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Abstract 

Background:  Health providers create Electronic Health Records (EHRs) to describe the conditions and procedures 
used to treat their patients. Medical notes entered by medical staff in the form of free text are a particularly insightful 
component of EHRs. There is a great interest in applying machine learning tools on medical notes in numerous medi-
cal informatics applications. Learning vector representations, or embeddings, of terms in the notes, is an important 
pre-processing step in such applications. However, learning good embeddings is challenging because medical notes 
are rich in specialized terminology, and the number of available EHRs in practical applications is often very small.

Methods:  In this paper, we propose a novel algorithm to learn embeddings of medical terms from a limited set of 
medical notes. The algorithm, called definition2vec, exploits external information in the form of medical term defini-
tions. It is an extension of a skip-gram algorithm that incorporates textual definitions of medical terms provided by 
the Unified Medical Language System (UMLS) Metathesaurus.

Results:  To evaluate the proposed approach, we used a publicly available Medical Information Mart for Intensive 
Care (MIMIC-III) EHR data set. We performed quantitative and qualitative experiments to measure the usefulness of the 
learned embeddings. The experimental results show that definition2vec keeps the semantically similar medical terms 
together in the embedding vector space even when they are rare or unobserved in the corpus. We also demonstrate 
that learned vector embeddings are helpful in downstream medical informatics applications.

Conclusion:  This paper shows that medical term definitions can be helpful when learning embeddings of rare or 
previously unseen medical terms from a small corpus of specialized documents such as medical notes.
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Background
Health providers use Electronic Health Records (EHRs) 
to keep information about their patient’s medical condi-
tions and the procedures employed to treat them. While 
the primary purpose of EHRs is operational and admin-
istrative, EHRs have been increasingly useful in biomedi-
cal research studies such as patient phenotyping [1, 2], 
health risk prediction [3, 4], prediction of medical events 
[5, 6], medical code extraction [7], and relation extrac-
tion between medications and adverse drug effects [8]. 

Particularly, valuable parts of EHRs are medical notes, 
which are free text created by the medical staff to provide 
insights about the condition and treatment of patients. 
Extracting information and analysis of medical notes is 
an open machine learning (ML) problem. A critical pre-
processing step in modern approaches for medical note 
analysis is medical term embedding, which refers to the 
representation of medical terms as vectors. Medical term 
embeddings can be used as inputs for neural networks in 
a range of predictive and descriptive tasks [9, 10]. In this 
paper, we refer to a medical term as a single word (e.g., 
Parkinson) or a multi-word (e.g., Parkinson’s disease) that 
is linked to an entry in a medical thesaurus, such as the 
UMLS Metathesaurus [11].
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Recent research has resulted in several methods for 
learning embeddings of medical terms, diagnosis and 
procedure codes, medications, and lab tests [12–15]. In 
particular, the skip-gram model [16] is a popular choice 
for learning embeddings of terms both from general-pur-
pose corpora (e.g., Wikipedia) and from specialized cor-
pora (e.g., medical notes) [2, 13, 17] due to its simplicity 
and computational efficiency. The skip-gram and related 
embedding approaches, such as fastText [18], work well 
when a document corpus is large and when terms that 
need to be embedded are frequent. However, there are 
many applications that rely on relatively small corpora 
with an abundance of specialized terms and abbrevia-
tions [19–21], where direct application of the skip-gram 
model does not always result in high-quality embeddings.

The main contribution of this study is summarized as 
follows: we propose a new algorithm, called definition-
2vec, that is particularly appropriate for learning embed-
dings of infrequent or unobserved medical terms from a 
small corpus of medical notes. Our approach enhances 
the skip-gram algorithm by exploiting textual defini-
tions of medical terms from existing publicly available 
resources, such as the UMLS Metathesaurus. We demon-
strate experimentally that our algorithm provides useful 
embeddings of infrequent and unobserved medical terms 
and that those embeddings can increase the quality of 
downstream medical informatics tasks.

