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Abstract

Background: The Runt homology domain (Runx) defines a metazoan family of sequence-specific transcriptional regulatory
proteins that are critical for animal development and causally associated with a variety of mammalian cancers. The sea
urchin Runx gene SpRunt-1 is expressed throughout the blastula stage embryo, and is required globally during
embryogenesis for cell survival and differentiation.

Methodology/Principal Findings: Depletion of SpRunt-1 by morpholino antisense-mediated knockdown causes a blastula
stage deficit in cell proliferation, as shown by bromodeoxyuridine (BrdU) incorporation and direct cell counts. Reverse
transcription coupled polymerase chain reaction (RT-PCR) studies show that the cell proliferation deficit is presaged by a
deficit in the expression of several zygotic wnt genes, including wnt8, a key regulator of endomesoderm development. In
addition, SpRunt-1-depleted blastulae underexpress cyclinD, an effector of mitogenic Wnt signaling. Blastula stage cell
proliferation is also impeded by knockdown of either wnt8 or cyclinD. Chromatin immunoprecipitation (ChIP) indicates that
Runx target sites within 59 sequences flanking cyclinD, wnt6 and wnt8 are directly bound by SpRunt-1 protein at late
blastula stage. Furthermore, experiments using a green fluorescent protein (GFP) reporter transgene show that the blastula-
stage operation of a cis-regulatory module previously shown to be required for wnt8 expression (Minokawa et al., Dev. Biol.
288: 545–558, 2005) is dependent on its direct sequence-specific interaction with SpRunt-1. Finally, inhibitor studies and
immunoblot analysis show that SpRunt-1 protein levels are negatively regulated by glycogen synthase kinase (GSK)-3.

Conclusions/Significance: These results suggest that Runx expression and Wnt signaling are mutually linked in a feedback
circuit that controls cell proliferation during development.
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Introduction

Multicellular development requires that the basic processes of

cell growth and proliferation be subjugated to a higher level

ontogenetic program. In animals this is achieved by way of genetic

cis-regulatory systems through which the expression of cell cycle

control genes is made contingent upon the spatiotemporally

specified regulatory states of development. These states are

established by the nuclear activities of sequence-specific transcrip-

tional regulatory proteins, many of which are deployed in response

to intercellular signaling systems. The developmental deployment

of transcriptional regulatory proteins and cell signaling compo-

nents is in turn controlled by a regulatory network encoded

genomically by DNA sequence-specific cis-trans regulatory inter-

actions [1]. Genetic mutations that short-circuit this regulatory

network are commonly associated with cancer.

Runt domain (Runx) transcription factors are sequence-specific

DNA binding proteins that are essential for the coordination of cell

proliferation and differentiation during animal development [2],

involving context-specific regulatory logic that remains to be

elucidated. In vertebrates Runx genes are essential for hematopoi-

esis, skeletogeneis, and neurogenesis, and play critical roles in the

development of gastrointestinal and epidermal epithelia [2–8]. They

are also involved in cell cycle control [9] and causally associated

with leukemia and other types of cancer, manifesting attributes of

both oncogenes and tumor suppressors [10–16]. Depending on cis-

regulatory sequence context, Runx proteins promote the assembly

of protein-DNA complexes involved in either transcriptional

activation or repression [17,18]. This context-dependent function-

ality is mediated in part by heterodimerization with a non-DNA-

binding partner, CBFb, which enhances Runx DNA binding and

half-life [19,20]. However, Runx proteins are able to bind DNA as

monomers and it was recently shown that CBFb interacts with

Runx facultatively rather than constitutively [21], suggesting that

CBFb may be a regulatory subunit that contributes to the context-

dependency of Runx function.

