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ALI = acute lung injury; ARDS = acute respiratory distress syndrome; BAL = bronchoalveolar lavage; fMLP = formyl-methionyl-leucyl-phenylalanine;
IL = interleukin; KGF = keratinocyte growth factor; LPS = lipopolysaccharide; SP = surfactant protein; TNF = tumour necrosis factor.
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Introduction
Acute lung injury (ALI) and its more severe form – the acute
respiratory distress syndrome (ARDS) – are common, devas-
tating clinical syndromes of acute respiratory failure that
affect all age groups [1]. Recent European [2], American [3]
and Australian [4] multicentre studies have estimated the inci-
dence of ALI and ARDS at 34 and 28 cases per 100 000 per
year, respectively; otherwise stated, 7.1% of all intensive care
admissions are for ALI/ARDS. More than three decades after
its first description in 1967 [5], mortality associated with
ARDS is still high, with reported rates between 40% and
60% [1]. Morbidity among survivors is also high, with persis-
tent functional limitation 1 year after discharge preventing
over half from returning to work [6].

Improvements in general supportive care have contributed
toward a trend of decreasing mortality over the past 10 years

[7], and recently strategies to reduce the effects of ventilator-
associated lung injury have resulted in an important reduction
in mortality [8]. However, as yet no specific pharmacological
therapies to target the underlying pathological processes
have proved efficacious [9]. Recent in vitro and in vivo animal
or human studies suggest that β2-agonists – drugs that are
well established in the management of patients with chronic
bronchitis or asthma – may have an important therapeutic role
to play in modulating the initial inflammatory insult and
enhancing alveolar fluid clearance in patients with ARDS.

The present review discusses the effects of β2-agonists on
neutrophil functions, on inflammatory mediators, and on epithe-
lial and endothelial functions (Fig.1). It draws on the extensive
experimental and clinical literature on the mechanisms of
effects of β2-agonists to suggest a potential role for their use as
a specific pharmacological intervention in patients with ARDS.
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Abstract

The acute respiratory distress syndrome (ARDS) is a devastating constellation of clinical, radiological
and pathological signs characterized by failure of gas exchange and refractory hypoxia. Despite nearly
30 years of research, no specific pharmacological therapy has yet proven to be efficacious in
manipulating the pathophysiological processes that underlie this condition. Several in vitro and in vivo
animal or human studies suggest a potential role for β2-agonists in the treatment of ARDS. These
agents have been shown to reduce pulmonary neutrophil sequestration and activation, accelerate
alveolar fluid clearance, enhance surfactant secretion, and modulate the inflammatory and coagulation
cascades. They are also used widely in clinical practice and are well tolerated in critically ill patients.
The present review examines the evidence supporting a role for β2-agonists as a specific
pharmacological intervention in patients with ARDS.
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ββ-Adrenergic stimulation and neutrophil
function
Role of the neutrophil in acute respiratory distress
syndrome
Classical descriptions of ARDS, based on lung biopsy and
postmortem specimens, have artificially divided the condition
into three phases – exudative, proliferative and fibrotic [10] –
although in practice these phases often overlap [1]. The early
phases are characterized by infiltration with neutrophils,
macrophages and inflammatory cytokines, and disruption of
the alveolar capillary barrier, leading to an influx of protein-rich
oedema fluid into the alveolar spaces [11]. Although contro-
versy still exists regarding the role of polymorphonuclear neu-
trophils in all causes of ALI [12], it is likely that they play a
central role in early stages [13]. Analysis of bronchoalveolar
lavage (BAL) fluid from patients with ARDS has revealed
increased numbers of activated neutrophils in the early
stages of ARDS [13,14]. The number of neutrophils in BAL
fluid correlates with the severity of lung injury [15], and per-
sistence of neutrophils in BAL fluid by day 7 is associated
with increased mortality [14].

