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Abstract
Research is needed to create early warnings of dengue outbreaks to inform stakeholders and

control the disease. This analysis composes of a comparative set of prediction models includ-

ing only meteorological variables; only lag variables of disease surveillance; as well as combi-

nations of meteorological and lag disease surveillance variables. Generalized linear

regression models were used to fit relationships between the predictor variables and the den-

gue surveillance data as outcome variable on the basis of data from 2001 to 2010. Data from

2011 to 2013 were used for external validation purposed of prediction accuracy of the model.

Model fit were evaluated based on prediction performance in terms of detecting epidemics,

and for number of predicted cases according to RMSE and SRMSE, as well as AIC. An opti-

mal combination of meteorology and autoregressive lag terms of dengue counts in the past

were identified best in predicting dengue incidence and the occurrence of dengue epidemics.

Past data on disease surveillance, as predictor alone, visually gave reasonably accurate

results for outbreak periods, but not for non-outbreaks periods. A combination of surveillance

and meteorological data including lag patterns up to a few years in the past showedmost pre-

dictive of dengue incidence and occurrence in Yogyakarta, Indonesia. The external validation

showed poorer results than the internal validation, but still showed skill in detecting outbreaks

up to two months ahead. Prior studies support the fact that past meteorology and surveillance

data can be predictive of dengue. However, to a less extent has prior research shown how

the longer-term past disease incidence data, up to years, can play a role in predicting out-

breaks in the coming years, possibly indicating cross-immunity status of the population.

Introduction
The incidence of dengue has grown dramatically around the world in the last few decades [1,2].
Recent research estimates that there are 390 million dengue infections per year and predict that
dengue transmission is ubiquitous throughout the tropics, with the highest risk in the Americas
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and Asia regions [2]. The economic burden of dengue on endemic countries are large and
country case studies unveiled rough estimates for 2011 outbreak costs of, for example, 4.5 mil-
lion US$ in Peru, 6.75 million US$ in Indonesia and 12 million US$ in Vietnam (all in 2012 US
$) [3].

The dengue incidence patterns in the Southeast Asia Region are periodic and the situation
of an epidemic in various countries varies greatly from time to time and from place to place
[4]. Indonesia has been estimated the country with the highest economic burden of dengue in
the region [5]. Dengue in Indonesia was first reported in 1968 in Jakarta (DKI Jakarta) and
Surabaya (East Java). Incidence of dengue over the past 45 years increased rapidly with the
highest incidence rate shifting from young children to older age groups [6]. Generally, the pat-
tern of dengue cases is inversely related to the patterns of mortality rate, but also underlying
this aggregated trend heterogeneous temporal and spatial patterns emerge. The case fatality
rate (CFR) approximated to 41% when first reported in 1968, but has declined since then and
estimated 0.7% in 2013 [6]. In recent time, the dengue geographical transmission pattern in the
study area have changed from it being an almost entirely urban disease to becoming much
more prevalent in rural areas [7]. However, most of the reported dengue cases are from areas
with high population density, such as provinces in Java, Bali and Sumatra [6,8].

Dengue infection has a broad clinical illness spectrum, ranging from asymptomatic, or
undifferentiated febrile illness (viral syndrome), dengue fever (DF), dengue hemorrhagic fever
(DHF), to dengue shock syndrome (DSS) [9]. Dengue infection may cause complications in
the nervous system and other clinical complications, with sequelae or fatal consequences [10].
Clinical management of dengue infection is generally relies on body fluid handling, and proper
management save lives [9]. Severe dengue condition only occur as a small part of the overall
dengue burden, and it remains difficult to identify patients who have higher risk of sever dis-
ease [11].

Exposure to one serotype of the four dengue viruses serotypes (DENV1-4) leads to lifelong
immunity to infection of the specific serotype [12], and boost shorter-term cross-protection
against other serotypes [13] for approximately 1–3 years [14]. However, vaccines for dengue is
developing, today it remains difficult to balancing between neutralizing antibody responses to
all four serotypes and remain high efficacy of immunization [11]. Sequential infection of differ-
ent serotypes of dengue appears to increase the risk for a more severe disease [15].