Runx proteins contribute critically to the transduction of

developmental signals via several key pathways, including those

mediated by TGFb/BMP, FGF, Notch, and Wnt proteins [22–

32], each of which is essential for embryogenesis and stem cell

regulation. Canonical Wnt signaling, which occurs through b-

catenin bound to the HMG-box DNA binding protein Tcf/Lef, is
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required for stem cell self-renewal and progenitor cell proliferation

in numerous vertebrate and invertebrate tissues, and de-regulation

of this pathway is commonly associated with leukemia as well as

epithelial cancers [33–36]. Canonical Wnt signaling stimulates

growth and/or cell proliferation in part by activating the

expression of D-type cyclins [34,37], which drive cell cycle

progression from G0 to G1 and from G1 to S phase in response to

a variety of developmental signals. Since the sequence-specificity

of Tcf/Lef is relatively low, it generally binds its target sites in

cooperation with other transcription factors that bind near or

adjacent the Tcf/Lef recognition sequence [24,38]. Runx proteins

have been shown in some cis-regulatory systems to be Tcf/Lef

partners [24], and to thus facilitate the transduction of canonical

Wnt signaling.

The genome of the sea urchin Strongylocentrotus purpuratus encodes

two Runx genes [39], only one of which (SpRunt-1) is expressed

during embryogenesis [40]. SpRunt-1 is zygotically activated at late

cleavage stage, and its pattern of expression in the embryo and

larva is isomorphic with the pattern of growth and cell

proliferation [40,41]. Depletion of SpRunt-1 mRNA and/or

protein using morpholino antisense oligonucleotides (MASOs)

leads to extensive gastrula-stage apoptosis and developmental

arrest, which is attributable at least in part to the underexpression

of the conventional protein kinase C SpPKC1, a direct SpRunt-1

regulatory target [42]. Here we extend our investigation of Runx

function in sea urchin embryogenesis, showing that the earliest

developmental defects associated with blockade of SpRunt-1

expression include deficits in blastula stage cell proliferation and

wnt gene expression. Furthermore, we find that SpRunt-1 protein

levels are regulated by the activity of glycogen synthase kinase 3

(GSK-3), suggesting that Runx expression and canonical Wnt

signaling are mutually linked.

Results and Discussion

SpRunt-1 expression is required for late blastula stage
mitogenesis

Microinjection of zygotes with either a translation-blocking

MASO that targets the 59UTR near the translation start site or a

splice-blocking MASO that targets the second exon-intron

junction in the SpRunt-1 transcript leads to development of

blastulae that hatch on schedule and appear more or less normal,

but which are somewhat smaller than their control-injected

counterparts at mesenchyme blastula stage [21,42,43]. These

embryos contain about half the DNA content of controls, and

exhibit little or no apoptosis at this stage (data not shown). To ask

whether cell cycle transit is defective in SpRunt-1 morphants at

late blastula stage, embryos were pulse-labeled with bromodeoxy-

uridine (BrdU) from 18–24 hours post-fertilization (hpf), fixed, and

stained with a fluorescent anti-BrdU antibody. Whereas control

embryos display extensive nuclear BrdU incorporation throughout

the embryo, SpRunt-1 morphants do not (Fig. 1A), indicating that

SpRunt-1 expression supports progression of the cell cycle through

S-phase in late blastula stage embryos.

To determine the precise temporal onset of the cell proliferation

defect in SpRunt-1 morphants, embryos were labeled with a

fluorescent DNA stain at different time points, squashed beneath

cover slips to display the labeled nuclei in one plane, and

fluorescently imaged [44]. Counts of labeled nuclei show that cell

numbers are normal in the SpRunt-1 morphants up until 19–

20 hours (hatched blastula stage), at which time both the

morphant and control embryos contain ,200 cells per embryo

(Fig. 1B) [44]. However, between 20–24 hours the control

embryos undergo an additional round of cell division, producing

,400 cells per embryo, whereas the SpRunt-1 morphants do not

(Fig. 1B) [44]. These data concur with the BrdU labeling results,

and indicate that SpRunt-1 is required for continued mitogenesis

in mesenchyme blastula stage embryos.

SpRunt-1 supports mitogenic wnt and cyclinD expression
Canonical Wnt signaling is mitogenic in a variety of

developmental contexts, and its transcriptional effector Tcf/Lef

bound to b-catenin has been shown to interact with Runx proteins

[24]. The sea urchin genome encodes 11 wnt genes, several of

which are expressed at varying levels in the embryo [45]. We used

RT-PCR to ask whether expression of any of the embryonically-

expressed wnt genes is affected by knockdown of SpRunt-1 in the

blastula stage embryo. Remarkably, the six wnt genes whose

transcripts accumulate zygotically (wnts 4, 5, 6, 7, 8, and 9) were all

found to be underexpressed in SpRunt-1 morphants, either prior

to (16 hpf) or coincident with (24 hpf) the proliferation deficit

observed at late blastula stage (Fig. 2A).