Pulmonary neutrophil sequestration occurs within minutes of
exposure to an inflammatory insult [16,17]. The insult causes
an increase in neutrophil stiffness and a reduction in deforma-
bility [18], leading to sequestration into the pulmonary capil-
laries followed by emigration into the alveolar space. The
process of neutrophil emigration occurs by at least two differ-
ent pathways. Neutrophil emigration is dependent on
CD11/18 adhesion molecule interactions in response to
Gram-negative organisms, IL-1α and phorbol 12-myristate
13-acetate. Gram-positive organisms, hyperoxia and the com-
plement anaphylatoxins (C5a) appear to induce neutrophil
emigration through a CD11/18 independent pathway [19].

Neutrophils are a potent source of reactive oxygen and nitro-
gen species, inflammatory cytokines, proteolytic enzymes and
lipid mediators. A recent study examining ARDS BAL fluid
[20] demonstrated a positive correlation between neutrophil
myeloperoxidase and oxidatively modified amino acids, sug-
gesting an association between pulmonary neutrophil activa-
tion and oxidative protein damage. Carden and coworkers
[20] reported that damage to human surfactant protein A in
BAL fluid from patients with ARDS resembled the damage
caused when it is cleaved by neutrophil elastase in patients
with ARDS. Therapeutic interventions with neutrophil elas-
tase inhibitors in animal models of ARDS have shown that
inhibition of neutrophil function can limit the degree of lung
injury caused by ischaemia–reperfusion [21] and lipopolysac-
charide (LPS) [22].

The importance of regulation of neutrophil apoptosis in ARDS
was recently reviewed in detail [23]. It is known that ARDS
BAL fluid delays neutrophil apoptosis in vitro [24]. At present
the relationship between neutrophil apoptosis and survival
from ARDS has not been clearly defined, although it has been

suggested that increasing neutrophil apoptosis could be ben-
eficial in aiding resolution of ARDS [23]. Apoptotic neutrophils
are cleared from the alveolar space by alveolar macrophages.
Interestingly, this process changes the inflammatory cytokine
profile produced by the macrophage from an inflammatory to
anti-inflammatory phenotype [25]. Furthermore, in a recent
study conducted in mice [26], stimulating neutrophil apoptosis
led to reduced lung injury and improved survival. This sug-
gests that acceleration of neutrophil apoptosis could be bene-
ficial in the treatment of ARDS. Modulation of neutrophil
recruitment, activation and apoptosis are thus potential thera-
peutic targets for the treatment of patients with ARDS.

Effects of ββ-adrenergic stimulation on neutrophil
sequestration

β-Adrenergic stimulation has been shown to reduce pul-
monary neutrophil sequestration in several different models of
lung injury. Using a murine model of direct lung injury (endo-
toxin inhalation), Dhingra and coworkers [27] showed that
pretreatment with intravenous dobutamine reduced BAL fluid
neutrophilia by 30% in parallel with reduced pulmonary IL-6,
IL-10 and macrophage inflammatory protein-2 productions.
Similarly, in a rodent model of indirect lung injury following
endotoxic shock, pretreatment with intravenous terbutaline
before exposure to endotoxin blocked pulmonary neutrophil
accumulation, prevented circulatory failure and reduced mor-
tality [28]. In normal human volunteers, in a placebo-con-
trolled trial, treatment with 300 µg inhaled salbutamol was
able to prevent platelet-activating factor induced pulmonary
sequestration of radio-labelled neutrophils [29].

The precise mechanisms of reduced pulmonary neutrophil
sequestration have not fully been elucidated, although they may
involve modulation of adhesion and emigration, accelerated
apoptosis and reduced generation of inflammatory mediators.

Figure 1

The effects of β-agonists on epithelial and endothelial function.
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Adhesion and migration

β2-Agonists reduce in vitro neutrophil adhesion to human
bronchial epithelial cells [30] and endothelial cells [31,32].
This occurred through elevation in intracellular cAMP and
reduction in CD11b/18 adhesion molecule expression
[30,32]. Whether this was due a direct effect on CD11b/18
synthesis and release, or indirectly through reducing tumour
necrosis factor (TNF)-α expression (which causes CD11b/18
upregulation) remains to be determined [33].