The primary vector of dengue, Aedes aegypti mosquitoes, adapt well to human environ-
ments. It prefers to rest inside the house and to feed during the day [16]. In order for transmis-
sion to occur, the female Aedes aegypti mosquito must bite on the infected person during the
viraemic phase of the illness [9]. After entering the mosquito through the blood meals, dengue
virus requires additional 6–15 days for incubation before it can then be transmitted to another
person [17].

Vector and virus dynamics are sensitive to changes in meteorological pattern. For example,
Aedes larvae have been found mostly in the rainy season because rainfall contributes to gener-
ate vector-breeding sites [18,19]. However, the relationship between rainfall and dengue is
non-linear, and heavy rainfall can severely affect vector abundance downwards [19]. Tempera-
ture and humidity influence vector biology and vector-virus interactions, through vector lon-
gevity, mating, dispersal, feeding behavior and oviposition, as well as a more rapid replication
of the virus [20,21]. Associations between rainfall, temperature and humidity to dengue cases,
without the intermediate steps of mosquito life-cycle, have been observed in several areas
[19,22,23].

The dengue control program in Indonesia aims to halt and prevent the transmission of dis-
ease through vector control [8]. Vector control is widely used and the methods to control den-
gue, but is frequently unsuccessful [24]. One main reason for vector control being less
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successful is thought related to the poor and reactive management targeting interventions too
late in the epidemics. Thus, dengue control, through early warning systems, may show much
more effective [8].

An existing early warning for dengue in Yogyakarta has been able to categorize an epidemic
year based on disease surveillance and sea surface temperature anomalies data in the preceding
months of October and November [25]. However, this system has its limitation as it only tries
to estimate the nature of the next year's epidemic activities beginning in March. Meanwhile
another study in Yogyakarta shows that there is more than one peak of the monthly number of
dengue cases that took places throughout the year [26]. In addition, a study conducted in Sin-
gapore provides evidence that dengue can be forecasted with good precision up to 16 weeks
ahead by the use of appropriate disease surveillance data and information on the meteorologi-
cal conditions prior the onset of the outbreak [27]. Therefore, it may be possible to develop an
early warning that is able to estimates the nature of the next one or two month's epidemic activ-
ities for Yogyakarta.

Therefore, this study set out to study predictiveness of dengue transmission in Yogyakarta
Municipality using meteorological and surveillance data. The objectives of this study are: (1) to
describe the relationship between predictors on subsequent dengue transmission; and (2) (3) to
find and optimal combination of predictors and estimate predictive ability on external data.

Materials and Methods

Study Area
Yogyakarta Municipality is one of the five districts and the capital of Yogyakarta Province,
Indonesia. It is located about 538 km from Jakarta and 329 km from Surabaya. The two largest
cities in Indonesia where dengue was first reported in1968 [8]. Yogyakarta Municipality is geo-
graphically located between 110°20’41” to 110°24’14” East Longitude and 07°45’57” to 07°
50’25” South Latitude, on the south central of Java Island. The topography is characterized by
slope terrain much influenced by Merapi volcano, with the altitude is between 75 to 132 m
above sea level. The Yogyakarta Municipality area is 32.5 km2, and divided into 14 sub districts
and 45 villages [28]. Official reports for Yogyakarta Province in 2013 mention 390,553 persons
habituating in the area, and a population density of 12,017 people per km2. The population
density for the whole Yogyakarta Province is considerably lower and amounts to 1,095 people
per km2. The annual population growth rate in Yogyakarta Municipality is below 1% during
1990–2010, thus the population was relatively stationary during the study period (S3 File).

Based on Yogyakarta Province Health Profile in 2011, DHF Incidence Rate per 100,000
Population for Yogyakarta Municipality is estimated to 105, compared to the DHF Incidence
Rate for Yogyakarta Province, which is estimated to 29. Yogyakarta Municipality contributes
most to dengue among the five districts in the Yogyakarta Province. For the years 2001, 2002,
2005, 2006, and 2009, the number of dengue patients in the Yogyakarta Municipality contrib-
utes to around 50% of all dengue patients in the Yogyakarta Province (Fig 1). The municipality
has a total area of around 1% of the total area of Yogyakarta Province, and almost all villages in
Yogyakarta Municipality report dengue cases [26].

