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Abstract
The brain operates at a critical point that is balanced between order and disorder. Even during rest, unstable periods of
random behavior are interspersed with stable periods of balanced activity patterns that support optimal information
processing. Being born preterm may cause deviations from this normal pattern of development. We compared 33 extremely
preterm (EPT) children born at < 27 weeks of gestation and 28 full-term controls. Two approaches were adopted in both
groups, when they were 10 years of age, using structural and functional brain magnetic resonance imaging data. The first
was using a novel intrinsic ignition analysis to study the ability of the areas of the brain to propagate neural activity. The
second was a whole-brain Hopf model, to define the level of stability, desynchronization, or criticality of the brain. EPT-born
children exhibited fewer intrinsic ignition events than controls; nodes were related to less sophisticated aspects of
cognitive control, and there was a different hierarchy pattern in the propagation of information and suboptimal
synchronicity and criticality. The largest differences were found in brain nodes belonging to the rich-club architecture.
These results provide important insights into the neural substrates underlying brain reorganization and
neurodevelopmental impairments related to prematurity.
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Introduction

A healthy brain operates close to a critical point, which has
been identified as the boundary between order and disorder.
Order has been described as a synchronized cluster between a
group of brain areas and disorder as desynchronization between
the remaining brain areas (Deco and Jirsa 2012; Deco et al.
2017a). This ensures that the information processing function
operates at an optimal level (Deco et al. 2017a). Even when
it is at rest, the brain is still balancing the competing activ-
ities of different network assemblies so that it can respond
flexibly and rapidly to stimuli (Deco et al. 2009; Moutard et
al. 2015). Any disturbance to these dynamics, due to genetic
or environmental factors, can have a significant impact on
healthy brain functioning. Preterm birth affects 11.1% of all live
births worldwide (Blencowe et al. 2013) and is one of the most
common clinical risk factors for neurodevelopmental disorders
(Twilhaar et al. 2018), as it has a significant effect on struc-
tural (Ball et al. 2014; van den Heuvel et al. 2015) and func-
tional brain connectomes (Fransson et al. 2011; Cao et al. 2017).
Being born very preterm, at less than 32 weeks of gestation,
and without major neurological impairment can potentially
lead to altered spontaneous cortical activity. This may affect
the optimal flow of information and neural synchronization
(Doesburg et al. 2011b).

The late effects of being born preterm can be seen dur-
ing childhood, as it affects the organization of the structural
and functional networks of the child’s brain. Children born
preterm have been reported to have more segregated and less
integrated structural brains than their term-born counterparts,
(Thompson et al. 2016). The hierarchical organization of their
brains is disrupted, and this has important repercussions on
the higher order areas (Lax et al. 2013). This leads to them
having a less efficient and robust brain (Fischi-Gomez et al.
2016), which may contribute to the cognitive difficulties reported
in preterm populations (Twilhaar et al. 2018). However, there is
little information regarding the spatiotemporal organization of
functional networks in preterm children. Studies using mag-
netoencephalography (MEG) have shown disrupted functional
network organization (Ye et al. 2016) and alterations in oscil-
latory neural synchrony affecting short-memory performance
in very preterm children (Moiseev et al. 2015). Despite that, no
studies have been carried out that have used magnetic reso-
nance imaging (MRI) data to delve into the effects that extremely
preterm (EPT) birth, being born before 27 weeks of gestation, may
have on the propagation of neural activity and criticality of the
brain.

We applied two model-based approaches that allowed us to
explore resting-brain functional organization on both a local
and global basis. The first approach used a local-to-global
framework that identified local ignitory events that propagated
neural activity in the brain and led to global integration (Deco
and Kringelbach 2017; Deco et al. 2017b). The second approach
used a whole-brain Hopf model, which examined whether
the brain operated synchronously, noisily, or under a critical
regime (Deco et al. 2017a). To do this, we used structural,
functional, and diffusion MRI (dMRI) data. Our hypothesis was
that when EPT-born children were compared with healthy term-
born controls they would demonstrate reduced ignitory events
that affected the hierarchy of information processing, together
with changes in neural synchronization and criticality during
rest.

Materials and Methods
Population

The study population was part of the Extremely Preterm Infants
in Sweden Study cohort that comprises perinatal data and long-
term follow-up data (Serenius et al. 2016). The participants in
this study were recruited from a previously described cohort of
111 preterm children born at less than 27 weeks of gestation
in Stockholm County, Sweden, between 2004 and 2007. All the
participants had successfully undergone an MRI scan at term-
equivalent age (Padilla et al. 2015). The children were followed up
and rescanned when they were a mean of 10 years ±2 months,
and 66 EPT children and 46 term-born controls were included
in this study (Supplementary Fig. 1). EPT infants with congenital
infections and malformations were excluded. In addition, we
did not include EPT infants with periventricular leukomalacia
or intraventricular hemorrhage (grade III–IV), focal brain lesions
(cysts and malformations), persistent ventricular dilatation, or
moderate or severe white matter abnormalities qualitatively
defined by MRI examinations at term-equivalent age (Skiold
et al. 2010). The exclusion criteria for the term-born children
were the same as the ones we used for the EPT sample, with
the addition of any history of birth complications. The final
sample included 33 EPT and 28 term-born children. The regional
ethical review board in Stockholm granted ethical approval for
the study, and written, informed consent was obtained from the
parents of the children.

