the same model [115].
Another free radical scavenger, Edaravone, reduced the markers of oxidative stress in a
quinolinic acid rat HD model [116], while alpha-lipoic acid improved survival in transgenic
mouse models [117].

Another promising strategy, in our opinion, is improving the availability of BDNF
in the striatum and providing trophic support for the MSNs. Although BDNF can be in-
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creased with dietary interventions [118] or physical exercise [119], various pharmacological
strategies, genetic approaches, or direct infusions of BDNF have also been evaluated in
HD models [89]. Riluzole, an NMDAR inhibitor, increased BDNF expression and led to
improved HD symptoms in transgenic HD mice [120] and even in human patients [121].
Selective serotonin reuptake inhibitors are also able to increase cerebral BDNF levels,
with promising results obtained with paroxetine [91], fluoxetine [92], sertraline [93], and
amitriptyline [94] in mice. Intranasal administration of human recombinant BDNF im-
proved depressive-like behavior in transgenic mice [97], while intranasal administration
of neuropeptide Y led to increased expression of BDNF and reduced HD neuropathology
in R6/2 mice [98]. Another molecule, PACAP38 (pituitary adenylate cyclase-activating
polypeptide 38), also delivered intranasally, enhanced synaptic plasticity and attenuated
memory deficits in R6/1 mice, outcomes at least in part attributable to increased BDNF ex-
pression [99]. Delivering the BDNF gene using viral vectors is an attractive approach, allow-
ing constant production of the protein [89]. Intraventricular injections of adenoviral BDNF
resulted in increased neurogenesis and differentiation of the neurons into MSNs [122],
while adenovirus-mediated induction of BDNF in astrocytes led to delayed onset of motor
impairment in R6/2 mice [123]. However, several issues regarding the regulation of the
amount of BDNF produced, the vector-associated inflammation, and the risk of tumorige-
nesis caused by viral vector-mediated accidental mutagenesis must be settled before the
approach can be translated into clinical practice [89,124]. The direct delivery of BDNF by
implanting BDNF minipumps, although beneficial in animal models, is hardly feasible
in human trials [125], but the striatal transplantation of cells engineered to express stable
levels of BDNF proved promising in animal models [126]. To overcome the risk of graft
rejection, researchers are striving to develop non-tumorigenic human neural stem cells
which would express BDNF [127].

3.2. Therapeutic Strategies Targeting Mutant Huntingtin

Because HD is caused by an identified genetic mutation in the HTT gene encoding for
Htt protein, targeting HTT transcription and its mRNA translocation has been intensely
investigated in recent years. This direction has been boosted by the FDA approval of
nusinersen, an antisense oligonucleotide administered intrathecally to treat spinal muscular
atrophy (SMA) by modulating gene expression and increasing the production of survival
motor neuron (SMN) protein [128]. Nonetheless, there are significant differences between
the 2 inherited diseases because, in SMA, the need is to restore the function of a missing
protein, while in HD, we need to reduce the function of a toxic protein [129]. Furthermore,
given the essential role of Htt in embryonic development and survival of neurons [130], the
complete deactivation of the HTT gene would not be desirable.

The therapeutic strategies which target mHtt production can be divided into two major
classes: drugs that interact with the HTT gene, such as antisense oligonucleotides (ASOs)
or RNA interference (RNAi) compounds, which accelerate the degradation of the transcript,
and small molecules which alter mRNA splicing [131]; and agents that directly interact
with the DNA, such as zinc finger transcriptional repressors (ZFTRs) and CRISPR/Cas9
(clustered regularly interspaced short palindromic repeats/CRISPR-associated protein
9)-based tools for genetic editing [132]

3.2.1. Targeting the RNA

A. Antisense oligonucleotides
ASOs are synthetic single-stranded DNA sequences composed of a phosphate back-

bone and sugar rings connected to one of four bases [133]. The DNA sequence is comple-
mentary to the messenger RNA target, which binds pre-mRNA in the nucleus through
Watson–Crick base pairing and targets the mRNA sequence for degradation by RNase H
endonuclease [133], thereby reducing the target gene translation. They were first used by
Stephenson and Zamecnik to inhibit viral RNA translation in Rous sarcoma [134].
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DNA replication in a dividing cell requires a short strand of complementary nu-
cleotides, called the RNA primer, to induce the activity of DNA polymerase. After DNA
replication, RNase H recognizes the DNA/RNA complex and degrades the RNA primer.
ASOs act in the nucleus and bind to their target RNA, mimicking the DNA/RNA com-
plex, and recruit RNase H to degrade the complex [135]. Unfortunately, they have poor
bioavailability, the blood-brain barrier preventing their entrance into the CNS, and are
rapidly degraded by exo- and endonucleases in addition to having several off-target effects.
Modifying the phosphate backbone or the sugar rings can increase the ASO binding to
plasma proteins and its resistance to degradation by nucleases and maintain stable serum
concentrations. To overcome these issues, the ASO backbone and sugar moieties can be
modified, leading to improved pharmacologic properties and stability [136]. The modifi-
cations of the phosphate backbone include the replacement of the non-bridging oxygen
atom with a sulphur atom in the phosphate groups, leading to a phosphorothioate (PS),
replacing 3′-oxygen with a 3′-amino group, leading to phosphoamidate (PA), or replacing
the charged phosphodiester linkage with a non-charged phosphoroamidate linkage and
the sugar-phosphate backbone with a morpholine ring, leading to a phosphorodiamidate
morpholino oligomer (PMO). Through complete replacement of the deoxyribose phosphate
backbone with polyamide linkages, peptide nucleic acids, with increased biological sta-
bility but low solubility and cellular uptake, have been obtained [137]. The sugar moiety
has been modified at the 2′-position, obtaining 2′-O-methyl (2′-OMe) and 2′-O-methoxy-
ethyl (2′-MOE) ASOs, or the 4′-carbon can be linked to the 2′-methyl group, leading to a
locked nucleic acid (LNA). Another sugar modification is constraining the 2′-residue to the
4′-position of the sugar ring, obtaining an S-constrained-ethyl (cET) ASO [138]. Each of
these modifications has characteristic advantages. Table 3 provides a summary of the
available ASOs.