Chemotaxis is the phenomenon of cell migration toward a
chemoattractant stimulus such as bacterial peptides (formyl-
methionyl-leucyl-phenylalanine [fMLP]) and complement
(C5a), and it is an important step in the migration of neu-
trophils toward sites of inflamed or damaged tissues. Most
studies investigating the effects of β2-agonists on neutrophil
chemotaxis have shown a reduction in neutrophil chemotaxis
[34–37] at doses equivalent to levels reported in oedema
fluid following nebulized salbutamol administration
(10–6 mol/l) [38]. However Llewellyn-Jones and coworkers
[39] reported a biphasic response with increased neutrophil
chemotaxis toward fMLP after incubation with 10–5 mol/l
terbutaline, and a reduction in chemotaxis when supraphysio-
logical concentrations (10–3 mol/l) were used. At higher
doses of β2-agonists, stimulation of β1- and β2-adrenergic
receptors occurs and it is possible that this might contribute
to the biphasic effect.

Apoptosis

β2-Agonists induce apoptosis in several different cell types
including the human neutrophil [40]. Although this may have
potentially beneficial effects by promoting neutrophil apopto-
sis, this needs to be balanced against the potentially deleteri-
ous effects of β2-agonist enhanced alveolar cell apoptosis
leading to a worsening of lung injury [41].

Neutrophil mediator release

β2-Agonists reduce oxygen free radical production from neu-
trophils and other inflammatory cells [42,43]. This effect
appears to occur because of both β-receptor dependent and
independent mechanisms [44]. Although β-receptor indepen-
dent mechanisms may occur because of a direct effect on
cellular metabolism, Gillissen and coworkers [45] recently
showed that it may in part be due to an intrinsic scavenger
function of β2-agonists for reactive oxygen species. In con-
trast, these agents have little effect on neutrophil degranula-
tion [39], phagocytosis, or bacterial killing [36].

ββ-Adrenergic stimulation and inflammatory
mediators
Inflammatory cascade
A complex network of cytokines, proinflammatory and anti-
inflammatory substances are involved in the inflammatory
response in ARDS. Inflammatory cytokines such as IL-8, TNF-α
and IL-1β have been found in high concentrations in the early
phase of ARDS [46,47]. The balance between proinflammatory

and anti-inflammatory cytokines is likely to be critical in the
development and persistence ARDS [48]. High initial titres and
persistence of inflammatory cytokines have been shown to be
predictors of poor outcome [49]. IL-8, a cytokine that is seen
early in the inflammatory response, is important in pulmonary
neutrophil recruitment and activation [50]. Treatment with anti-
IL-8 monoclonal antibody in experimental animal models of
ARDS has been shown to decrease the magnitude of ALI
[50–52], suggesting that modulation of cytokine production
may have a role to play in ameliorating lung injury.

Effects of ββ-adrenergic stimulation on inflammatory
mediators

β-Adrenergic stimulation in vitro reduces inflammatory
cytokine production (IL-1β [53], TNF-α [54–57], IL-6 [58]
and IL-8 [59,60]) and enhances release of the anti-inflamma-
tory cytokine IL-10 [61] from whole blood, monocytes and
macrophages. In an in vivo mouse model of LPS-induced
septic shock, Wu and coworkers [28] demonstrated that
treatment with terbutaline was able to reduce TNF-α produc-
tion, enhance IL-10 production and improve survival. In an ex
vivo model using human lung explants in culture, treatment
with 1 ng/ml isoproterenol attenuated LPS-induced release of
TNF-α and reduced lipid peroxidation, which was associated
with an increase in intracellular cAMP levels [62]. Van der
Poll and coworkers [63] extended these findings in vivo in
human volunteers using adrenaline before LPS exposure.
That study confirmed that adrenaline reduced LPS-induced
TNF-α release in vivo and in whole blood ex vivo. This
occurred in parallel with an increase in the release of the anti-
inflammatory cytokine IL-10. In addition β-adrenergic stimula-
tion, in contrast to α-receptor stimulation, caused an increase
in IL-10 similar to that with adrenaline. These data suggest
that treatment with β2-agonists may have a role to play in
reducing the excessive proinflammatory effects of the
cytokine network during the early phases of ARDS.