We chose to focus our attention on wnt8, as this appeared to be

the wnt gene that was most affected by SpRunt-1 knockdown prior

to the onset of the cell proliferation defect, and is to date the only

sea urchin wnt gene that has been functionally characterized. Wnt8

Figure 1. Blocking Runx expression causes a cell proliferation
deficit in blastula stage sea urchin embryos. (A) Immunofluores-
cence labeling of BrdU incorporated from 18–24 hpf in control and
SpRunt-1MASO-injected embryos. (B) Average cell numbers from four
control-injected and four SpRunt-1 morphants at multiple time points
from hatching to mesenchyme blastula stage. The error bars show the
standard deviations.
doi:10.1371/journal.pone.0003770.g001

Runx-Wnt Mutuality
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expression is localized to the presumptive endomesoderm and is

required for specification of that territory [46–49]. Quantitative

RT-PCR shows that wnt8 is significantly (more than 4-fold)

underexpressed in SpRunt-1 morphants at 20 hrs (Fig. 2B), the

stage at which these embryos begin to manifest a cell proliferation

defect. At this stage wnt6 is expressed at much lower levels and is

less strongly affected (Fig. 2B), although by 24 hrs wnt6 is also

significantly underexpressed ($12-fold by QRT-PCR) in SpRunt-

1 morphants, as are wnt7 and wnt9 (Fig. 2A). CyclinD, a mitogenic

effector of canonical Wnt signaling which was shown previously to

be positively regulated by SpRunt-1 at 48 hrs [43], is also

significantly underexpressed at both 16 hrs (,2.4 fold) and 20 hrs

(,3.5-fold) (Fig. 2B).

Wnt8 transcription is initially activated in the micromeres at the

16-cell stage, and its expression expands to the macromeres during

subsequent cleavages, thereafter being extinguished in more

vegetal cells such that by mesenchyme blastula stage wnt8 activity

is confined to a torus of presumptive endodermal cells [47,49].

This is one of the regions of continued cell proliferation, which

becomes confined to endomesoderm and oral ectoderm after

mesenchyme blastula stage. To ask whether wnt8 contributes to

late blastula stage mitogenesis, we used a previously characterized

MASO [49] to block translation of Wnt8 protein and examined

the effect on cell numbers at 24 hrs. Blocking wnt8 expression

caused a modest but significant reduction in the number of cells

per late blastula-stage embryo (Fig. 3). In contrast, Wnt6

knockdown did not have any effect on cell numbers at blastula

stage (Fig. 3), although the MASO effectively depleted Wnt6 (Fig.

S1) and did cause various morphological defects later in

development (not shown). The fact that Wnt8 knockdown doesn’t

recapitulate the more extensive cell proliferation deficit displayed

by SpRunt-1 morphants is probably attributable to the fact that

wnt8 is expressed in a more limited domain that contains only a

subset of proliferating cells. In addition, it is possible that there is

cross-regulation between wnt genes, which might produce

compensatory effects on cell proliferation when expression of

one or the other is knocked down. We therefore tested the effect of

blocking expression of both Wnt8 and Wnt6 to more closely mimic

the situation in SpRunt-1 morphants. Combined blockade of

Wnt6+Wnt8 was found to produce a more significant cell number

deficit than knockdown of Wnt8 alone (Fig. 3).