Table 3. Chemical modifications of ASOs with resultant characteristics and mechanism of action.

Modification Resulted ASO Main Properties Mechanism of Action References

Backbone
modifications

Phosphorothioate (PS)
− Increased protein binding and

cellular uptake
− Increased resistance to nucleases

Degradation of mRNA by
RNase H

[138]

Phosphoroamidate (PA) − Enhanced nuclease resistance
Non-degrading RNA

mechanisms [139]

Phosphorodiamidate
morpholino oligomers

(PMO)

− Improved nuclease and
protease resistance

Non-degrading RNA
mechanisms [140]

Peptide nucleic acids
(PNA)

− Increased nuclease and
protease resistance

Non-degrading RNA
mechanisms [141]

Sugar
modifications

2′-O-methyl (2′-OMe) − Enhanced nuclease resistance
− Decreased toxicity

Non-degrading RNA
mechanisms and RNase

activity with gapmer design
[142]

2′-O-methoxyl-ethyl
(2′-MOE)

− Enhanced nuclease resistance
− Decreased toxicity

Non-degrading RNA
mechanisms and RNase

activity with gapmer design
[143]

Locked nucleic acids
(LNA)

− Enhanced nuclease resistance
− Decreased toxicity
− Increased target affinity

Non-degrading RNA
mechanisms and RNase

activity with gapmer design
[144]

S-constrained-ethyl (cEt) − Decreased toxicity
− Increased target affinity

Non-degrading RNA
mechanisms and RNase

activity with gapmer design
[145]

Unfortunately, replacement of the phosphate backbone with a phosphorothioate linker
triggers RNase H-mediated degradation of the mRNA but also can trigger the immune
system [135]. Phosphorodiamidate morpholinos (for example, eteplirsen, approved in
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September of 2016 by the FDA for the treatment of Duchenne muscular dystrophy but
rejected in 2018 by the European Medicines Agency) [146,147] or 2′-O-methyl ASOs (such
as nusinersen, used for the treatment of spinal muscular atrophy) [148] have modified
ribose sugars, which increase the ASO’s resistance to degradation and enhance target
specificity [131]. Alternatively, some ASOs, such as morpholino ASOs, do not recruit RNase
but bind to the target RNA and prevent ribosomal attachment, while others modify RNA
splicing. Genes comprise a promoter region (to which RNA polymerase binds) and several
coding segments (exons) separated by non-coding segments (introns) [131]. DNA transcrip-
tion results in a complementary RNA molecule, the pre-mRNA, containing both exons and
introns. Specific nucleotide sequences placed in and around the exon/intron boundaries
recruit splicing factors, which remove the introns and produce mRNA molecules that
contain only exons and will undergo ribosomal translation. Certain ASOs can bind to these
sequences and alter pre-mRNA splicing [131]. Figure 2 provides a schematic overview of
the mechanism of action of ASOs.

Figure 2. Mechanism of action of ASOs. ASOs influence gene expression through three principal
mechanisms: (1) recruitment of RNase H and degradation of mRNA, (2) steric block of ribosome
binding, and (3) modulation of mRNA splicing.

Single-stranded DNA diffuses in the CNS, being taken up by neurons and glial cells.
Thereby, administration into the CSF (intrathecal administration in large mammals or
intraventricular delivery in mice) results in the drug being delivered to the brain [140,149].
In HD, reduction of HTT mRNA leads to a reduced expression of mHtt and improvement
of neurological deficits and can even postpone onset if achieved in presymptomatic animals
which carry the mutation [129].

However, given the size and complexity of the human brain compared to animal
brains, the ability of ASOs to diffuse may vary considerably. Furthermore, off-target effects,
leading to hepatotoxicity, or recognition of ASOs by toll-like receptors on immune cells and
triggering immune responses leading to thrombocytopenia, raise certain concerns [150].