MRI Data Acquisition

All participants were scanned at 10 ± 2 years and were asked
to keep their eyes closed during the scans. MRI data were
acquired using a Sigma HDx 3 T MR scanner (GE Health-
care). The MRI protocol included a sagittal 3D-T1 weighted
with a BRAVO SPGR sequence: time to inversion = 400 ms,
field of vision = 240 × 240 mm2; flip angle = 12◦; voxel size
1 × 0.938 × 0.938 mm3; slice thickness = 1.0 mm. Resting-
state functional data were acquired, namely: GE-EPI, time
repetition(TR)/time echo (TE) = 2000/30 ms; flip angle = 70◦; voxel
size 3.0 × 3.0 × 3.5 mm3 with full-brain coverage; 300 volumes.
dMRI (twice-refocused SE-EPI, TR/TE = 6300/72 ms; voxel size
2.3 × 2.3 × 2.3 mm3; 60 slices for full-brain coverage; ASSET factor
2) was acquired with a multi-shell acquisition with 4 b = 0, 30
b = 1000 s/mm2, 60 b = 2500 s/mm2, including an additional 2
b = 0 volumes with reversed phase-encoding polarity.

Functional MRI Preprocessing and Motion Censoring

Image preprocessing was carried out using FSL software, version
5.0.5 (FMRIB). All the raw resting-state functional MRI (fMRI)
data and outputs from each preprocessing step were examined
visually. Extreme motion data were eliminated from the begin-
ning. The preprocessing included three elements. The first was
volume realignment with the MCFLIRT intra-modal motion cor-
rection tool (FMRIB) (Jenkinson et al. 2002). A distortion correc-
tion with field map, namely reversed phase-encoding from the
dMRI, was applied. The second was co-registration of functional
data to the high-resolution structural image using boundary-
based registration (Greve and Fischl 2009). The third was regis-
tration from high-resolution structural data to the study-specific
template using the FSL FNIRT nonlinear image registration tool
(FMRIB). We calculated outlier volumes and root mean square
frame displacement for each participant using the FSL motion
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outliers tool (FMRIB) (Dipasquale et al. 2017). We also used that
tool to calculate DVARS, where D was the temporal derivative of
time courses and VARS referred to the root mean square vari-
ance over voxels. The number of outliers (>75th percentile + 1.5
interquartile range) was also recorded. We used a frame dis-
placement threshold of 0.2 mm to identify potentially motion-
contaminated scans (Power et al. 2015). Runs that had more than
15% of outlier volumes in the frame displacement or DVARS,
with more than 0.2 mm of motion displacement, were flagged up
as being potentially contaminated by motion and were excluded
from the study. We did not use scrubbing in our data, since
synthetic data and temporal discontinuities could be introduced
by data interpolation and censoring, respectively, disrupting
the temporal correlation of the signal (Caballero-Gaudes and
Reynolds 2017). Subsequently, we used aggressive ICA-AROMA,
which provides ICA-based automatic removal of motion arti-
facts, to identify and remove residual motion-related artifacts
(Pruim et al. 2015). Components identified as head motion were
removed from the signal by using linear regression, namely
non-aggressive denoising. Mean white matter and cerebrospinal
fluid signals were computed by averaging the values within
the masks that were derived from the segmentation of each
subject’s structural image. These masks were eroded to prevent
the inclusion of gray matter signals via partial-volume effects
(Ciric et al. 2017). Lastly, a band-pass temporal filter with a cut-
off frequency of 0.01–0.07 Hz was used.

dMRI Preprocessing

Prior to any processing, visual inspection of all the raw
diffusion data was carried out to detect excessive motion and/or
signal dropouts. We estimated and corrected susceptibility
and eddy current–induced image distortions and performed
motion correction using the eddy tool in FSL (Andersson and
Sotiropoulos 2016) and the reversed phase-encoding data set.
The intra-volume movements were successfully corrected
using the slice-to-volume correction routine in the eddy tool
(Andersson et al. 2017). FSL’s higher-order diffusion model
bedpostx (FMRIB) (Jbabdi et al. 2012) was used to estimate
crossing fibers within each voxel of the brain, and probabilistic
whole-brain fiber tractography was performed using FSL’s
probtrackx (FMRIB) (Behrens et al. 2007) (see details in the
Supplementary Material).

Brain Network Construction

First, both diffusion and functional data were registered to the
T1-weighted structural image, then to the population template.
The resulting transformations were concatenated, inversed, and
used to warp the automatic anatomical labeling atlas with 90
anatomical regions (Tzourio-Mazoyer et al. 2002) from the pop-
ulation template space to the individual native space using
nearest-neighbor interpolation.