As noted above, Cyclin D is a key mitogenic effector of Wnt

signaling. A previous report suggested that knockdown of Cyclin D

does not affect cell numbers in sea urchin embryos [50]. However,

in that study cells were only counted at late gastrula stage, and not

blastula stage, leaving open the possibility that Cyclin D

morphants manifest an early, transient deficit in cell proliferation

that may later be compensated by regulative processes. We tested

this possibility by counting cells in Cyclin D morphants at late

blastula stage. As shown in Fig. 3, these embryos have about two-

thirds as many cells as controls at 24 hrs, a deficit almost as large

as that found in SpRunt-1 morphants. A similarly severe deficit in

cell numbers was produced by knockdown of PKC1, consistent

with the well-known mitogenic role played by this kinase, the gene

for which was previously shown to be a Runx regulatory target

[42]. Together, these results suggest that mitogenic function of

SpRunt-1 is likely to be mediated by a complex battery of

downstream regulatory targets including (but not limited to) wnt8,

cyclinD, and PKC1, and hence not simply attributable to any single

pathway or effector.

SpRunt-1 binds sequences in the promoter regions of
cyclinD, wnt6 and wnt8, and is required for operation of a
key wnt8 cis-regulatory module

A survey of genomic sequence flanking the cyclinD, wnt6, and

wnt8 genes revealed numerous instances of the Runx consensus

binding motif TGT/CGGT within upstream, intronic, and

downstream regions (Fig. 4A). Sequences from the 59 flanking

regions of each of these genes were recovered by chromatin

immunoprecipitation (ChIP) using a SpRunt-1-specific antibody,

Figure 2. RT-PCR analysis of blastula stage wnt gene expres-
sion. (A) RT-PCR products obtained from control and SpRunt-1
morphants at 16 and 24 hpf using primer sets specific to several
zygotically-expressed wnt genes, displayed by agarose gel electropho-
resis. The intensity of the bands gives a rough indication of the relative
levels of expression. The RT-PCR product for ubiquitin shows that
approximately equivalent amounts of RNA were used in each sample.
(B) Quantitative RT-PCR showing the ubiquitin-normalized difference in
cycle number needed to achieve threshold fluorescence (DCt) in real-
time RT-PCR of wnt6, wnt8, and cyclinD at 16 and 20 hpf. The DCt
corresponding to a 3-fold difference in transcript abundance is
indicated. Each bar represents the average of three or more separate
measurements, except in the case of wnt6, which represents two
measurements for the 16 hr sample. The number of biological
replicates used to obtain each average was as follows: for wnt6, one
at 16 hrs and two at 20 hrs (two and three measurements, respectively);
for wnt8, two per time point (three measurements each); and for
cyclinD, one per time point (three measurements each). The error bars
show the standard deviations. Statistical significance calculated using a
t-test is indicated by asterisks: *P = .0049; **P = .0005; ***P,.0001.
doi:10.1371/journal.pone.0003770.g002

Runx-Wnt Mutuality
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suggesting that SpRunt-1 binds DNA in the vicinity of these

sequences in blastula stage embryos (Fig. 4B). Moreover, the ChIP

enriched for sequences centered on a Runx binding site as

compared to sequences displaced some distance from a Runx

binding site (Fig. 4B; compare results from cyclinD and wnt6). These

data indicate that Runx target sites in the 59 flanking regions of

cyclinD, wnt6, and wnt8 are occupied by SpRunt-1 protein at late

blastula stage.

Interestingly, one of the Runx binding sequences identified in

wnt8 occurs in a previously-characterized cis-regulatory module

(‘module C’) that has binding sites for Tcf/Lef and Krox/Blimp1,

the combination of which is necessary for b-catenin-dependent

maintenance of wnt8 activity [48]. Because Tcf/Lef is an HMG-box

protein that binds the minor groove and bends DNA, thereby

facilitating interactions between proteins bound at sites flanking

either side of the Tcf/Lef site, Minokawa et al. [48] predicted that a

third unidentified factor might bind immediately 59 to the Tcf/Lef-

Krox/Blimp1 sites in module C; this is precisely where the SpRunt-

1 binding site is located (Fig. 4C). To test the functionality of this

site, module C was cloned into a GFP cis-regulatory reporter

construct (ModC-EpGFP) containing the naı̈ve basal promoter

from endo16 [51] (Fig. 4C). It was shown previously that a module C-

driven reporter gene with this promoter is expressed specifically in

the endomesoderm precursors during cleavage stage, and globally at

late blastula stage [48]. We verified that GFP is expressed in

embryos developed from zygotes injected with ModC-EpGFP

(Fig. 4D). RT-PCR shows that the level of this GFP expression is

substantially reduced in blastula stage SpRunt-1 morphants (Fig. 4E)

indicating that blastula stage activity of module C is dependent on

SpRunt-1. Moreover, this dependency is due to direct interaction of

SpRunt-1 with its target sequence in module C, as substitution of

two base pairs essential for Runx binding to this sequence (Fig. 4C)

abolishes blastula stage module C activity (ModCDRunx; Fig. 4E).