Nonetheless, several ASOs are being investigated in HD models, and an ASO tar-
geting human huntingtin, IONIS-HTTRX (tominersen), has entered human clinical trials
(NCT02519036—Safety, tolerability, pharmacokinetics, and pharmacodynamics of IONIS-
HTTRX in patients with early manifest Huntington’s disease) [69]. The compound devel-
oped by Hoffman-La Roche is a 20-nucleotide phosphothioate sequence with 2’-O-methoxy
ethyl modifications at each end of the DNA-like central region to improve cellular distribu-
tion and RNase activation [129]. In animal models, the compound gained wide distribution
in neurons and glia, leading to reduced brain atrophy in the R6/2 model [149]. The patho-
logical benefits of a bolus ASO treatment were shown to outlast the presence of the drug,
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suggesting that a brief stop in mHtt synthesis can help cells repair—a phenomenon called
the “huntingtin holiday” [151]. In the clinical trial, there was a dose-dependent reduction of
mHtt in the cerebrospinal fluid, although not necessarily reflecting the reduction of cellular
mHtt, and no serious adverse events [152]. A randomized open-label extension trial (NCT
03342053) continued the assessment of adverse effects. It concluded in 2019, but the results
have not yet been published [153]. Another randomized, double-blinded, phase 3 clinical
trial aimed at evaluating the efficiency of tominersen (GENERATION HD1 (NCT03761849).
Although it was expected to be finished in 2022, it was discontinued due to concerns regard-
ing the benefit-to-risk ratio raised by the review of data by an independent data monitoring
Committee, as was the open-label extension phase, GEN-EXTEND, NCT03842969 [153,154].
Because tominersen is non-allele-selective, it reduces the expression of both normal and mu-
tant huntingtin, a situation in which long-term use in symptom-free carriers of the genetic
defect may raise safety concerns. In addition, polyCAG stretches are contained in numerous
human genes, mainly encoding for transcription factors. As such, non-allele-specific ASOs
can downregulate other genes as well, leading to off-target adverse effects [129].

An alternative strategy is to target single nucleotide polymorphisms (SNPs) that
are present on a limited number of HD haplotypes and which would allow for specific
silencing of the mutant gene. The huntingtin gene has many SNPs, with sequencing
techniques being able to establish which allele a SNP is located upon [155,156]. Certain
SNPs accompany CAG mutations more frequently. It is estimated that drugs targeting
the three most common SNPs could treat roughly 80% of patients with HD of European
ancestry [157]. A 2’-O-methyl (2’OMe) modified RNA with a phosphorothioate backbone
carrying 7 consecutive CUG nucleotides reduced the mHtt mRNA by 83% and the wild-
type transcript by only 43%, suggesting that the inhibition by (CUG)7 depends on CAG
repeat length [156] and led to clinical improvements in R6/2 mice [158]. Two allele-
specific ASOs have been developed, targeting the rs362037 (SNP1) and the rs362331 (SNP2)
single nucleotide polymorphisms [159], which entered clinical trials (PRECISION-HD1
and PRECISION-HD2; NCT03225833, NCT03225846) [62,159] evaluating their tolerability,
pharmacokinetics, pharmacodynamics, and safety. Although preliminary data from the
PRECISION-HD2 study suggested a dose-dependent reduction in mHtt, in 2021, both
trials were stopped by the sponsor due to a lack of significant change in mHtt levels, as
were the 2 open-label extension studies (NCT04617847 and NCT04617860) [160]. Another
allele-specific ASO, targeting an undisclosed SNP (SNP3), showed promising results in
preclinical studies [161], leading the manufacturing company to submit an application for
a clinical trial in 2020 [153].

Other allele-specific ASOs, which are tested in preclinical trials, target the expanded
CAG repeats in mHTT mRNA (CUG7) or SNPs associated with HD alleles [162], while
others modulate the splicing of pr-mRNA, inducing the skipping of exon 12 [163], resulting
in a 586 amino acid N-terminal fragment in rodents, which does not express the cleavage
sites. Peptide-conjugated ASOs, administered systemically, showed broad CNS distribution
and efficacy in spinal muscular atrophy mouse models, being also pursued for the treatment
of HD [164]. Finally, some ASOs do not target mHtt, but genes involved in the DNA damage
response pathway because defective repair of double-streak breaks in the DNA, the most
lethal forms of DNA injury, have been found in postmortem examinations of brain cells in
HD patients [165]. Mutant Htt impairs the non-homologous end-joining (NHEJ)-mediated
DNA DSB repair mechanism in neurons [166,167], suggesting that alterations of the DNA
repair mechanism could have important contributions to the prominent cell loss. Targeting
the mutS homolog 3 (MSH3) with TTX-3360 with ASOs, developed by Triplet Therapeutics,
proved safe and efficient in mouse models of HD [153].

B. RNA interference approaches
RNA interference (RNAi) molecules can induce gene silencing either through direct

sequence-specific cleavage of perfectly complementary RNAs or through translational
repression and transcript degradation for imperfectly complementary structures [168].
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Depending on sequence and structure, these molecules can be divided into short interfering
RNAs (siRNAs), short hairpin RNAs (shRNAs), and microRNAs (miRNAs) [129].

Long double-stranded RNA (dsRNA), such as viral genetic material, is processed to
short interfering RNAs (siRNAs), which mediate the RNAi response (at least in plants,
nematodes and insects), by a dsRNA-specific endonuclease (RNase III) called Dicer, that
acts together with TRBP (trans-activation response (TAR) RNA binding protein) and protein
activator of protein kinase PKR (PACT) in a complex. siRNAs are loaded into a multiprotein
complex, the RNA-induced silencing complex (RISC), where Argonaute 2 (AGO2) cleaves
the passenger (sense) strand of the siRNA and generates a single-stranded antisense strand
which guides RISC to complementary sequences in target mRNAs. These target mRNAs
are cleaved between bases 10 and 11 relative to the 5′ end of the siRNA guide strand,
followed by degradation of the cleaved mRNA fragment by cellular exonucleases [169].
After being activated by the siRNA guide strand, RISC can undergo multiple rounds
of mRNA cleavage, resulting in a significant post-transcriptional gene silencing (PTGS)
response [168]. Thus, mRNA translation and protein synthesis are inhibited.