A structural connectivity matrix for each participant was cre-
ated, by calculating the connections (edges) between each of the
90 areas (nodes) using probabilistic tractography as described
previously. The resulting structural connectivity matrices were
then averaged across the groups. The list of the regions and
abbreviations are provided in Supplementary Table S1. For func-
tional data we used the extracted and averaged time courses
(time-series length 10 min) of 90 cortical and subcortical brain
areas, defined by the automatic anatomical labeling atlas, to
compute subject-specific functional connectivity matrices. The

functional connectivity matrices were computed with MATLAB
and using Pearson’s linear correlation coefficient.

Intrinsic Ignition

We used the intrinsic ignition method that has previously been
described in adults (Deco and Kringelbach 2017; Deco et al.
2017b; Deco et al. 2019). Intrinsic ignition corresponds to natu-
rally occurring intrinsic perturbations in the brain. This method
quantifies the capability of a given local node, namely a neuron
or brain area, to propagate neural activity to other regions. This
then leads to different levels of integration and determines
the capacity of the whole network to become interconnected
and exchange information. Each node drives or “ignites” global
integration each time its local activity passes an amplitude
threshold of one standard deviation (Tagliazucchi et al. 2012).
The global integration of the functional connectivity matrix is
then measured at that specific time point. More specifically, for
a given brain region, we average across the events a measure of
the integration elicited at time t relative to events. We defined
the ignition event–driven integration of a given brain area as the
averaged elicited integration during a time window of four TRs,
which was determined by the time that takes the integration
to return to basal values. (Deco and Kringelbach 2017) (Fig. 1a).
Integration is computed by measuring the area under the curve
of the largest connected component of the functional connectiv-
ity matrix. This is computed at a range of thresholds, from 0 to 1
(Saenger et al. 2017). The larger this area is, the higher the inte-
gration of the network. It should be noted that integration is only
measured when a node passes the activity threshold, and this
means that the resulting ignition is paired with driving events.
The integration values are normalized between 0 and 1, where
1 represents a fully connected network and 0 denotes a fully
disconnected network. The mean of all these paired integration
events is called ignition, while the standard deviation refers to
the variations across the ignition events. This means that the
standard deviation indicates the variability of the local events
that drive the different levels of integration (Deco et al. 2017b).
Defining the variability of the ignition events across time makes
it possible to characterize the degree of hierarchy of information
processing (Deco and Kringelbach 2017). The regions with high
standard deviations, and therefore high variability, correspond
to the regions that are more computationally relevant, because
they play a central role in broadcasting information that is
located at the top of the hierarchy. In contrast, regions with a
low standard deviation, and therefore low variability, are more
likely to be related to local processing, which is located at the
bottom at the hierarchy. The entire process was repeated for
each subject in both groups, which generated subject-specific
ignition and hierarchy vectors.

Whole-brain Model

The whole-brain model was based on the average structural con-
nectivity matrix (empirical) of each group and was parcellated in
90 regions, namely nodes. The local nodes were coupled through
the underlying structural connectivity matrix, which contains
the fiber density between all pairs of brain areas. Based on this
matrix, a Hopf whole-brain model was built in order to simulate
the resting activity of each of the 90 brain nodes. The simulated
functional connectivity, known as the functional connectivity
model, was then fitted to the empirical functional connectivity
matrix (Fig. 1b).
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Figure 1. Overview of the Methodology. (a) Intrinsic ignition. The blood oxygen level–dependent (BOLD) neuroimaging signal of a previously defined brain region (A, green
signal) can be treated as spiking data by applying a threshold method (see Materials and Methods) to define an ignition event. For each driving event the activity of the

rest of the network is measured (B, read area) in the time window (gray rectangle). For each ignition event this gives rise to a connectivity matrix where integration can
be measured. (b) Whole-brain computational model. SC, structural connectivity; FC, functional connectivity. SC data were computed from dMRI-based tractography.
The anatomical labeling atlas was used to parcellate the dMRI data in 90 anatomical regions. Then, a structural connectivity matrix (90 × 90) for each participant
was created. The functional data from fMRI-BOLD activity was also used to create an FC matrix (empirical) following similar aforementioned steps (see Materials and

Methods). Based on the SC matrix, a computational model is built to construct a simulated FC matrix (FC model) that is fitted to the empirical FC matrix, using different
model parameter combinations. The optimal fit corresponds to a minimal Euclidian distance. (c) Hopf bifurcation model. The local dynamics of each node is modeled
by using a normal form of a Hopf bifurcation. The nodes can behave synchronously (oscillations), asynchronously (noise), or critically (noise + oscillations), and these
characteristics are represented by a bifurcation alpha value (bifurcation parameter, BP) with positive, negative, and values around 0, respectively. The simulated signal

looks like the empirical data when the nodes are at the border between noisy and oscillatory behavior (bifurcation point).