We conclude that at blastula stage, module C enhancer activity

depends on sequence-specific interactions with SpRunt-1, which is

likely to account at least in part for the blastula stage dependency of

wnt8 activity on SpRunt-1.

Zygotic activation of both wnt8 and runt-1 occurs at late cleavage

stage (,6 hpf), so it was of interest to examine whether the initial

expression of wnt8 is dependent on SpRunt-1. Since there is maternal

SpRunt-1 protein (JAC, unpublished data), MASO-mediated

knockdown might not be expected to affect wnt8 expression, and

this was found to be the case (data not shown). To address the

question of whether early module C enhancer activity requires the

Runx binding site, we compared the expression of ModC-EpGFP

and ModCDRunx-EpGFP in 7 hr (late cleavage stage) embryos. In

contrast to the situation at 18 hrs, base substitutions that eliminate the

Runx target sequence in module C do not abrogate module C-driven

expression of GFP at this early stage; indeed, there appears to be an

enhancement of expression (Fig. 4E).

These data provide further insight into the wnt8 cis-regulatory

system. Initial expression of wnt8 is confined to the micromeres at

the 16–32 cell stage, and in subsequent development it expands

outward to the macromere descendents in a dynamic torus [47].

This expression pattern is dependent on positive inputs from Blimp1

and Tcf complexed with vegetally localized b-catenin, the latter

functioning to locally displace Groucho and thereby convert Tcf

from a repressor into an activator [47]. These positive inputs are

mediated in parallel by the wnt8 cis-regulatory modules A and C

(Fig 4A) [48]. Our data suggest that during the early phase of wnt8

expression, SpRunt-1 is dispensable for the positive enhancer

activity of module C, and might even collaborate with Tcf/Groucho

in repressing any non-specific or ‘‘leaky’’ module C activity (note

that SpRunt-1, like other Runx proteins, has a Groucho

recruitment domain at its C-terminus). By blastula stage however,

module C enhancer activity becomes dependent on SpRunt-1,

which is expressed throughout the embryo. This explains a

previously unexplained observation: at blastula stage, module C-

driven reporter gene expression occurs globally [48], whereas both

Blimp1 and Tcf-b-catenin remain confined to the vegetal domain.

This late non-localized activity of Module C can now be attributed

to SpRunt-1, which explains the late spatial requirement for

repressive intermodular interactions in the context of the wnt8 cis-

regulatory system [48]. The question of why module C becomes

Runx-dependent later in development provides an interesting

avenue for future research. One possibility is that this requirement is

linked to structural constraints imposed on chromatin and/or

nuclear architecture that occur in preparation for cell differentiation

beginning at mesenchyme blastula stage.

SpRunt-1 is negatively regulated by GSK-3
To further explore the extent to which loss of wnt expression

might contribute to the cell number deficit in SpRunt-1

morphants, we investigated the effect on cell proliferation of

treating blastula stage morphants with GSK-3 inhibitors such as

lithium or SB216763, which are expected to compensate for the

loss of canonical Wnt signaling. Although lithium appeared in

initial experiments to rescue cell numbers [44], SB216763

surprisingly rescued many other aspects of development in

SpRunt-1 morphants: a substantial proportion of the inhibitor-

treated morphants frequently developed into fully formed plutei

(albeit with skeletal patterning defects), whereas their untreated

Figure 3. The effect of MASO-mediated knockdown of wnt8, wnt6, wnt8+wnt6, cyclinD, and PKC1 on cell proliferation in blastula
stage embryos. Each bar represents the average number of cells per embryo. The error bars show the standard errors of the mean. Significance was
calculated using a z-test; *z.3, P,0.01, **z.4, P,0.001. The total number of embryos scored for each control/injected set is indicated under each
heading on the x axis; the number of experimental repetitions for each set is in parenthesis.
doi:10.1371/journal.pone.0003770.g003