MicroRNAs (miRNAs) are endogenous small RNAs that induce PTGS through transla-
tional repression in case of partial sequence complementarity with target mRNAs. However,
in case of complete sequence complementarity between the miRNA and the target mRNA,
the mRNA transcript will be cleaved by RISC [168]. Long primary miRNA transcripts
(pri-miRNAs) are generated mainly by polymerase II and are trimmed by Drosha (RNase
III), which functions together with the dsRNA-binding protein DGCR8 (DiGeorge syn-
drome critical region gene 8), into precursor miRNAs (pre-miRNAs). These pre-miRNAs
are translocated by exportin 5 into the cytoplasm, where Dicer and its protein partners
TRBP40 and PACT further process the pre-miRNAs into mature miRNAs and direct them
into RISC [169,170]. Here, the RNA duplex associates with one of four Argonaute proteins
(AGO1–4), and the antisense (guide) RNA strand will bind to target mRNAs with which
it shares partial sequence complementarity, leading to mRNA degradation, translational
repression and gene silencing, while the passenger strand is discarded [168,171]. Figure 3 pro-
vides a schematic representation of the mechanism of RNA interference in mammalian cells.

Figure 3. Mechanisms of RNA interference in mammalian cells. Endogenously encoded primary
microRNA transcripts (pri-miRNAs) result from the activity of RNA polymerase II (Pol II) and are
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processed by Drosha–DGCR8 (DiGeorge syndrome critical region gene 8), generating precursor
miRNAs (pre-miRNAs), which are exported into the cytoplasm by exportin 5. In the cytoplasm,
pre-miRNAs are processed by the Dicer–TRBP–PACT complex and loaded into RISC and AGO2. The
resultant mature miRNA recognizes target sites in the 3′ untranslated region (3′ UTR) of mRNAs
and direct translational inhibition and mRNA degradation. In the cytoplasm, double-stranded
RNAs (dsRNAs) are also processed by the Dicer–TRBP–PACT complex into small interfering RNAs
(siRNAs), which are loaded into RISC and AGO2. The siRNA guide strand recognizes target sites
to direct mRNA cleavage performed by the catalytic domain of AGO2. TRBP—TAR RNA-binding
protein; PACT—protein activator of protein kinase PKR; RISC—RNA-induced silencing complex;
AGO2—Argonaute 2; ORF—open reading frame.

Short hairpin RNAs (shRNAs) are synthetic molecules with a short hairpin secondary
structure delivered on a DNA plasmid. After transcription, the molecule mimics pri-
miRNAs and is processed by Drosha to pre-shRNA, further exported from the nucleus
by exportin 5 and acting as a substrate for Dicer, which targets it to RISC. Here the pas-
senger strand is disposed of, and the antisense strand will lead to the degradation of the
target mRNA [172]. Compared to siRNAs, which only transiently silence gene expression
because their intracellular concentrations decrease following successive cellular divisions,
shRNAs mediate long-term silencing of their target transcripts (over months or years),
especially if polymerase II and III promoters are associated with driving expression of the
shRNAs [168,172]. Table 4 provides a comparison of the advantages and disadvantages of
siRNA and shRNA approaches.

Table 4. Comparison of siRNA and shRNA therapeutic strategies.

Small Interfering RNA
(siRNA) Short Hairpin RNA (shRNA)

Source Exogenous source Nuclear expression

Delivery methods
Via synthetic or natural

polymers or lipids to the
cytoplasm

Via viral or other vectors to
the nucleus

Persistence Short-lasted (rapid
degradation) Expressed for months to years

Required dosage High Low

Incidence of “off-target”
effects

Higher than for shRNA
approaches, higher immune

activation, toxicity

Lower than for siRNA
therapies, low toxicity and

immune activation

Therapeutic applications

In acute diseases, where high
doses can be tolerated without
significant toxicity and which

do not require lifelong
frequent administrations

In chronic disorders, where
low doses acting for a longer

time are desirable

However, if single-stranded DNA shows good CNS distribution after intraventricu-
lar or intrathecal administration, being taken up by neurons and glial cells, dsRNA is a
negatively charged polymer and has limited diffusion, requiring special delivery methods,
such as viral vectors, adeno-associated viral vectors, or nanotechnology approaches to
ensure optimal effects and must be delivered directly into the brain [129]. Unprotected
siRNAs can also be degraded by serum RNases. Several chemical modifications, such
as including an O-methylpurine or fluoropyrimidine at the 2′ position of the ribose, can
increase siRNA stability [168]. Further, conjugation of a cholesterol group to the 3′ hydroxyl
group of the siRNA or packaging the compound into a liposomal particle or a specialized
lipid bilayer known as a stable nucleic acid-lipid particle (SNALP) allows for intravenous
delivery [173,174]. Coupling the therapeutic siRNA to antibody fragments or aptamers
(single-stranded oligonucleotides which bind to specific proteins) or coating the nanopar-
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ticles with receptor-targeting ligands allow for cell-specific systemic delivery and lower
dosage of the siRNA [168].