Hopf Bifurcation Model

We explored the difference in the underlying global and local
dynamics further by using a whole-brain Hopf bifurcation model
with a whole-brain fiber tractography-based structural back-
bone network (Deco et al. 2017a). The activity of the brain
networks is characterized by a mix between order and disorder.
Order is expressed as cluster synchronization between a group
of brain areas, and disorder is expressed as desynchronization
between the remaining brain areas. Furthermore, those states
of partial synchronization are metastable. This means that the
brain is constantly switching between different states of partial
synchronization, for example the group of areas that show
synchronized changes across time. This state, which lies on the
boundary between order and disorder, is called the critical state,
and a system that is in this state is referred to as being “at crit-
icality”. When the system is at the point of transition between
the two different states, this is known as the “bifurcation point”.

In this context, the Hopf bifurcation model can be used to
simulate the resting activity of each of the 90 nodes derived
from the anatomical labeling atlas parcellation, as previously
described in this paper. In short, this model can be used to iden-
tify how nodes behave locally in terms of bifurcation. The nodes
can behave synchronously, asynchronously, or critically, and
these characteristics are represented by a bifurcation “alpha”
value with positive, negative, and values around 0, respectively
(Fig. 1c). The resting brain dynamics (functional connectivity
model) that emerge from the coupled structural nodes (empir-
ical, structural connectivity) simulated by the Hopf model use
two parameters to scale and approximate simulated empirical
activity. The first is a global coupling strength scaling factor
(G) that determines the impact of the structural connectivity in
brain dynamics; a higher optimal G means that modeled func-
tional connectivity is more constrained by the structural con-

nectivity and a lower optimal G means that structural informa-
tion becomes less relevant. The second is the local (nodal) bifur-
cation parameter alpha. This local critical behavior is approxi-
mated by using a gradient-descent algorithm that reduces the
error between the modeled and empirical power spectrum in
each node. Once this error is lower than 10%, then the final
bifurcation value for each node is fixed. Those values are then
considered to be optimized, because they represent the optimal
power spectrum in the empirical data (Donnelly-Kehoe et al.
2019). This means that they can be used to compare the dynamic
local (Saenger et al. 2017) and global (Jobst et al. 2017) differences
in brain activity between the groups. More information about
this procedure can be found in the Supplementary Material and
in previously published studies (Deco et al. 2017a; Donnelly-
Kehoe et al. 2019; Saenger et al. 2017).

We used two metrics to measure the level of agreement
between the modeled and empirical data. The Kolmogorov–
Smirnov distance was used to reflect the similarity of intrinsic
fluctuations (dynamic functional fitting), while the structural
fitting measured the Pearson correlation between the modeled
and empirical functional connectivity matrices. Given that the
relevance of dynamic rather than static information was pri-
oritized in the current study, the most important score is the
Kolmogorov–Smirnov distance, which is better as it gets closer
to 0, as it portrays dynamic information. (Donnelly-Kehoe et
al. 2019). Further details of this method have previously been
described (Deco et al. 2017a; Jobst et al. 2017; Saenger et al. 2017)
and are also provided in the whole-brain modeling section of the
Supplementary Material.

Statistical Analysis

Data were analyzed using SPSS version 20 (IBM Corp.). The
independent samples t-test and Wilcoxon rank-sum test (equiv-
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Table 1 Characteristics of the children born EPT and full term

Characteristic EPT Term Statistic (P) EPT Term Statistic (P)
Ignition analysis

Value ± SD
Hopf model analysis

Value ± SD
N = 33 N = 26 N = 28 N = 21

Perinatal Data
Gestational age (weeks) 25.7 ± 0.9 39.9 ± 1.1 t − 52.8 (<0.001) 25.7 ± 0.9 39.8 ± 1.2 t − 45.9 (<0.001)
range (23.5–26.6) (37.3–41.5) (23.5–26,6) (37.3–41.5)

Birth weight (g) 856.2 ± 173.4 3663 ± 421.0 t − 31.8 (<0.001) 854.6 ± 178.7 3600 ± 387.0 t − 31.8 (<0.001)
range [550–1161] [2.8754100] [550–1161] [2875–4100]

Gender (boy/girl) 13/20 14/12 Fisher’s test (0.17) 11/17 9/12 Fisher’s test (0.17)
Age at MRI (years) 10.0 ± 0.8 9.9 ± 0.9 t 0.65 (0.52) 10.14 (0.82) 9.90 (0.92) t 0.94 (0.34)
range 9.0–11.5 8.0–11.8 9.0–11.5 8.0–11.8

Motion estimation after
AROMA
Average FD-RMS mean
SD

0.10 ± 0.05 0.08 ± 0.04 t 1.44 (0.15) 0.10 ± 0.06 0.11 ± 0.12 t − 0.41 (0.68)

Average DVARS-RMS
mean SD

5.97 ± 0.84 5.84 ± 0.91 t 0.23 (0.81) 5.96 ± 0.98 5.99 ± 1.05 t − 0.10 (0.91)