Data
In this study, we have used aggregated monthly dengue cases (dengue fever + dengue hemor-
rhagic fever + dengue shock syndrome) at municipality level from the Dengue Surveillance
Report, Yogyakarta Municipality District Health Office, for the period 2001–2013. Meteorolog-
ical data from 2001–2013 was obtained from the Indonesian Agency for Meteorology, Clima-
tology and Geophysics (BMKG). Records of cumulative monthly rainfall (mm), mean monthly
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temperature readings (°C), and mean monthly relative humidity (percentage) were obtained.
The meteorological data was merged to the aggregated total number of confirmed dengue cases
per month.

A model was developed and validated by dividing the data file into two datasets: the data
from January 2001 to December 2010 was used to train a model, and data from January 2011
to December 2013 was used for testing and validate the fitted model. There were only one miss-
ing observation for temperature, rainfall and relative humidity in the training dataset, mean-
while there were eight missing observation for temperature, two missing observation for
rainfall and seven missing observation for relative humidity in the testing dataset. Since the
amount of missing data is very small relatively to the size of the training dataset we did not
impute missing data. In a sensitivity analysis, in the supplementary material, we show that
imputation does not contribute to better model fit (S2 File).

Statistical Analysis
The analyses focus on studying the meteorological variables relationship to the dengue time
series, as well as the self-inherit predictiveness within the dengue time series itself. The analyses
compose of a set of prediction models and compare predictive ability to the disease count, to
detect and predict the temporal patterns of dengue and dengue outbreaks. According to previ-
ous findings there is evidence for a relationship between weather and dengue transmission
with up to a 16–20 weeks delay between the variability in the weather factors and correspond-
ing influences on the dengue cases [27]. We therefore decided a priori, for weather, to use lag
times with up to 4 months delay in the analysis, thus, including lag 0–3 of the meteorological
variables.

Using standard correlation analysis, we found the rainfall variable to be highly correlated to
the relative humidity variable. As the high correlation may give rise to singularity problems
when fitting a statistical model, we addressed this by subtracting the co-variation of

Fig 1. The Number of Dengue Cases in Yogyakarta Province, 2001–2010.

doi:10.1371/journal.pone.0152688.g001
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temperature and rainfall in the relative humidity series using a generalized linear model with a
Gaussian link function and allowing the temperature and rainfall to co-vary to humidity using
a non-linear natural cubic spline function with 3 degrees of freedom per variable according to:

RHt � a þ ns ðTMPt; df ¼ 3Þ þ ns ðPREt; df ¼ 3Þ ð1Þ

Where t corresponds to time in months taking the values 1 to 120 from the start of the
study January in 2001 to the end of the study period December in 2010. RHt is the measure-
ment of relative humidity on month t, α corresponds to the intercept, ns() denotes a natural
cubic spline, TMPt and PREt correspond to the readings of temperature and rainfall in month
t, and df defines the degrees of freedom (and determines the number of knots) for the natural
cubic spline function.

In the subsequent analyses, we used the residuals from above model as to represent relative
humidity adjusted for temperature and rainfall co-variation. The residuals can be expressed as:
RHrest = RHt − fitted(RHt) from the model (1) above. The residuals of relative humidity are,
thus, independent and are not correlated to the temperature and rainfall. The reasoning for
taking this approach was that we expected most of the variability in relative humidity over the
months to be, in fact, intermediate to rainfall levels, as in combination with temperature levels
it largely determines evaporation. As a consequence, we managed to overcome potential
collinearity.

The initial analyses of meteorological variables and their association to the disease patterns
over time were established using all lag of month 0–3 of temperature, rainfall and adjusted
humidity in the model at the same time. This approach was taken as to disentangle the various
lag contributions influences of the same meteorological variable in the results. The patterns
were studied in relation to disease counts assuming a quasi-Poisson distribution and a log link
function of the dengue count data allowing for over-dispersion. In supplementary information
(S1 File) we illustrate the small difference in model fit when making a Negative Binomial distri-
bution assumption versus a quasi-Poisson distribution assumption. The generalized linear
regression models fitted allowed non-linear relationships between the weather variables and
the dengue outcome variable by using natural cubic spline functions with 3 degrees of freedom
per variable. The regression model can be expressed as:

logðD0;tÞ � aþ
X3

l¼0

nsðTMPlt; df ¼ 3Þ þ
X3

l¼0

nsðPRElt; df ¼ 3Þ þ
X3

l¼0

nsðRHreslt; df ¼ 3Þ ð2Þ

Where log() denotes the natural logarithm, t corresponds to time in months, D correspond
to the dengue count, the first index, l, denotes the lag variables, ns() denotes a natural cubic
spline, and TMPt, PREt and RHrest correspond to the readings of temperature, rainfall and rela-
tive humidity adjusted for rainfall and temperature variation, and df denote the degrees of free-
dom for the natural cubic spline function.