Runx-Wnt Mutuality
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cohorts underwent the typical developmental arrest associated

with SpRunt-1 deficiency (Fig. 5A, B). Although one possible

explanation for these results is that canonical Wnt signaling is the

major effector of Runx function, another, more likely explanation

stems from the fact that GSK-3b phosphorylates a number of

transcription factors, including mitogenic factors such as Myc and

Jun, and thereby targets them for destruction via the ubiquitin

ligase fbw7 and the SCF complex [52–54]. We reasoned that

SpRunt-1 levels may similarly be regulated by GSK-3b; and

hence, that inhibition of GSK-3b may allow SpRunt-1 protein to

accumulate to levels sufficient to overcome the MASO-mediated

knockdown (note that the MASOs that we use only partially

abrogate SpRunt-1 expression [43]). To ask whether this might be

the case, we used immunoblot to compare SpRunt-1 protein levels

in control and SB216763-treated blastula stage embryos. SpRunt-

1 protein was found to be more abundant in the inhibitor-treated

embryos (Fig. 5C), indicating that its steady-state levels are indeed

negatively regulated by GSK-3. Although further studies are

needed to determine whether this regulation is direct, involving

GSK-3b-mediated phosphorylation of SpRunt-1, we note that the

C-terminal sequence of SpRunt-1 has four serines and two

threonines that are potential GSK-3 phosphorylation sites.

Figure 4. SpRunt-1 is bound to DNA in the 59 flanking regions of cyclinD, wnt6, and wnt8 in 20 hr blastula stage nuclei, and is
required for blastula-stage activity of wnt8 cis-regulatory module C. (A) Schematic representation of cyclinD, wnt6, and wnt8. Exons are
shown as black bars. The previously-characterized wnt8 cis-regulatory modules [48] are shown as open bars. Locations of the consensus Runx binding
motif (TGT/CGGT) are indicated by vertical lines. Arrows show approximate primer locations for ChIP analysis. (B) PCR amplicons of cyclinD, wnt6, and
wnt8 obtained from ChIP of 20 hr embryo chromatin using anti-SpRunt-1 polyclonal IgG, or an equivalent quantity of non-immune IgG. In initial
experiments, real-time PCR was used to determine a threshold number of cycles needed to obtain non-saturating signals from both the input DNA
and SpRunt-1 ChIP DNA; this cycle number was then used as an end point in the experiments depicted here. Since an equivalent quantity of input
DNA was used as template in each PCR, the relative band intensities give a rough indication of the enrichment obtained for each sequence. Thus, the
wnt6 amplicon (which centers on Runx target site) is shown to be substantially enriched by ChIP compared to the cyclinD amplicon (which does not
center on a Runx target site). (C) Schematic of modC-EpGFP (not to scale). (D) Examples of modC-EpGFP expression in hatched blastulae. (E) RT-PCR
analysis comparing modC-EpGFP expression in control and SpRunt-1 morphants, and to expression of modCDRunx-EpGFP. The PCR products
obtained without reverse transcriptase (RT) shows the relative levels of transgene incorporation for each experiment.
doi:10.1371/journal.pone.0003770.g004

Runx-Wnt Mutuality

PLoS ONE | www.plosone.org 5 November 2008 | Volume 3 | Issue 11 | e3770



Together with the fact that SpRunt-1 supports expression of

multiple wnt genes, as well as expression of conventional PKC

(which also antagonizes GSK-3 in some contexts [55,56]), this

result suggests that SpRunt-1 and GSK-3 are functionally

antagonistic, and hence that Runx expression and canonical

Wnt signaling are mutually linked in sea urchins (Fig. 6).