ββ-Adrenergic stimulation and endothelial and
epithelial function
Effects of ββ-adrenergic stimulation on endothelial
permeability
Extensive damage to the alveolar–capillary barrier and
microvascular thrombosis are prominent features in the early
stages of ARDS [64]. This leads to alveolar flooding and the
development of noncardiogenic pulmonary oedema, which
impairs gas exchange and contributes to the refractory
hypoxia that characterizes ARDS.

In vitro studies using pulmonary artery endothelial cells have
shown that incubation with isoprotenerol reduces baseline
monolayer permeability to albumin and can block the effects of
thrombin-induced increase in permeability [65,66]. These find-
ings have been confirmed in vivo in a sheep ARDS model
using terbutaline [67] and a rat ARDS model using isoproten-
erol [68]. In a small nonrandomized study conducted in
humans, administration of intravenous terbutaline to 10 patients
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with ARDS was associated with a significant reduction in lung
vascular permeability (measured by radio-labelled transferrin) in
six patients, which was associated with an increased probabil-
ity of survival [69]. The mechanism appears to be related to
inhibition of endothelial cell contraction and increased force
between endothelial cell tight junctions.

Alterations to the coagulation/fibrinolysis pathways may be
important in the pathogenesis of ARDS [70]. Two recent
studies from Matthay and coworkers [71,72] showed that
plasma and oedema fluid levels of protein C and oedema fluid
levels of thrombomodulin and plasminogen activator
inhibitor-1 are associated with increased mortality in patients
with ARDS. There is some preliminary evidence from studies
in healthy volunteers that the intravenous administration of
isoproterenol increases the release of tissue plasminogen
activator and urokinase plasminogen activator, which may
enhance fibrinolysis and vessel patency [73,74]. The effects
of β-adrenergic stimulation on the coagulation–fibrinolysis
cascade in ARDS, however, remains to be determined.

Effects of ββ-adrenergic stimulation on alveolar fluid
clearance

Clearance of fluid from the alveolar space is dependent on
active sodium and chloride transport. The alveolar type II cell
appears to be responsible for the majority of ion transport via
the apical sodium and chloride conductive pathways and the
basolateral Na/K-ATPase, although the alveolar type I cell and
distal airway epithelium may also contribute [75]. Experimental
studies in animals, as well as in the ex vivo human lung, have
demonstrated that β-adrenergic agonists accelerate the rate
of alveolar fluid clearance [76,77]. The mechanism underlying
increased alveolar fluid clearance is proposed to be due to an
increase in intracellular cAMP, resulting in increased sodium
transport across alveolar type II cells by upregulation of the
apical sodium and chloride pathways and Na/K-ATPase and
probably cystic fibrosis transmembrane conductance regulator
[75]. β2-Adrenergic stimulation is more important than
β1-adrenergic stimulation in mediating alveolar epithelial
sodium and fluid transport. Dopamine, at doses associated
with only a β1 effect, whether by intra-alveolar or intravenous
route of administration, had no effect on alveolar fluid clear-
ance in vivo in rats. Moreover, the increase in alveolar fluid
clearance caused by dobutamine is blocked by selective
β2-adrenergic antagonists [78]. Finally, β1-adrenergic stimula-
tion by high-dose terbutaline has been found to downregulate
alveolar fluid clearance in the ex vivo rat lung [79].

Impaired ability of the alveolar epithelium to remove alveolar
oedema fluid is associated with increased mortality in ARDS
[80,81]. This has important implications for the potential use
of β2-agonists in the treatment of ALI/ARDS. If the alveolar
epithelium is extensively injured, then pharmacological inter-
vention aimed at improving epithelial function may be difficult
because of the extent of injury. Alveolar epithelial fluid clear-
ance mechanisms are intact after mild to moderate lung injury

and can be upregulated by β-adrenergic agonists [82,83].
However, in some experimental models neutrophil-dependent
oxidant injury to the alveolar epithelium is more resistant to
β-adrenergic upregulation of alveolar fluid clearance [84–86].
β-Agonists have also been shown to upregulate fluid transport
in hydrostatic oedema [87–89], hyperoxic lung injury
[83,90,91] and ventilator-associated lung injury [92]. In addi-
tion, β2-agonists can overcome the depressant effects of
hypoxia on alveolar fluid clearance [93,94]. In a randomized,
placebo-controlled clinical trial [95], inhaled salmeterol (a
long-acting β2-agonist) reduced the incidence of high-altitude
pulmonary oedema in volunteers who were known to be at risk
for this condition. The authors postulated that this may be due
to an increase in alveolar fluid clearance, although beneficial
effects of salmeterol on minute ventilation and pulmonary
artery pressures could not be excluded. On the basis of these
experimental data augmentation of alveolar epithelial fluid
clearance with β2-adrenergic agonists may accelerate resolu-
tion of pulmonary oedema and improve outcome in ALI/ARDS.