Number of frame
outliers FD-RMS

19.9 ± 10.12 19.52 ± 9.5 t 0.14 (0.88) 17.57 ± 9.39 19.75 ± 10.27 t − 0.76 (0.45)

Number of frame
outliers DVARS

14.4 ± 6.96 14.4 ± 9.14 t 0.02 (0.98) 14.61 ± 5.92 17.14 (1247 t 0.94 (0.35)

Rotation X 0.11 ± 1.78 0.45 ± 1.61 t − 0.73 (0.46) 0.46 ± 1.71 −0.42 ± 1.76 t 1.0 (0.31)
Rotation Y −0.26 ± 0.60 0.13 ± 0.54 t − 1.03 (0.30) 0.04 ± 0.57 −0.13 ± 0.54 t 0.34 (0.73)
Rotation Z 0.25 ± 1.53 −0.57 ± 1.69 t 1.87 (0.06) 0.30 ± 1.60 −0.60 ± 1.67 t 1.95 (0.06)
Translation X −0.03 ± 0.19 0.02 ± 0.12 t − 1.29 (0.20) −0.05 ± 0.25 0.02 ± 0.11 t − 0.54 (0.58)
Translation Y −0.10 ± 0.48 0.003 ± 0.13 t − 1.09 (0.27) −0.14 ± 0.53 0.02 ± 0.11 t − 1.10 (0.27)
Translation Z −0.007 ± 0.22 0.009 ± 0.13 t − 0.31 (0.75) −0.02 ± 0.29 0.02 ± 0.12 t − 0.26 (0.98)

FD, frame displacement; RMS, root mean square; DVARS, D is temporal derivative of time courses and VARS is RMS variance over voxels.

Figure 2. Ignition. (a) Ignition values across the brain and variability across events for the preterm (orange) and the term (green) groups. Standard error is represented
at a shaded area. (b) Ranked (descending) ignition and variability values where top 10 regions (highlighted in gray within the plot) for both groups are described at the
top right insert. Rendered brains show the top 10 regions with the highest values in ignition and variability across events.
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alent to a Mann–Whitney U test) were applied, where appro-
priate, to assess group differences, and two-sided P < 0.05 was
considered statistically significant. When it came to the bifur-
cation analyses, we applied a permutation test to investigate
statistical differences between the distributions of bifurcation
values between both groups. This was because the distribution
of bifurcation values is highly non-normal and can present bino-
mial characteristics (Saenger et al. 2017). The first step was to
compute three distribution statistics for the bifurcation values
for each of the two groups. “Kurtosis” captured the shape of the
distribution, “second-order raw moment” captured the data dis-
persion from zero, and finally the “median” separated the lower
values from the higher half of the distribution. We computed
the absolute difference (delta) for each of these three distri-
bution statistics, so that we could quantitatively represent the
differences in the distribution characteristics between the term
and preterm groups. Once the observed absolute differences
were computed for the three statistics, the bifurcation values
of both of the distributions were pooled together. This process
was repeated 10 000× to finally compute the significance, which
was when the proportion of delta random was larger than the
observed delta for each statistic (Saenger et al. 2017). Finally,
we tested the relationship between the ignition and bifurcation
distributions by using Spearman’s correlation test.

Results
Characteristics of the Population

This study comprised 33 children born EPT and 28 children born
full term with a mean age of 10.14 ± 0.81 versus 9.98 ± 0.90 years,
respectively. As expected, there were significant differences
between the two groups in terms of gestational age and birth
weight. The two groups did not differ in terms of motion
parameters, namely translation and rotation (Table 1). The
characteristics of the two cohorts are summarized in Table 1,

and the neonatal morbidity of the preterm group is shown in
the Supplementary Table S2.

Intrinsic Ignition

The mean value of the ignition events across the brain areas was
significantly different between the two groups (preterm 0.708,
term 0.710, Wilcoxon rank test, P < 0.0001, z = 4.35) (Fig. 2a). When
the top 10 nodes with the highest values were ranked, the two
groups shared some of the regions with the highest ignition
values, namely the orbito-frontal superior, left gyrus rectus, right
superior temporal-pole, and occipital cortices. The regions with
the highest ignition values in the preterm group included the
bilateral anterior cingulate gyrus (affective regulation) and the
globus pallidus (motor and non-motor behaviour). Meanwhile,
the term group recorded the highest values in the left temporal
inferior (high level of visual processing and object recognition),
the right orbito-frontal middle, and the bilateral inferior cortices
(cognitive processing of decision making) (Fig. 2b). The preterm
group had a smaller variability of ignition events across the brain
regions compared with the term group (preterm 0.032, term
0.035, Wilcoxon rank test P = 0.01, z = −2.53) (Fig. 2a). In order to
define how important the brain nodes were for broadcasting
information across the brain, we calculated the variability of the
ignition events across the nodes in the two groups. The brain
nodes with the highest variability in the preterm group included
the right superior parietal cortex, the right gyrus rectus, the left
precentral areas, the left middle temporal pole, and the bilateral
superior occipital cortices (Fig. 2b). In the term groups the high-
est variability nodes included the right parahippocampal gyrus,
the left middle superior frontal gyrus, the left fusiform gyrus, the
left precuneus, and the left paracentral cortices.