Sensitivity analyses were performed on these analyses, and included adding a time trend
variable to account for between year variability in the dengue series not related to the other fac-
tors included. The time trend function was modelled using a natural cubic spline function of 4
degrees of freedom. Graphical interpretations of the relationship between the variables studied
were generated for the natural cubic spline functions.

Surveillance data as predictor. In order to build models that could use recent, and historic
disease surveillance in the predictions, we assed first how lags of past dengue counts affected
the dengue transmission, such relationships can be seen as a variant of autoregressive (AR) pat-
terns in time series. The first part of this analysis aimed at estimating how the most recent
transmission influencing the dengue counts using the same lags as for the meteorological
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variables, 1–3. However, for obvious reasons excluding lag 0 as it is the in fact the outcome var-
iable. This model-resembled model (2) above but interchanging the meteorological variables to
the dengue variable and removing lag 0 from the predictor side of the equation. The rationale
for assessing these relationships was to capture patterns in the disease transmission influenced
by non-weather factors, such as those driven by population level immunity and cross-immu-
nity, which increase after large outbreaks.

Prior studies, on a finer spatial scale, have shown that the recurrence of dengue heterotypic
cases in a spatial location may be reduced up to years time [29]. In a similar way, now on a
coarser spatial scale, our interpretation of the reverse relationship between dengue up to 24
months back and current transmission risk may indicate a similar mechanism on a population
level through cross-immunity. In general, this pattern may also explain and mediate some of
the complex inter-annual returning cyclic patterns of dengue observed in endemic settings.
These analyses set out to study if also longer lag time up to four years prior explained variability
in the disease transmission dynamics. The underlying reasoning for this analysis was to assess
and estimate if the disease transmission risk would increase if the retrospective transmission
(1–48 months back) had been lower or higher. We hypothesized that this would function as a
proxy for susceptibility of the populations to infections. To assess this we used distributed non-
linear lag models as provided in the DLNM package of the statistical software R. The methods
and implementation of DLNM have been described before [30]. The variable component of the
DLNM function used natural cubic spline function, while the lag relationships where estimated
using polynomials. The model established was a generalized linear regression models with a
Poisson log link function that allowed for over-dispersion. The model is described below:

logðD0;tÞ � aþ
X47

l¼1

DLNMðDl;t; dfvariable ¼ 4; dflag ¼ 4Þ ð3Þ

Where log() denotes the natural logarithm, t corresponds to time in months, D correspond
to the dengue count, the first index, l, denotes the lag of the dengue count variable, DLNM()
denotes a distributed non-linear lag model, and df denote the degrees of freedom for the D and
the lag function.

Incidence predictions. We predicted the disease patterns of dengue transmission in Yog-
yakarta Municipality using the meteorological variables, and the surveillance data on its own,
and together. In the prediction models, only lags on a time distance longer or equal to 2 was
included to provide at least a one month window between observations of the disease and the
meteorology to the prediction of the dengue case counts and potential outbreaks. We estab-
lished models, and predicted from models, including only explanatory variables of: meteorol-
ogy at different lags; dengue count at different lags; and combinations of meteorological and
dengue count variables at different lags. Thereafter, models were reduced to only include vari-
ables that contributed sufficiently to explain and predict the disease according the Akaike
Information Criterion (AIC). A difference in AIC larger than 10 was considered sufficient a
difference between models to benefit the more complex model among pairs compared. We
refer to the models as:

1. Month of the year model

2. Meteorology model (may include lag 2,3)

3. Surveillance model 1 (may include lag 2,3)

4. Surveillance model 2 (may include lag 2–48)

5. Model including an optimal combination of models B-D
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A necessary time latency of at least 2 months lag was evaluated to allow up to 2 months lead
time in controlling the disease at forecast of epidemics. Graphical time series of the prediction
contrasted to the observed disease counts were generated for all prediction models. Models
were evaluated based on the adjusted R-squared initially, and later onward by prediction per-
formance according to root mean square error (RMSE) and standardized root mean square
error (SRMSE) for continuous predictions.