Effects of ββ2-agonists on surfactant

Surfactant, a mixture of dipalmitoyl-phosphatidylcholine and
other lipids and proteins, is produced by type II alveolar
epithelial cells. Surfactant is a lipid surface-tension-lowering
agent and it helps to prevent pulmonary oedema. Surfactant
plays an increasingly recognized role in immune defence. Sur-
factant protein (SP)-A is known to promote phagocytosis of
bacteria by alveolar macrophages, and SP-D also has antimi-
crobial properties [96,97]. Deficiency in these specific pro-
teins may well contribute to the increase risk for infection in
ARDS patients.

Short-acting and long-acting β2-agonists augment total sur-
factant secretion from alveolar type II cells through activation
of β-adrenergic receptors and a cAMP-dependent protein
kinase. Several β2-agonists stimulate secretion of
phophatidylcholine, the principal lipid component of surfac-
tant [98,99]. In particular, terbutaline is a potent secreta-
gogue [100]. β2-Agonists also stimulate secretion of SP-B
and SP-C, the two hydrophobic proteins that are involved in
the main biophysical functions of surfactant [101]. Fenoterol
has been shown to restore lung phospholipid metabolism,
which was altered by sepsis, toward normal [99]. These
studies suggest a potential role for β2-agonists as a treatment
for surfactant abnormalities in ARDS.

Effects of ββ2-agonists on epithelial resistance to
infection

Nosocomial pneumonia contributes to morbidity and mortality
on the intensive care unit [102]. Central to the development of
these infections is colonization followed by invasion of the
epithelial cell layer. Several studies have investigated the
effect of salmeterol on Pseudomonas aeruginosa and
Haemophilus influenzae induced epithelial damage
[103,104]. In the Pseudomonas study, there was not only
reduced pyocyanin-induced cytoplasmic blebbing and
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reduced mitochondrial damage but also a significant reduction
in adherent bacteria. These data suggest that salmeterol has a
cytoprotective effect on respiratory epithelial cells, most likely
related to maintaining structural integrity of the epithelial cells
rather than increasing antibacterial activity. Interestingly, salbu-
tamol and isoproterenol have also been shown to increase
monocyte adhesion to human airway epithelial cells in vitro,
monocytes being integral to the bacterial immune response in
the lung [105]. It is possible, therefore, that β2-agonists have a
role to play in the prevention of ventilator associated pneumo-
nia, which commonly complicates ALI/ARDS, by augmenting
host epithelial resistance to infection.

Effects of ββ2-agonists on epithelial wound repair

In ARDS, histological studies have confirmed that there is a
physical breach of both the alveolar endothelial and epithelial
barriers. This physical damage results in pulmonary oedema
that is central to the need for mechanical ventilation. Recov-
ery of the barrier function is vital for effective alveolar epithe-
lial repair. This process is regulated by keratinocyte growth
factors (KGFs) and other related cytokines (e.g. IL-1β) that
are capable of stimulating alveolar epithelial cell proliferation
and migration. In a rat study, pretreatment with KGF before
induction of lung injury reduced the severity of injury [106].
The protective capability of KGF is probably due to upregula-
tion of the number of type II alveolar epithelial cells, with a
corresponding increase in net alveolar fluid transport [107].
Salbutamol is a potent upregulator of human airway epithelial
cells, probably via a protein kinase cascade, and isopro-
terenol directly increased the migration of bovine epithelial
cells, speeding up the closure of mechanically and enzymati-
cally induced wounds [108]. Currently, it is not known
whether stimulating epithelial regeneration in humans
improves outcome in patients with ARDS.