Whole-brain Hopf Bifurcation Model

We simulated the resting-state fMRI blood oxygen level–
dependent activity in each of the 90 nodes from the parcellation,

Figure 3. Fitting between empirical and simulated brain activity. Static (left) stands for the correlation between empirical and simulated functional connectivity by
means of a Pearson correlation coefficient. Dynamic (right) represents the Kolmogorov–Smirnov distance between the distributions of ongoing dynamics. The closer

simulated and empirical dynamics are the lower the distance. The optimal coupling values are described in the top right corner of each plot. Preterm group (orange)
and term group (green). Solid lines represent mean fitting values, while shadowed areas represent the standard deviation over simulations (as many as subjects per
group).
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explained above, by using the whole-brain Hopf model with the
brain nodes coupled through the empirical structural connectiv-
ity matrix. The preterm group had a larger optimal G parameter
when we used both the structural (0.175) and functional (0.45)
fitting, compared with the term group (0.10, structural and 0.15,
functional), which suggests that modeled preterm dynamics are
more constrained by structural connectivity. This pattern can be
observed in Figure 3, which shows that the ongoing simulated
dynamics in the preterm group reached maximal similarity
with the empirical dynamics at a higher coupling than in the
term group. Coupling can be interpreted as a connectivity scaler,
where higher coupling values for maximum similarity mean
that more structural information is required to reach the optimal
fit. This suggests that functional interactions were more directly
related to the underlying structural connectivity and that this
led to a more stringent and less dynamic brain function in the
preterm group.

The second parameter of the model, the bifurcation parame-
ter distribution, was then determined between the two groups.
The median of the bifurcation parameters at the working point
was −0.025 in the preterm group and 0.015 in the term group
(Fig. 4a). We used a permutation test to explore if these qualita-
tive differences were reflected by robust statistical differences,
and this found significant differences in the medians between
the distributions (observed = 0.0301, P = 0.0001) and moment

(observed = 0.0027, P = 0.0005) (Supplementary Fig. 2a). These
results indicate that the distribution in the term group tended to
be more positive and significantly closer to the bifurcation point
than the preterm group (Supplementary Fig. 2b). In contrast, the
bifurcation parameter distribution in the preterm group was
significantly less centered around zero, with a more negative
distribution in alpha values. The highest absolute differences
between the two groups were found in the bilateral middle
temporal gyri, right paracentral gyrus, bilateral orbital middle
frontal gyrus, left globus pallidus, right inferior occipital gyrus,
right Heschl’s gyrus, left temporal pole, and right superior
temporal gyrus (Fig. 4b and c).

Correlation between the Highest Differences in Alpha
Bifurcation and Ignition Values

Most of the regions with the highest differences in ignition
values between the two groups also had the highest differences
in the Hopf bifurcation analysis. Despite that, some nodes
appeared exclusively in the ignition data, and these were the left
inferior temporal gyrus, right gyrus rectus, right calcarine, and
right inferior orbito-frontal gyrus. Meanwhile, others appeared
exclusively in the Hopf data, namely the right paracentral gyrus,
left globus pallidus, right Heschl’s gyrus, and right superior
temporal gyrus. We found a positive significant correlation

Figure 4. Whole-brain Hopf bifurcation model. (a) Bar plot of alpha bifurcation values across the brain for preterm (orange) and term (green) groups. The third blue

plot shows the absolute difference (term and preterm) between alpha bifurcation values on each region. Asterisks show the top 10 regions with highest difference. (b)
Ranked absolute differences between the term and preterm alpha vectors. The top 10 regions presenting the highest difference are marked with red and described in
the top right insert and (c) displayed in the rendered brains

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz156#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz156#supplementary-data
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Figure 5. Differences in bifurcation (alpha) and ignition values. (a) and (c) represent rendered brains showing the top 10 regions with the highest differences (delta) in

alpha bifurcation and ignition values. (b) Plot representing the ranked delta in alpha (red) and ignition values (green), with the top 10 regions representing the highest
differences described in the insert. (d) Scatter plot between delta alpha and delta ignition with a fitted linear regression (straight gray line) and 95% confidence bounds
(dotted lines). Spearman’s rank correlation coefficient between these two variables is indicated by r.

(Spearman’s rho = 0.207; P = 0.049) between the ignition and
bifurcation distributions (Fig. 5).

Discussion
This study used the novel concept of intrinsic ignition to char-
acterize the dynamical complexity of the propagation of the
neural information in the brain of EPT-born children. We used
a whole-brain Hopf bifurcation model to explore the local and
global impact that EPT birth had on the brain, with regard to
creating the critical states that provide the necessary conditions
for cognitive processes. There were three main findings when
we compared our 10-year-old EPT cohort with healthy term-born
controls of the same age. The first was that EPT children had
reduced intrinsic ignition events. The second was that we found
a different hierarchy pattern in the processing of information.
Thirdly, the EPT children experienced a suboptimal neural syn-
chrony and criticality, with the largest differences between these
subjects and the controls found in the brain nodes that belong
to the rich-club architecture. The data collected by this study
provide us with a unified framework that helps us to under-
stand the neural substrates that underlie the brain reorganiza-

tion and neurodevelopmental impairments associated with EPT
birth.