Runx proteins as well as components of the Wnt signaling

pathway appear to be metazoan inventions, as they have not been

found outside of the animal kingdom. Studies in nematodes [23]

and vertebrates [24] have previously revealed functional coopera-

tion between Runx proteins and Wnt signaling. Runx proteins and

the Wnt signaling pathway are key regulators of animal stem cell

proliferation in multiple contexts, and frequently associated with

many kinds of cancer. For both Runx factors and the Wnt pathway,

this mitogenic function is mediated in part by promoting the

expression of D-type cyclins. Conversely, D-type cyclins have been

shown to antagonize Runx protein function, both through direct

physical interactions [57] and by promoting Runx protein

degradation in collaboration with cdk4 [58]. Based on these

observations and the results presented here, we propose that mutual

linkages between Runx, Wnt, and Cyclin D activities constitute an

ancient control circuitry (Fig. 6) that is a conserved module within

the regulatory network that coordinates cell proliferation with

patterning and differentiation in animal development.

Materials and Methods

Sea urchins, embryo culture, and microinjection
Sea urchins (Strongylocentrotus purpuratus) were obtained from

Santa Barbara Marine Biologicals (Charles Hollahan, Santa

Barbara, CA) or the Point Loma Marine Invertebrate Lab (Pat

Leahy, Coronal del Mar, CA). Gametes were obtained by shaking.

Eggs were fertilized with dilute sperm suspensions in artificial

seawater (ASW), and embryos were cultured at 15uC in ASW.

Microinjections were carried out using standard procedures [59].

Morpholino antisense oligonucleotides and reporter
gene constructs

Morpholino antisense oligonucleotides (MASOs) were obtained

from GeneTools, LLC (Corvallis, OR). The translation blocking

and splice blocking anti-SpRunt-1 (m2 and m5) and translation-

blocking anti-SpPKC1 MASOs were described previously [42,43].

The sequences of translation-blocking MASOs directed against

SpWnt8 (GTACACTCCAATAAAAGAAATCAAA) and SpCy-

clinD (TATCCATGATTGATAGAAGACGTTC) were obtained

from previous studies that established their efficacy [49,50]. The

sequence of a splice-blocking MASO directed against SpWnt6 was

as follows: AAGACGTGAACTTACCACCAAAGAC; the effica-

cy of this MASO in knocking down Wnt6 mRNA was established

by RT-PCR (Fig. S1). The standard non-specific control MASO

from GeneTools was injected into control embryos at concentra-

tions equivalent to those of the test MASO in all experiments.

BrdU labeling and cell counts
Embryos were cultured in 300 mg/ml BrdU (Sigma-Aldrich)

from 18–24 hours post-fertilization (hpf), then fixed in formalde-

hyde and prepared for confocal fluorescent imaging as described

previously [42]. For cell counts, staged embryos were incubated for

60 minutes at 15uC in 50 mM Vybrant DyeCycle Green (Invitrogen

Molecular Probes), a fluorescent stain for double-stranded DNA.

The embryos were then gently squashed under cover slips to display

all of the nuclei in one focal plane, and digitally imaged with a Zeiss

Axiocam mounted on a Zeiss Axiovert microscope. The fluores-

cently-labeled nuclei were counted either manually, using trans-

parencies mounted on the computer screen [44], or using NIH

ImageJ software with the Cell Counter plug-in (http://rsb.info.nih.

gov/ij/plugins/cell-counter.html).

Quantitative reverse-transcription polymerase chain
reaction (qRT-PCR)

Extraction of RNA from MASO-injected embryos, synthesis of

random-primed cDNA, and qRT-PCR measurement (by SYBR-

green fluorescence) of relative abundance of specific transcripts

was carried out as previously described [21]. qRT-PCR

measurements of threshold fluorescence (CT) were made using a

SmartCycler (Cepheid), and DCT between control and treatment

embryos were normalized to the DCT obtained for ubiquitin from

the same samples. PCR products were analyzed by agarose gel

electrophoresis to verify specificity of the products.