Other issues relate to the possibility of inducing an immune response, of saturation of
the cellular RNAi machinery, and the induction of off-target effects [169]. Especially when
using shRNAs, the passenger strand is on occasion retained and may induce unwanted
inhibition of off-target mRNAs. By using modified, guide-only effectors based on miRNA
miR451, this side effect can be overcome because miR451uses a Dicer-independent cleav-
age pathway, being processed by AGO2 in the cytoplasm and further cleaved by PARN
(poly(A)-specific ribonuclease). Being AGO1, AGO3, and AGO4-independent, miR451-
like effectors show decreased competition for endogenous miRNAs and have enhanced
safety and reduced potential for off-targeting [175]. Combining AGO2-dependent shRNAs
with a miRNA backbone enables tissue-specific expression and increases the safety of the
therapeutic shRNA [176].

AMT-130 is the only gene therapy currently in clinical trials for HD [177]. It contains a
gene encoding for a miRNA, which is administered as an intrastriatal injection, delivering
the genetic material via adeno-associated virus vector serotype 5 (AAV5) [178]. In animal
models and HD patient-derived cultured neurons, AMT-130 induced a robust and sustained
reduction in mHtt protein and mRNA levels [153,179,180] and was shown to be safe in
non-human primate HD models [181]. It is currently tested in a phase 1b/2 clinical trial on
26 HD patients (NCT04120493), which continues with an open-label extension phase trial
(NCT05243017), expecting to enroll 15 patients for safety, tolerability and efficacy. The trials
are expected to be completed in 2026 and 2027, respectively [62].

Other RNAi therapies tested in preclinical trials are VY-HTT01, a miRNA delivered via
adeno-associated virus vector serotype 1 (AAV1) and leading to mHtt mRNA degradation,
which showed a significant reduction in mHtt protein, as well as motor and behavioral
improvement in mice [182], and an AAV1-delivered shRNA, which also showed good
preclinical results [153].

In addition, small, orally administered molecules which modify pre-mRNA to in-
clude or exclude target exons (splice modulation) are also valid approaches, although their
systemic distribution and lack of specificity may increase the risk of adverse effects [183].
PTC518 is already tested in a phase 2a clinical trial on 162 participants (NCT 05358717)
for safety and efficacy, while LMI070 (branaplam), initially developed for spinal muscular
atrophy but subsequently found to reduce mHtt protein, entered a phase 2 clinical trial aim-
ing to enroll 75 participants (NCT05111249, VIBRANT-HD) to evaluate safety and efficacy
and find the correct dose [62]. An RNA splice modulator targeting Spt4, a transcription
elongation cofactor required for expanded CAG repeat transcription, is another molecule
with promising results in preclinical trials, but no clinical trial has yet begun [62].

3.2.2. Targeting the DNA

Although targeting DNA could improve all aspects of HD and could raise the prospect
of “editing” the DNA in the patients’ germ line to benefit future offspring, it carries
several ethical issues [184]. Still, two DNA-targeting gene therapies are currently under
investigation: zinc finger proteins (ZFPs) and CRISPR/Cas9 [129]. Both use viral vector-
mediated, intracranially injected protein-coding sequences which transduce cells and lead
to the production of functional proteins.

A. Zinc finger proteins
Zinc fingers are naturally occurring structures that bind specific DNA sequences.

Synthetically generated zinc finger proteins contain a zinc finger array directed to a DNA
sequence (one finger per three bases) combined with a functional domain that acts on the
DNA [129]. They can be subdivided into zinc finger nucleases, which cleave the DNA, and
zinc finger transcription factor repressors (ZFTRs), which modulate gene expression [185].
The use of zinc finger nucleases, although able to “edit” target genes, is currently not suffi-
ciently precise or predictable to be used as therapy in postmitotic patient cells, especially
for polyCAG stretches [186]. ZFTRs act by binding the zinc finger array to a sequence near
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the 3′ end of the DNA sense strand, thereby bringing the transcriptional repressor close
to the promoter of the target gene. Fortunately, the promoter sequence of the HTT gene is
closer to the 3′ end than in other polyCAG-containing genes [187], which allows for ZFTR
selectivity for HTT over other genes as well as for the mutant gene over the wild-type
allele [129] and leads to decreased mHtt levels without altering the gene itself [183].

Currently, there are 2 ZFTRs in preclinical evaluation: TAK-686 and ZF-KOX1 [153,188].
Both have shown promising results in animal models, with reduced mHtt expression and
behavioral improvements [129,189]. However, zinc finger proteins can trigger immune
reactions due to the production of non-native proteins and lead to neuronal death. To
overcome this issue, Agustin-Pavón and colleagues used a polyCAG-targeting ZFTR
combined with a non-viral promoter and a repressor element designed to be homologous
with the host protein (mouse protein), achieving more sustained gene silencing [188].