Outbreak predictions and validation. For the final prediction model derived, we estab-
lished predictions and calculated the accuracy of the prediction according to a binary classifica-
tion of months as outbreaks (or epidemic), or non-outbreaks. For this purpose, a constant
epidemic threshold was applied defining outbreaks/epidemics as months with more than 60
confirmed cases. This assumption was relaxed, and also other established definitions of out-
breaks were used (S4 File). Prediction accuracy according to sensitivity, specificity, and positive
and negative predictive values were calculated. In the next step, the final model is externally
validated by predicting dengue cases for the period January 2011 to December 2013, and com-
paring with observations collected for this time period.

All analyses were performed in R [31] using the mgcv package [32]. Datasets and code
needed to reproduce the results presented here are available on github at https://github.com/
alramadona/yews4denv.

Results
The total count of dengue cases in the 120 months study period, from January 2001 to Decem-
ber 2010, was 7,171 with a monthly average of 60 confirmed cases, a maximum of 261 and a
minimum of 3. The dengue incidence increased gradually from December to March in the fol-
lowing year, and then decreased until the start of the rains the next coming year (Fig 2). This
study indicates a surge in the number of cases that increased about two times over the study
period (Fig 1), from 343 and 688 cases in 2005 and 2009, and then surged to 894 and 1,517
cases in 2006 and 2010.

Overall, the monthly mean temperatures during study period ranged from 24 to 29 oC. Yog-
yakarta experienced the lowest monthly mean temperature, 24 oC, in July 2008 and the highest
monthly mean temperature, 29 oC, in November 2006. The highest amount of monthly cumu-
lative rainfall was recorded to 709 mm in December 2007, with an average of 166 mm. Mean-
while, minimum and maximum value for the monthly mean relative humidity was 66% and
90% respectively.

Based on the average of monthly cumulative rainfall and the average of monthly cases we
observed a phase difference of three months. The average of monthly cumulative rainfall was
the lowest occurred in August (17 mm), while the average of monthly cases was the lowest
occurred in November (25 cases), and the average of monthly cumulative rainfall was the high-
est occurred in December (357 mm), while the average of monthly cases was the highest
occurred in March (109 cases).

Temperatures showed low association with dengue cases in lag 0, 1 and 2, but in lag 3 the
relative risk increase linearly when temperature increase. Rainfall in lag 0 associate to a slightly
increasing dengue transmission with lower levels, but indicate a strong drop when the monthly
rainfall is more than 300 mm. Lag 1, 2 and 3 of rainfall indicate a linear increase of the relative
risk with more rainfall. But also here, the increasing relative risk of dengue transmission van-
ishes when the rainfall is very high. Adjusted relative humidity did not show a consistent pat-
tern, but indicated linear increase in lag 2 and 3, and linear decrease in lag 1 with increasing
humidity levels (Fig 3).
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For prediction models, when only lags longer or equal to 2 were included, the cross-correla-
tion (S1 Fig) indicate that the highest positive association between dengue incidence and tem-
perature were found at lag 3 (r, 0.35) and rainfall at lag 2 (r, 0.62). The adjusted relative
humidity at lag 2 and lag 3 indicated a small and negative correlation with dengue incidence (r,
-0.01 and -0.12). Meanwhile, the analyses using all lag of month 0–3 of temperature, rainfall
and adjusted humidity in the model at the same time (S1 Table) showed that statistical effects
appear at temperature in lag 3 (p-value, 0.03), rainfall in lag 2 (p-value, 0.02) and rainfall in lag

Fig 2. Time Series Graphs of Surveillance and Meteorological Data.

doi:10.1371/journal.pone.0152688.g002
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3 (p-value, 0.01). On these bases, and after trying different combination to identify the optimal
model according R-squared, RMSE, SRMSE, and AIC, showed consistent results that the opti-
mal meteorological predictor variables for the study area is temperature at lag 3, rainfall at lag
2 and rainfall at lag 3.