Related work
Learning embeddings of n-grams, words, terms, sen-
tences, and paragraphs is an active research topic due 
to the importance of embeddings in deep learning 
approaches for natural language processing. Modern 
embedding algorithms draw inspiration from the well-
known distributional hypothesis, which states that words 
that occur in the same contexts tend to purport similar 
meanings [22]. An overview of traditional embedding 
approaches is provided in [23]. More recently, starting 
from seminal papers proposing skip-gram [16], GloVe 
[24], and fastText [18] algorithms, many general-purpose 
and specialized embedding algorithms were proposed 
both for processing text and various types of data objects 
such as sequences and graphs [25]. The skip-gram algo-
rithm [16] learns embeddings as a by-product of pre-
dicting context words of a target word. FastText [18] is 
an alternative approach that treats words as sequences 
of n-grams that have their own embeddings and is some-
times useful in finding representations of out-of-vocabu-
lary words.

Studying specialized approaches for embeddings of 
medical terms and concepts has been an active research 
area [2, 26–28]. The work on learning UMLS concept 
representations from medical notes and journals using 

the skip-gram algorithm [12, 13] is particularly relevant 
to this paper. A recent study [29] provides an extensive 
analysis of bio-medical word embeddings based on the 
skip-gram architecture. Med2Vec [17] is another relevant 
work that uses a two-layer neural network for learning 
embeddings of medical concepts from code occurrences 
and clinical narratives about patient visits. The authors 
of [30] proposed cui2vec that learns the embedding of 
UMLS Concept Unique Identifiers (CUIs) based on the 
distribution of concept co-occurrences in clinical notes. 
A related approach is described in [14] that focuses on 
temporal relations to embed medical concepts. It extends 
the Continuous Bag of Words (CBOW) model [16] to 
develop a time-aware attention approach for learning 
medical concepts. The research survey of Hahn et al. [31] 
provides a detailed overview of different medical infor-
mation extraction methods that rely on medical term 
embeddings.

Other studies used external knowledge sources in dif-
ferent ways to improve embeddings and downstream 
predictive models [32, 33]. The authors in [32] combine 
UMLS Metathesaurus and Semantic Network informa-
tion to learn concept embeddings following the Genera-
tive Adversarial Networks (GAN) framework [34]. Work 
in [33] uses the Medical Subject Heading (MeSH) term 
graph [35] to generate MeSH term sequences. While this 
previous work exploited known relations between medi-
cal terms, in our work, we leverage medical term defini-
tions through an easy-to-implement and computationally 
efficient skip-gram extension.

Methods
In this section, we describe our proposed algorithm that 
learns the embeddings of medical terms. We first define 
the problem and briefly introduce the baseline skip-gram 
algorithm [16], which is the basis of our approach. Then, 
we describe our proposed algorithm.

Problem definition
Let us suppose we are given a corpus of medical notes. 
We describe a single note N as an ordered sequence of 
terms, N = {w1, w2, …, wn}, where wi is a term from vocab-
ulary V and n is the length of the note. The size of the 
vocabulary is |V|. A term can be a single word (e.g., Par-
kinson) or a multi-word (e.g., Parkinson’s disease). The 
objective of term embedding is to represent each term 
from the vocabulary as a vector, such that semantically 
similar terms have similar vectors.

Skip‑gram algorithm
The skip-gram algorithm for embedding [16] scans the 
terms in a note and updates their vector representa-
tions based on their context. The context of a term is 
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typically defined as its neighboring terms in a sequence. 
Given the target term wt from the corpus, the skip-gram 
algorithm creates term pairs consisting of the scanned 
term wt and its context terms wi, and uses pairs (wt, wi) 
to update the likelihood of observing the context term 
wi given the target term wt. The context of wt is defined 
as its neighboring terms Cwt = (wt−2, wt−1, wt+1, wt+2), if 
the context size is 2. Context terms wi are selected from 
Cwt. The log-likelihood of observing context terms for 
all the terms in the corpus is defined as

where p(wi|wt) is the conditional probability of context 
term wi given the target term wt. The skip-gram approach 
is illustrated in Fig. 1.