B. CRISP/Cas therapies
Clustered regularly interspaced short palindromic repeats (CRISPR) and the CRISP-

associated system (Cas) enable the immune system to recognize and destroy foreign DNA.
All CRISPR therapies are delivered via viral vectors and intracranial injection [190]. Cas9
(CRISPR-associated protein 9), a nuclease, has been extensively used as a genome editing
tool in the past decade [153]. Cas9 is combined with a synthetic guide RNA and binds to its
target DNA sequence, inducing double-strand breaks, which are repaired by error-prone
non-homologous end joining, leading to frameshifts that can impair gene expression [191].
In HD, CRISPR/Cas9 strategies may correct HD alleles by removing expanded CAG
repeats, inactivate HD-associated alleles, or target the HTT gene itself [192,193].

The approach has been tested in cell lines, where it excised expanded CAG repeats
in exon 1 of the HTT gene [191,194], as well as in animal models, where it reduced mHTT
expression, astrocyte reactivity, and led to improvement of motor symptoms [195,196].
However, concerns about off-target mutations caused by CRISP/Cas9 gene editing have
been raised, which need to be solved before the technology could enter clinical trials [197].

C. TALEN therapies
Transcription activator-like effector nucleases (TALENs) have domains containing

repeating peptides which bind to DNA nucleotides and cause double-strand breaks through
the artificial nucleases, thereby correcting or deleting specific segments [153]. They are
still in the discovery stages, with no established effective delivery systems, and no valid
information regarding toxicity or impact on phenotype is available to date. Nonetheless,
in yeast cells, TALENs efficiently removed expanded CAG repeats, while in HD patient-
derived fibroblasts, the transcription of the mHTT gene was prevented, while wild-type
HTT gene expression was unaltered by using a TALEN and SNP-specific transcription
activator-like effector (TALE-SNP) [198].

3.3. Therapeutic Strategies Targeting Cell Loss

Neuronal loss due to HD pathology could be replaced by using stem cell therapies,
which could also provide pro-survival factors and improve regeneration. However, there is
the possibility of rejection or of inducing immune reactions [199].

In the most advanced stage among stem cell-based therapeutic approaches is an
allogenic mesenchymal therapy using human immature dental pulp stem cells developed
by the Brazilian company Cellavita [153]. In a phase 1 clinical trial (NCT02728115/SAVE-
DH), 6 HD patients received 3 doses of 1 or 2 million cells/kg body weight intravenously,
each dose 30 days apart, and were followed for 5 years looking for safety, tolerability,
and efficiency [62]. Preliminary results reported after 2 years of follow-up raised no
concerns [200] and justified the application for a phase 2 clinical trial (NCT03252535—
Dose-response Evaluation of the Cellavita HD Product in Patients with Huntington’s
Disease (ADORE-HD), which began in 2018 and enrolled 35 participants who received
3 cycles of monthly intravenous delivery of 1 or 2 million cells for 3 months, the cycles
being repeated after 120 days [62]. Its primary aim is to identify the optimal dose for
the best clinical response. The study was completed in March 2021, but no results have
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been published so far. However, an open-label extension phase 2/3 trial is registered
(NCT04219241—ADORE-EXT) but not yet recruiting [62].

Other mesenchymal stem cell (MSC) approaches are in preclinical trials. Autologous
mesenchymal cells originate in the umbilical cord, bone marrow, or adipose tissue and can
differentiate into many cell types, including neural cells [201], being self-renewing and able
to release neurotrophic factors [153], without the risk of teratoma. Umbilical cord-derived
MSC injected into the striatum of R6/2 mice reduced the neuropathological changes but
did not lead to motor improvements [202], while striatal transplantation of umbilical
cord-derived MSC in rats resulted in reduced striatal atrophy, diminished oxidative stress,
and enhanced cell viability in a 3-nitropropionic acid (3NP) rat model of HD [203]. A
single-center phase 1/2 clinical trial with bone marrow-derived autologous mononuclear
cells injected intrathecally to patients with HD was initiated in 2014 (NCT01834053) and
estimated to be completed in 2016, but its status and results are currently unknown [62].

Induced pluripotent stem cell-derived neural stem cells (iPS-NSCs) are reprogrammed
somatic adult cells able to differentiate into various cell types [204]. Mouse iPS-NSCs
injected into the striatum of 3NP rat HD models resulted in differentiation of the iPS-NSCs
into striatal neurons and glia, with partial recovery of the striatal volume and improved
learning and memory [205], while human iPS-NSCs transplanted to the striatum reduced
inflammation, replaced some neural cells and promoted neurogenesis in a quinolinic acid-
induced rat HD model [206]. Healthy mice iPS-NSCs injected into the striatum of YAC128
HD mice led to differentiation of the stem cells into neural cells, followed by increased
striatal BDNF and motor improvement [207].

Fetal stem cell therapy replacement therapy started to be investigated more than
20 years ago [153]. Early studies showed the approach to be safe but lacking long-term
efficacy [208]. However, the need for immunosuppressants to mitigate graft rejection
diminishes compliance and has raised safety concerns [209], although some researchers
have shown that, due to the unpredictable nature of the patients’ immune response after
the graft, immunosuppressants should not be used excessively [210]. A single-center,
phase 1 open-label clinical trial (ISRCTN52651778) to evaluate the safety and efficacy of
fetal stem cell transplant in HD was started in 2018 and is expected to be completed in
2023 [177,211]. Ethical concerns regarding the use of fetal cells also persist [153], and the
reduced vascularization and diminished astrocyte and pericyte numbers following grafting
discard the approach as a permanent cure [212].