The highest correlations between dengue incidence and lagged dengue incidence, with lag
terms within a few months and when only lags longer or equal to 2 were included, were found
at lag 2 (r, 0.47). Dengue cases at lag 2 months back show associations to increase dengue trans-
mission with lower values, but to decreasing when the dengue cases counts is more than 150
(Fig 4A). Meanwhile, for lag within longer-term months, the non-linear distributed lag models
showed a peak around lag 24 (Fig 4B) suggesting a negative feedback cyclic pattern with lower
relative risks of transmission up to two years following a large outbreak in around lag 24. An
increase of the dengue cases counts in a specific month will be increasing the dengue risk in
each following month with a peak at approximately in the next 24 months (Fig 4C). Based on
these, the optimal variables for the prediction models included dengue count at lag 2 and at
lag 24.

Predictive Performance of Models
The simplest model (Model A) using the months of the year showed poorest performance
when compared with another model. Meanwhile the model using the optimal combination of
meteorological factors (B) only (temperature at lag 3, rainfall at lag 2 and rainfall at lag 3)
showed a relatively good fit and reasonable predictive ability. The model included a dengue
count time series at lag 2 (C) showed, however, poor predictions, but the optimal autoregres-
sive model including dengue at lag 2 and lag 24 (D) showed a rather good predictive perfor-
mance that was comparable to the meteorological based model (Fig 5). The predictive ability
as evaluated by RMSE and SMRSE, as well as the values of AIC for the models A-E consistently
shows that model (E) combining model (B) and (D) is the best-predictive model (Table 1).

Fig 3. Association betweenMeteorological Variables and Dengue over Lag 0–3. Solid lines represent relative risks of dengue cases and dotted lines
depict the upper and lower limits of 95% confidence intervals.

doi:10.1371/journal.pone.0152688.g003
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The final model (E) included combinations of the meteorology and the autoregressive lag
terms of dengue counts in the past according to:

logðD0;tÞ � aþ
X3

l¼3

nsðTMPlt; df ¼ 3Þ þ
X3

l¼2

nsðPRElt; df ¼ 3Þ þ
X2

l¼2

nsðDlt; df ¼ 3Þ

þ
X24

l¼24

nsðDlt; df ¼ 3Þ ð4Þ

Fig 4. Relationship between Autoregressive Lags and Dengue Counts.Upper panel shows (a) relative risks of dengue cases as functions of dengue
surveillance at 2-month lag times. Lower panel shows (b) the relation between case intensity and dengue risk categories at all lag months; and (c) the risk in
each future month following an increase of 5 dengue cases in a specific month.

doi:10.1371/journal.pone.0152688.g004
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Fig 5. Monthly Observed and Predicted Dengue Cases from 2001–2010. Black line represents observed
dengue cases and red line represents predicted cases. The vertical axis shows dengue cases and the
horizontal axis denotes time in month from January 2001 to December 2010.

doi:10.1371/journal.pone.0152688.g005
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After fitting the model, we infer residuals and check them for normality and residual auto-
correlation. Residual histograms exhibited a single modal and almost symmetrical pattern. In
addition, the Q-Q plot for deviance residuals presented a reasonably straight line. Thus, sug-
gesting approximate normal distribution of residuals. Meanwhile graphical examination of
Partial ACF plot shows insignificant autocorrelation in the residuals, and the plot of reported
and predicted cases indicate linear relation (Fig 6).

The estimated relationships in the final model (E) were used for the predictions. Using the
(E) model, predictions showed a relative good discriminating ability to separate transmission
months above and below 60 cases, which is as follows: 47 prediction was correctly negative, 32
correctly positive, 4 incorrectly negative, and 11 incorrectly positive (Fig 7). The total error rate
of the prediction was 16%. Meanwhile, the sensitivity of detecting the outbreaks was estimated
to 88.9% and the specificity to 81.0%. In addition, the positive and negative predictive value
respectively was estimated to 74.4% and 92.2%.

During the forecast for 2011–2013, the optimal model forecasted cases versus actual clinical
reported dengue cases gave 0.6 of prediction error. Meanwhile, the sensitivity of detecting the
outbreaks was estimated to 100% and the specificity to 61%. In addition, the positive and nega-
tive predictive value respectively was estimated to 59% and 100%. Missing meteorological data
caused absence of predictions for a period of 8 months between June 2012 to January 2013.
Thus, predictions could only be made for 28 months out of 36 months (78%). Our model fore-
casted all the cases above the epidemic threshold, with 7 false positive case at May-June 2011,
January 2012, March-May 2012, and August 2013 (Fig 7).