Intrinsic Ignition Analysis

The EPT children had significantly lower intrinsic ignition events
than the term group. As previously described, during the resting-
state mode, brain regions tend to self-ignite, and they have the
ability to start the propagation of neuronal activity to other
regions over time, which drives global integration (Deco and
Kringelbach 2017; Deco et al. 2017b). Despite the lack of com-
parable studies, our results are consistent with previous investi-
gations that have shown poor structural integration in preterm
children (Fischi-Gomez et al. 2016; Thompson et al. 2016), which
could be related to reduced ignition events. This was in line
with observations from a previous study using MEG during the
resting state, which showed reduced spontaneous neuromag-
netic activity in preterm children (Doesburg et al. 2011b). This
could have been related to a reduced amount of spontaneous
ignition events. During normal development, a progressive shift
toward high-frequency oscillation continues throughout child-
hood. This means that reduced spontaneous activity, and there-
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fore reduced ignition events, could be interpreted as a delay in
the development of normal brain maturation, due to abnormal
physiological (Kwon et al. 2014), neurostructural (Karolis et al.
2016; Munoz-Moreno et al. 2016), and functional developmental
trajectories (Fransson et al. 2007; Smyser et al. 2016; Padilla et
al. 2017b). If a brain area does not ignite well, it will have a
limited ability to propagate neural activity to other areas of the
brain, and this will reduce the integration and affect the effi-
ciency of global neural communication. This could be critical for
the generation of cognitive processes in this population (Ward
2003). It should be noted that these changes should be placed
within a developmental framework, following a previous study
that reported that the brains of individuals born very preterm
displayed accelerated maturation from adolescence onwards
(Karolis et al. 2017). Future studies are clearly needed to explore
this issue in greater depth.

The regions with the highest ignition varied between the
two groups. In the preterm group, the highest ignition regions
included those previously reported as being involved in process-
ing affective regulation, motor (planning, control, and behav-
ior), and some complex aspects of cognitive function (semantic
language and visual integration). In the term group, we found
a more consistent pattern of high ignition in areas involved in
the processing of more complex aspects of cognitive function,
namely multisensory integration and working memory.

In the children born EPT, the hierarchy of information pro-
cessing, based on the variability of the intrinsic ignition events,
was predominantly driven by visual and sensory regions. This
was different from the term group, where the fronto-temporal
(higher-order regions) and associative areas (angular gyrus) were
involved. A healthy brain follows a primary-to-higher order mat-
urational sequence (Chomiak and Hu 2017; Friedrichs-Maeder
et al. 2017), consistent with their behavioral correlates. This
means that during development, higher-order processing areas,
such as the fronto-temporal and precuneus regions, display
increased maturational priority over the sensory–motor regions.
The higher-order processing areas then become pivotal nodes
for the regulation of neural activity and neurocognitive devel-
opment (Kolskar et al. 2018). Our study found that EPT-born
children exhibited a different pattern of intrinsic functional
organization, where the brain nodes with the highest intrinsic
ignition values were predominantly located in sensory–motor,
limbic and paralimbic regions, and somatosensory association
cortices. These results were in line with previous studies that
showed how prematurity disturbed the typical hierarchical pat-
tern of structural and functional cortical maturation in children
(Lax et al. 2013; Fischi-Gomez et al. 2015). The brains of children
born EPT have malfunctioning or replaced core components that
transfer information from one level to another (Karolis et al.
2016). They may also be affected by jeopardized hierarchical
organization, leading to functional alterations (Crossley et al.
2014). Importantly, aberrant hierarchical organization has been
described in autism (Parr et al. 2018), which is a highly prevalent
disorder among children born EPT (Padilla et al. 2017a).

Whole-brain Hopf Bifurcation Model

Computational models enabled us to study the link between
anatomical structure and resting-state network dynamics. We
found that the EPT group showed significantly lower synchrony
than the term controls. Our results are in line with previous
studies that used MEG to show reduced oscillatory synchrony
when very preterm children performed a task (Moiseev et al.

2015) and during their resting state (Doesburg et al. 2011a; Ye et
al. 2016). The mechanisms underlying the reduced synchrony
that we observed could have been related to atypical develop-
ment of white matter in the EPT group. Functional networks are
extensively reconfigured during late childhood and adolescence
(Supekar et al. 2009; Grayson and Fair 2017). These phenomena
involve progressive and regressive neurobiological changes
in myelination, axonal diameter, remodeling of synapses
(Hagmann et al. 2010), and neurochemical changes (Crews et
al. 2007), which are reflected in the maturation of the frequency
and synchronization of oscillatory activity (Uhlhaas et al. 2010).
Extreme preterm birth may disrupt these processes, leading to
abnormal neural synchrony (Moiseev et al. 2015; Ye et al. 2016),
which has important implications for the cognitive development
of this population (Doesburg et al. 2010).