Autologous iPSCs would eliminate or minimize the possibility of rejection, but the
genetic defect would have to be corrected prior to the cell therapy. Genome editing by ZFN
or CRISPR/Cas9 still raises concerns regarding the non-specific targeting of the mHTT
allele and silencing of the normal HTT gene, the long-term effects of which have yet to
be determined. A relatively recent study reported that the elimination of Htt in adult
mice resulted in motor and behavioral decline [213]. Gene silencing of the mutant gene
using shRNAs is a more validated therapeutic option. In a transgenic mouse model of HD,
autologous iPSCs with reduced mHtt levels by stable expression of shRNA grafted into the
striatum differentiated into neurons and glia, leading to significant improvements in motor
function and increased life span [214]. A clinical trial evaluating the safety and efficacy
of autologous stromal stem cells in various neurodegenerative diseases (NCT03297177),
sponsored by Regeneris Medical Inc., was planned to start in January 2020 but is not yet
recruiting [62].

3.4. Strategies Targeting Neuroinflammation

Neuroinflammation has been increasingly shown to contribute to neuronal damage
in Alzheimer’s disease [215], Parkinson’s disease [216], amyotrophic lateral sclerosis [40],
stroke [41], as well as in Huntington’s disease [217]. Expression and accumulation of
mHtt in neurons, as well as in microglia, have been implicated in microglial activation
and ignition of the neuroinflammatory cascade [218]. As such, therapies trying to mitigate
inflammatory responses have been developed and evaluated.
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3.4.1. Laquinimod

Laquinimod is an orally administered small immunomodulatory molecule which
shifts T helper cell (Th) polarization towards a Th2 polarization and promotes BDNF
production [219]. It is currently used in the treatment of relapsing-remitting multiple
sclerosis [220] but has also been shown to reduce Bax expression and caspase-6 activation in
cultured neurons [221], as well as to improve striatal pathology and motor function in R6/2
HD mice [95]. However, in a clinical trial on 325 patients (LEGATO-HD, NCT02215616),
although it reduced caudal atrophy, laquinimod failed to improve the functional status of
the enrolled patients [222].

3.4.2. Drugs Targeting TNF-α

Tumor necrosis factor-α (TNF-α) is a cytokine associated with immune response, in-
flammation, and apoptosis [12,41]. Increased levels of TNF-α have been found in the serum,
brain tissue, and cerebrospinal fluid of HD patients as well as of HD gene carriers [223].
Despite encouraging results obtained with an engineered inactive form of TNF-α injected
intracerebroventricularly in R6/2 transgenic mice [224], systemic delivery of etanercept, a
TNF-α-inhibiting drug, failed to improve cognitive and motor deficits in R6/2 mice and
only partially reduced brain atrophy [225], an effect possibly related to the poor blood-brain
barrier penetrance of the drug.

3.4.3. Antibody-Based Therapies

Antibody-based therapies have been evaluated in synucleinopathies and tauopathies [18]
and are emerging as potential therapies in genetic disorders of the central nervous system
as well [153].

ANX005 is a monoclonal antibody that prevents the complement cascade activation,
shown to lead to neuroinflammation, neurodegeneration and synapse loss by targeting
C1q [226]. In a randomized, double-blind, ascending dose, phase 1 clinical trial in healthy
volunteers (NCT03010046), ANX005 proved to be safe [62], which led the developing
company to initiate phase 2 studies in Guillain–Barré syndrome, amyotrophic lateral
sclerosis, and a form of autoimmune hemolytic anemia [153], as well as in Huntington’s
disease (NCT04514367) to evaluate the safety, pharmacokinetics and pharmacodynamics of
7 intravenous infusions of ANX005 in 28 participants. The trial is estimated to be completed
in July 2022 [62].

VX15/2503 (pepinemab) is an IgG4 monoclonal antibody that inhibits semaphorin
4D, a protein that promotes glial cell activation and leads to oligodendrocyte and neural
precursor cell apoptosis [227]. In YAC128 mice, the compound reduced cortical and striatal
atrophy and improved cognitive symptoms, although it did not influence motor ones [228].
In a phase 2, double-blinded clinical trial conducted on patients with late prodromal or
early manifest HD to evaluate safety, pharmacokinetics and pharmacodynamics (SIGNAL,
NCT02481674), VX15/2503 appeared safe and even efficient in prodromal HD, although it
did not alter motor, behavioral, or cognitive function in the established disease [153].

Antibodies targeting mHtt can be delivered in a simpler form, as intrabodies via
viral vectors, and can bind to various epitopes on a target protein, inactivate proteins,
stop the intracellular misfolding of the protein, or enhance protein clearance [153]. In HD,
their target is the polyP/proline-rich region and N-terminal exon 1 domain [229]. rAAV6-
INT41 is an intrabody targeting the polyP/proline-rich region, which, combined with a
viral vector and injected into the striatum of R6/2 mice, reduced small and large mHtt
aggregates and improved cognitive deficits [230]. Intrabodies targeting mHtt aggregates
have also shown beneficial results but raised concerns regarding the possibility of increasing
aggregation [229]. One such intrabody is W20, which was tested successfully in a mouse
model of HD, where it reduced the accumulation of aggregates in the striatum and cortex,
diminished the levels of reactive oxygen species and proinflammatory cytokines, and
improved motor performances and memory [229]. Antibodies have the potential to target
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extracellular mHtt [231], but the possible benefits of active immunization are not yet known,
and questions regarding safety persist.