Discussion
In this study, the dengue transmission pattern was predicted using disease surveillance and
meteorological data. A best model for dengue prediction was identified by combining meteo-
rology and surveillance data as predictor variables. The results support that temperature and
rainfall are associated with dengue incidence and epidemic transmission, as well as are short-
term lags of disease counts, and longer-term the retrospective disease transmission. Meanwhile,
relative humidity not contributed sufficiently to explain and predict the disease.

The relationship between weather and subsequent dengue transmission in this current
study is consistent with the evidence of previous research that shown a relationship between
weather and dengue transmission with up to four months delay [27], and a study showing that
the risk of re-current outbreaks in the same location decreased for a few years when after an
outbreak [29,33]. The explanation for this may be both related to the fact that the immunity, or
herd immunity, of the population increase after an outbreak subsequently the transmission
may cease for some time. The time period in this study of around 2 years may suggest that the
risk of outbreaks decrease up to 2 years because of reasons of cross-protection to other

Table 1. Predictive Performance Statistics

Model RMSE SRMSE R-sq.(adj) AIC Δ AIC

(A) Month of the Year 46.633 0.580 0.229 4884.18 0.00

(B) Meteorology Optimal 44.540 0.553 0.282 3867.23 -1016.96

(C) Surveillance: Short-term Lag 45.046 0.560 0.294 4362.54 -521.65

(D) Surveillance: Optimal Lag 41.846 0.520 0.443 3228.67 -1655.52

(E) Optimal Representation B-D 32.448 0.403 0.636 2311.60 -2572.58

Δ AIC = change in Akaike Information Criterion compared to the simplest model (A)

doi:10.1371/journal.pone.0152688.t001

Prediction of Dengue Outbreaks

PLOS ONE | DOI:10.1371/journal.pone.0152688 March 31, 2016 12 / 18



serological dengue strains after infection with one [14]. The short-term 2-lag relation shows
that recent transmission influences the rate of dengue incidence, whereas longer-term 24-lag
relation indicates a cyclic inter-annual periodic pattern.

However, beside intrinsic regulation related to host-virus interactions, principally mediated
by serotype-specific immunity, there might be extrinsic drivers such as changes in weather pat-
terns [34] that contribute to a cyclic inter-annual pattern. During study period, there have been
three moderate-to-strong El Niño events in 2002–3, 2006–7, and 2009–10 [35]; and it could
be have a role to a surge in the number of cases over the study period in 2005–6 and 2009–10

Fig 6. Residual Diagnosis. Upper panel shows (a) the residual histograms; and (b) the Q-Q plot for deviance residuals. Lower panel shows (c) the partial
ACF plot; and (d) the relationship between reported and predicted cases.

doi:10.1371/journal.pone.0152688.g006
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(Fig 1). The impacts of El Niño have been associated with hotter-than-normal conditions in
Indonesia [35], while the temperature can affect vector longevity, mating, dispersal, feeding
behavior and oviposition, as well as a more rapid replication of the virus [20,21]. Therefore,
dengue vector has a shorter time to reproduce and become adult, as well as have a greater prob-
ability of becoming infected and infecting another host. However, the El Niño events normally
occur with slightly more delayed periodicity.

Our study shows that temperature with three-month lead-time and rainfall with two and
three-month lead-time is the best predictors for dengue transmission patterns in Yogyakarta
Municipality. The time delay between temperature and rainfall with corresponding influences
on the dengue cases have shown in others province in Indonesia [36] and neighbor countries
[27,37] as well. This time delays are likely to represent biological processes in the vector life
cycle [19,20]. Relative humidity is not found to be a strong predictor in the models, and this
reinforce previous studies that have shown relative humidity is not a significant variable in the
spatial or temporal distribution of dengue in Indonesia [36]. However, relative humidity
appears to be somewhat influential at lag 0 for the dengue incidence in the study area.