Chromatin immunoprecipitation (ChIP) and cis-
regulatory analysis

Chromatin immunoprecipitation from 20–24 hr blastula stage

embryos using an anti-SpRunt-1 polyclonal IgG was carried out

Figure 5. SpRunt-1 expression is negatively regulated by GSK-
3. (A) Examples of SpRunt-1 morphants developed in the absence or
presence of the GSK-3 inhibitor SB216763 beginning at blastula stage.
The embryo on the left is an untreated three day old morphant; the one
on the right is a three day old SB216763-treated morphant from the
same group of injected embryos. (B) Quantitation of phenotypes
obtained in the experiment shown in A. ‘‘Arrested’’ refers to a
phenotype similar that on the left in A; ‘‘Full pluteus’’ refers to a
phenotype similar to that on the right. ‘‘Stunted pluteus’’ refers to a
phenotype intermediate between the two. (C) Immunoblot showing
SpRunt-1 protein levels in equivalent numbers of normal blastulae and
blastulae cultured from 20–24 hpf in the presence of SB216763. Actin
serves as a loading control.
doi:10.1371/journal.pone.0003770.g005
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essentially as described [42] using a ratio of 2000 ng chromatin to

15 mg antibody and the final product was purified using the

Qiaquick Nucleotide Removal Kit (Qiagen). DNA recovered by

ChIP was analyzed by PCR using the cyclin D primers described

previously [21], the wnt8 module C primers described below, or

the following primers for wnt6: CCTCTAGGTGGTAAAAA-

GATCCCCATCAA (forward) and ACCCTTCTCGCG-

GTTGCTGCAT (reverse).

The ModC-EpGFP reporter was constructed by cloning a

restriction-digested PCR amplicon representing wnt8 cis-regulato-

ry module C [48] into the KpnI & BglII sites in the polylinker

region of pEpGFP [51], which encodes GFP under the control of

the endo16 basal promoter. Wnt8 module C was amplified from S.

purpuratus genomic DNA using the following primers (restriction

sites underlined): AAGGTACCTCCCAGCTCCCATTCT-

TACCCCGATT (forward) and ATGAGATCTGCCTGT-

CAGGTCCGGTAGGTATCTGAACAA (reverse). The Quick-

Change method (Stratagene) was used to substitute two residues

critical for Runx binding within the Runx target site of ModC-

EpGFP, using the following primers: GGCAGCCTCGC-

TATTGGTGCAATCTTTACAAAGTTCCC (forward) and

GGGAACTTTGTAAAGAATGCACCAATAGCGAGGCTG-

CC (reverse). The resulting plasmids were linearized with KpnI.

Linearized reporter plasmids (5 ng/ml) were co-injected with Sac1-

digested sea urchin genomic carrier DNA (20 ng/ml), with or

without anti-SpRunt-1 MASO m5 (600 mM).

To analyze reporter gene expression, total RNA was isolated

from injected embryos harvested at blastula stage, and GFP

mRNA was amplified by RT-PCR using the following GFP-

specific primers: GAGCAAGGGCGAGGAACTGTTCACT

(forward) and GCCATAGGTGAAGGTAGTGACCAGTGTT

(reverse). The same primers were used to amplify residual genomic

DNA in the RNA preparation (i.e., without reverse-transcriptase)

to verify that control and treatment embryos had incorporated

equivalent amounts of injected DNA.

Inhibitor treatment and immunoblot analysis
Embryos were cultured in the presence 5 mM SB216763

(Tocris) or an equivalent amount of vehicle (DMSO) from 18–

24 hpf, harvested, and extracted with ,10 volumes of the total

protein extraction reagent T-PER (Pierce). Following addition of

J volume of 46 LDS sample buffer containing b-mercaptoeth-

anol, the samples were heated to 70uC for 15 minutes then

subjected to SDS polyacrylamide gel electrophoresis on Novex

MES gradient gels (Invitrogen). The contents of the gels were

transferred to nitrocellulose, and subjected to immunoblot analysis

using the Westernbreeze immunodetection kit (Invitrogen) and

affinity-purified antibodies directed against the N-terminal peptide

of SpRunt-1 [43] diluted to 2 mg/ml. An antibody directed against

actin (Sigma) was used at a 1:200 dilution as a loading control.

Supporting Information

Figure S1 Efficacy of Wnt6 knockdown using a splice-blocking

MASO. RT-PCR of Wnt6 from RNA extracted with embryos

injected with a control MASO or a MASO that targets the first

intron of Wnt6. Wnt1 is used as a specificity control.

Found at: doi:10.1371/journal.pone.0003770.s001 (0.23 MB EPS)
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