Effects of ββ2-agonists on lung mechanics

The physiological consequences of extensive alveolar–epithe-
lial injury include a reduction in pulmonary compliance [5] and
increased airway resistance [109], which are associated with
an increased work of breathing and requirement for mechani-
cal ventilation. Several studies have shown that both intra-
venous and nebulized salbutamol reduce peak airway and
plateau pressures [109–111] in patients with ARDS. The
reduction in peak airway pressure reflects a reduction in
airway resistance due to the bronchodilator effects of β2-ago-
nists. However, the reduction in plateau pressure suggests
an improvement in respiratory compliance, through as yet
undetermined mechanisms. These studies suggest that
β-agonists may have a beneficial role to play in improving res-
piratory mechanics in patients with ARDS.

Drug delivery and side effects
The optimal route for delivering β2-agonists has not been
determined. Inhaled or nebulized therapy to mechanically ven-
tilated patients appears attractive because it may reduce the
incidence of systemic side effects compared with parenteral

treatment. Initial concerns about efficacy of drug deposition
into the alveolar space following nebulized or inhaled adminis-
tration in mechanically ventilated patients with ALI/ARDS
[112] have been superseded by a recent study that demon-
strated therapeutic levels in pulmonary oedema fluid from
patients with ARDS [38]. Atabai and coworkers [38] showed
that nebulized salbutamol (3.5 ± 2.6 mg) in patients with ALI
achieved a median concentration of 1240 ng/ml (between
10–5 mol/l and 10–6 mol/l) in pulmonary oedema fluid. No
studies in patients with ARDS have yet reported the concen-
tration of drug in plasma or BAL fluid following intravenous
salbutamol administration, although preliminary studies at our
institution have suggested that plasma levels of 10–6 mol/l
may be achievable with a continuous infusion of salbutamol at
15 µg/kg per hour. The optimal dose remains to be identified.
Higher doses of β2-agonists, used in many experimental
studies, stimulate both β1- and β2-adrenergic receptors, and
it is not possible to determine the relative roles of β1 and β2
receptor stimulation in such studies. However, the finding
that β1 stimulation by high-dose terbutaline is associated with
downregulation of alveolar fluid clearance in the ex vivo rat
lung [79] supports the hypothesis that β2-adrenergic stimula-
tion is more important.

The administration of β2-agonists can lead to important car-
diovascular, metabolic and renal complications. Stimulation of
cardiac and vascular β1 and β2 receptors can cause tachycar-
dia, arrhythmias, exacerbation of myocardial ischaemia, pul-
monary vasodilation and loss of hypoxic–pulmonary
vasoconstriction [113,114]. Metabolic sequelae include
hypokalamaemia, hyperinsulinaemia and hyperglycaemia
[115]. The use of intravenous β2-agonists for tocolysis during
pregnancy has been associated with the development of
maternal pulmonary oedema [116,117]. Studies investigating
this phenomenon in vivo in rabbits and humans found that
intravenous injection of β2-agonists caused reduced sodium,
potassium and water excretion, leading to a reduced
haematocrit and intravascular hypervolaemia [118,119].
These adverse effects are usually more marked following
intravenous than after nebulized administration. However, in
general these drugs are well tolerated in the critically ill.
These potentially deleterious effects may limit the potential
beneficial effects of β2-agonists described in this review.

Conclusion
There is substantial evidence from in vitro and in vivo animal
and human studies suggesting several mechanisms through
which β2-agonists may play a potential role in the treatment of
patients with ARDS. Clinical experience in the treatment of
airflow obstruction in critically ill patients has demonstrated
good tolerability and side-effect profiles with these drugs.
They are also commercially available as intravenous, inhaled
and nebulized formulations, which are relatively inexpensive.
To date no randomized controlled clinical trials have yet been
completed to confirm the potential benefits of this treatment.
However, a double-blind, randomized and placebo-controlled
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trial using intravenous salbutamol (Beta Agonist Lung Injury
TrIal [BALTI]) is reaching completion in the UK, and the
ARDS Network in the USA is considering a large multicentre
trial using nebulized salbutamol. The results of these trials will
hopefully improve our understanding of the application of this
treatment in patients with ALI/ARDS.
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