Our study has shown that combinations of the meteorology and the autoregressive lag terms
of dengue counts in the past (Fig 5E) are able to predict dengue incidence quite accurately, either
as transmission numbers or as outbreaks or non-outbreaks periods. Meanwhile, the surveillance
models (C-D) visually give reasonably accurate results for outbreaks period, it does, however, not
work well for non-outbreaks period (Fig 5C and 5D); interestingly, the meteorology model (B)
show the opposite pattern (Fig 5B). Combining of both model results in a best-predictive model
for dengue outbreaks based on disease surveillance and meteorological data.

Our model forecasted dengue cases up to 2 month ahead and showed a consistent ability to
separate months with epidemic and non-epidemic transmission in the training data, as well as
in the testing data. The model predicted 10 out of the 10 epidemic months in 2011–2013 cor-
rectly. Performance prediction of the model seems very good for predicting dengue incidence
in 2013 (SRMSE, 0.3), but less in 2011 (SRMSE, 0.9), and overall suggested that the model

Fig 7. Predicted Dengue Cases Versus Reported Dengue Cases in 2001–2013.Monthly predicted dengue cases compared with reported cases during
January 2001 to December 2013. Black line represents observed dengue cases, grey line represents the epidemic threshold, red line represents predicted
cases using training dataset, and blue line represents predicted cases using the external validation dataset not used for model fitting.

doi:10.1371/journal.pone.0152688.g007
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forecast cases with sufficient sensitivity for detecting outbreaks for 2011–2013 (SRMSE, 0.6).
There are 7 false alarms during 2011–2013. However, most of them occurred in the peak season
of dengue incidence. Based on surveillance data from 2001 to 2010, the average monthly inci-
dence of dengue between January-June were more than 60 cases, and between July to Decem-
ber is less than 60 cases.

A number of limitations are apparent for this study. First, our predictive model with disease
surveillance and meteorological data as predictors could explain only 64 per cent of the varia-
tion in the occurrence of dengue cases. The remaining 36 per cent unexplained variation could
be due to the influence of other factors. Second, this study did not perform direct analysis of
laboratory surveillance reports, but instead simply used monthly dengue aggregate data. How-
ever, the monthly dengue aggregate data was based on dengue surveillance of Yogyakarta
Municipality District Health Office that constitutes laboratory confirmed dengue cases only.
Third, in the study areas, underreporting could occur with asymptomatic infections and den-
gue cases that might have self-treatment, or seek care at private clinics [6]. However, dengue is
one of the infectious diseases that can cause outbreaks in accordance with National Act No. 4/
1984 on Epidemic Diseases, as well as the Minister of Health Regulation No. 560/1989. There-
fore, if the physician or health workers discovered or suspected cases of dengue fever, they are
required to report to the patient’s local health center in less than 24 hours. Fourth, there is
some missing data in the dataset, especially in the validation dataset. However, we believe that
imputation does not compensate missing values (S2 File).

Previous studies has shown that the implementation of Dengue Control Programs has not
given satisfactory result due to, among others, dengue surveillance program implementation in
Indonesia which are mostly passive [6], the difference in communication intensity between the
authorities responsible for the Dengue Control Programs, and the different levels of public
knowledge about dengue in the community [38]. In addition, dengue vector, Aedes aegypti,
have been resistant to some insecticides from the group of organophosphates, and pyrethroids
carbamic [39]. Therefore, despite some of the limitations mentioned above, early warning
based on this model might be used as a part of the advocacy process for develop a cross-secto-
rial networking in the surveillance and control of dengue. The models allowed some recogni-
tion, although not perfect, of outbreak periods at an early stage with 2 months lead-time. Thus,
development of early warning system could benefit from these predictions since one main rea-
son for vector control being less successful is related to the poor and reactive management tar-
geting interventions too late in the epidemics [8]. It may target high-risk periods, for when,
health education and public health interventions can effectively prepare communities and
potentially curb the epidemic.

In further practice, observed weather could be replaced by weather forecasts, which might
extend the lead-time beyond that offered by using lagged observations. Further studies also
might extend the model for smaller spatial scales (for example village level) to characterize the
relationship between both meteorological and non-meteorological factors and dengue risk, and
include more complex feedback in the model as related to temporal and spatial covariance pat-
ters. In addition, further research is also needed to explain the intrinsic regulation and extrinsic
drivers that might contribute to a cyclic inter-annual pattern.
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