The bifurcation parameter distribution in the preterm group
was significantly less likely to be centered around zero than the
term controls. Distributions close to zero are usually referred
to as healthy (van Hartevelt et al. 2014; Saenger et al. 2017). A
brain with nodes that work at the edge of criticality could be
considered to be a flexible system, as this makes it possible
for the brain to adapt rapidly and efficiently to external and
internal demands (Deco et al. 2017a). Extreme prematurity may
compromise this adaptability by disturbing the ability of the
cortical networks to reconfigure themselves across time, with
further detrimental effects on supporting processing demands
(Deco et al. 2011). This was reflected in a higher optimal G in
the EPT group, suggesting that the functional connectivity in
the model was more constrained by the structural connectivity,
as previously suggested in adults (van Hartevelt et al. 2014;
Saenger et al. 2017). Parameter G is a global scaling factor, which
means that the global conductivity parameter scales equally
for all synaptic connections. In other words, the G parameter
scales the underling white matter to fit the functional data,
and a larger G parameter suggests a possible weakening of the
underlying white matter, which in turn could be interpreted as
a relative paucity of white matter resources (Karolis et al. 2016),
reflecting weaker connectivity in the EPT group as previously
demonstrated (Fischi-Gomez et al. 2016; Thompson et al. 2016).
In contrast, proper fitting values were slightly higher in the EPT
group (both static and dynamic fit; Fig. 3), which might be due to
the larger data set in this group (33 compared with 26 subjects),
allowing the model to reach higher similarity with empirical
data. Future studies are clearly needed to explore this issue.

The regions with the largest bifurcation parameter differ-
ences between the two groups overlapped with those hubs
described in the rich-club architecture, which is a highly central
connected backbone that is thought to enable efficient net-
work communication in the brain (Ball et al. 2014; Karolis et
al. 2016). Overall, these nodes were asynchronous in the EPT
group, pushing the brain further away from a critical regime
where it works properly (van Hartevelt et al. 2014; Saenger et
al. 2017). One of the most asynchronous regions was the globus
pallidum, which is of interest in premature infants, as their
rich-club architecture is preserved at the expense of disruptions
in cortico-subcortical connectivity (Ball et al. 2014; Karolis et
al. 2016). We could speculate that the set of nodes that are
part of the dynamic repertoire might be conditioned by the
brain reorganization that takes place when an infant is born
premature. In turn, this could be compensatory (Brittain et al.
2014) or could be central to mediating a wide spectrum (Uhlhaas
and Singer 2012) of cognitive deficits (Twilhaar et al. 2018), motor
deficits (Bolk et al. 2018), and neuropsychiatric disorders, such
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as autism (Padilla et al. 2017a). Studies with larger samples are
needed to further characterize the nature and extent of these
changes.

The correlation between the differences in bifurcation
parameter and ignition values between the preterm and
term-born groups revealed the degree to which these two
complementary dynamical properties are interrelated in the
complex dynamics of the brain (Deco et al. 2017b). These
findings indicate that positive bifurcation dynamics, which
reflect stable oscillations, indicate higher ignition values, while
noisy dynamics reflect lower ignition. These results should
provide the grounds for future studies that carefully explore
these relationships.

Strengths and Limitations

The strengths of this study included the methodology, which
combined the intrinsic ignition method with a whole-brain
computational model not previously used in children born
EPT. In addition, the cohort we studied was well defined,
the EPT group did not display major brain alterations on
the MRI scans, and their mean gestational age at birth was
lower than in previously published studies. Although the
effect of motion artifacts was an issue, we undertook rigorous
processing to minimize any effects this may have had on the
data and excluded participants if the motion artifacts were
too severe to correct. Although the neurodevelopmental data
for the children included here are not available yet, further
studies including these data would help to determine the
significance of the results found in the EPT group in our
study. In addition, we are aware of the valid concern that
we cannot make causal inferences about model parameters
and neurobiological signals using computational approaches
for the data obtained during MRI brain scans. However,
computational formulations offer a detailed and quantitatively
precise characterization of processes that are not accessible
with other methods, suggesting more sophisticated explanatory
frameworks.

Conclusion
This study compared the functional organization of the resting
brain in children born EPT by comparing them with term-born
controls at 10 years of age. We found that the EPT brains were
characterized by reduced intrinsic ignition events, a different
hierarchy pattern in the processing of information and subop-
timal neural synchrony and criticality. The largest differences
between the two groups were found in functional brain nodes
overlapping the rich-club architecture. These results provide
important insights into the neural substrates that underlie brain
reorganization and neurodevelopmental impairments related
to extreme prematurity. They also identify areas of the brain
that could be strengthened by tailor-made interventions, so
that clinicians can optimize the functions and quality of life of
vulnerable children following EPT birth.
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