Passive immunization with monoclonal antibodies, such as C16–17, has shown positive
results in vitro and in a mouse model of HD [232]. However, antibody therapies could
work best together with RNA-based treatments in order to target intracellular as well as
extracellular mHtt [231].

Table 5 summarizes these novel therapeutic approaches in Huntington’s disease.

Table 5. Strengths and limitations of the novel therapeutic strategies in Huntington’s disease.

Target Category Molecule Development Strengths Limitations

mHtt RNA

ASO

IONIS-HTTRx Phase 3 clinical
trial

Dose-dependent
reduction of mHtt RNA
and protein

Intrathecal delivery,
requires multiple doses

WVE-120102/120101 Phase 1b/2a trial

Allele-specific
(rs362331/
362307, do not lower
wild-type Htt

Applicable only to the
targeted SNP carrier,
require multiple doses

(CUG)7 Pre-clinical
Allele-specific, less
reduction of
wild-type Htt

Multiple dosing

RNAi
AMT-130 Phase 1b/2a Single dose

Allele-non-specific, requires
intrastriatal viral
vector-mediated delivery

VY-HTT01 Pre-clinical Single dose Viral vector-mediated
intracranial injection

Small molecules

Branaplam Pre-clinical Oral administration
Multiple doses, lack of
specificity, risk of
off-target effects

PTC518 Phase 1 Oral administration
Multiple doses, lack of
specificity, risk of
off-target effects

DNA

ZFP TAK-686
ZF-KOX1 Pre-clinical

Prevents mHtt
transcription without
altering the gene itself,
single dose

Viral vector, intrastriatal
injection; can trigger
immune reactions

CRISPR/Cas9
Unnamed
CRISPR/Cas9
molecules

Pre-clinical Single dose; corrects
genetic defect

Viral vector-mediated
intracranial delivery; risk of
off-target mutations

TALEN Still in development Pre-clinical Not known Not known

Cell loss Stem cells

Cellavita Phase 2/3 Intravenous delivery Inconsistent effects

Fetal stem cell
transplant Phase 1 Single dose Intrastriatal injection, risk

of graft rejection

Autologous
stem cells Clinical trial Intravenous delivery Uncertain cerebral

penetration

Neuroinflammation

Monoclonal
antibodies

ANX005 Phase 2 Intravenous delivery Multiple doses required

VX15/2503 Phase 2 Intravenous delivery Multiple doses required

Intrabodies rAAV6-INT41 Pre-clinical
Prevents protein
misfolding, promotes
aggregate clearance

Intrastriatal injection, viral
vector-mediated delivery

Figure 4 summarizes the various therapeutic strategies evaluated in the treatment of
HD according to their targets.



Biomedicines 2022, 10, 1895 21 of 31

Figure 4. After much research has focused on elucidating the intricate pathogenic cascades leading to
neuronal degeneration in Huntington’s disease, therapeutic strategies have targeted various aspects
of these mechanisms: the defect gene could be corrected with CRISPR/Cas9, zinc finger protein (ZFP)
or TALEN (transcription activator-like effector nucleases) approaches; mutant huntingtin (mHtt)
expression could be prevented with antisense oligonucleotides (ASOs) or RNA interference (RNAi)
approaches; caspase inhibitors could reduce the abnormally folded mHtt aggregates; autophagy
enhancers (rapamycin or G protein-coupled receptors—GPCRs) could promote mHtt clearance;
attempts have been made to stabilize mitochondria (Mtc) and prevent mitochondrial dysfunction with
metformin, fenofibrate, or triheptanoin; this could also reduce oxidative stress, which can be mitigated
with dietary antioxidants (engineered for improved blood brain barrier penetrance) or creatine; stem
cell therapies could replace degenerated cells, and additionally enhance the availability of brain
derived neurotrophic factor (BDNF), as well as other neurotrophic factors; N-methyl-D-aspartate
receptor (NMDAR) antagonists could reduce excitotoxic cell death, while neuroinflammation could
be diminished with monoclonal antibodies or other anti-inflammatory agents, such as laquinimod.

4. Conclusions

Despite the identification of the genetic defect leading to Huntington’s disease almost
30 years ago, currently available therapeutic options address only symptoms of the disease,
with no significant progress over the past 20 years [233]. Perhaps the most important
shortcoming of available therapies is their inability to act on specific targets, influencing
only downstream processes and allowing the pathogenic cascades to progress where they
are not inhibited [234].

The recent interest in therapies that target mHtt DNA and RNA opens new exciting
opportunities and, combined with strategies targeting glutamatergic neurotransmission,
BDNF signaling, or mitochondrial function, will probably result in better outcomes. In addi-
tion, targeting the gut microbiota, due to its alteration in HD (as in other neurodegenerative
diseases) [235], could add to therapeutic efficiency [236].

However, the genetic therapeutic approaches are still in their infancy. Questions on the
safety of non-selective mHtt lowering, the incidence of off-target effects in large populations,
and the safety of CRISPR therapies are still unanswered [237]. Furthermore, the necessity
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for invasive administration could be a major drawback [129], limiting adherence and access
to therapy.

Nonetheless, based on the encouraging latest developments, we might soon witness a
new era in the treatment of HD.
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