In order to model p(wi|wt), skip-gram assigns vectors 
Uw and Vw to term w from the vocabulary. The dimen-
sion of both vectors is the same. The conditional prob-
ability is defined as the following softmax function

where the dot product between two vectors is used to 
measure the similarity between two terms. A gradient 
descent algorithm can be used to maximize the objec-
tive function of Eq. (1). However, since the computational 
complexity of calculating Eq.  (2) is very high due to its 
denominator, skip-gram uses negative sampling where 
the log-likelihood objective function is replaced with 
the negative sampling instantaneous loss for each target 
word wt, defined as
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where

Here, Wneg is a set of K so-called negative terms ran-
domly sampled from the corpus. Skip-gram uses a sto-
chastic gradient algorithm to greedily maximize the 
instantaneous loss. After the training is finished, vector 
Uw is used as an embedding for term w.

Our proposed method: definition2vec
The proposed definition2vec algorithm enhances the 
skip-gram approach by exploiting the textual definitions 
of medical terms available in public resources. Similar to 
skip-gram, it scans the terms in a corpus and uses sto-
chastic gradient descent to minimize the negative sam-
pling instantaneous loss. However, when updating the 
embedding of a term, definition2vec also accounts for 
embeddings from its definition.

Let us assume target term wt has its definition in a form 
of a word sequence Dwt = (d1, d2, …, dm), where di is the i-
th definition word of wt and m is the length of the defini-
tion. We denote zd as the vector representation of word d 
from the definition and U′

wt as the definition-independ-
ent vector for the target term. We express the resulting 
target vector as

Here, fwt is the frequency of wt in the corpus and β is 
a hyperparameter. By using Eq.  5, our goal is to obtain 
the embedding of wt that is influenced by its context and 
definition. Figure 2 illustrates the proposed approach. If 
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Fig. 1  The framework for the skip-gram algorithm
Fig. 2  Architecture of the proposed definition2vec algorithm
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a term frequently occurs in the corpus, its representa-
tion will be influenced more strongly by its contextual 
terms than its definition words. However, if a term is 
rare or unseen in the corpus, its representation will be 
heavily influenced by its definition words. Hyperparam-
eter β determines the impact of a term’s definition on its 
embeddings. Our proposed algorithm scans the corpus 
term by term and constructs pairs of context and target 
terms together with their corresponding negative pairs. It 
follows the negative sampling idea of skip-gram and uses 
a stochastic gradient algorithm to minimize the instanta-
neous loss. The updates of context term, target term, and 
definition word vectors are calculated as follows,

where α is the learning rate.
After the training is finished, the target vector Uw 

becomes an embedding for term w. As a by-product of 
the learning procedure, we also learn the embeddings of 
each definition word.

Results
In this section, we start by explaining the data sets and 
data preprocessing. Then, we describe the experimental 
design. Finally, we show and discuss the results of our 
qualitative and quantitative evaluation.

Data sets
In our experiments, we used two data sets. The first data 
set is the UMLS Metathesaurus, which has textual defi-
nitions for a large number of medical terms. The second 
data set is MIMIC-III, which contains EHR records of a 
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large number of Intensive Care Unit (ICU) patients with 
notes written in English.

UMLS Metathesaurus: Unified Medical Language Sys-
tem (UMLS) is a set of files and software that integrates 
multiple medical vocabularies [11]. UMLS Metathesau-
rus is the component of UMLS that maintains medical 
concepts and their textual definitions which are linked 
to different medical source vocabularies such as National 
Cancer Institute Thesaurus (NCIT) [36], Medical Subject 
Heading (MeSH) [35], Universal Medical Device Nomen-
clature System (UMD) [37], Human Phenotype Ontology 
(HPO) [38] and Mondo Disease Ontology (MONDO) 
[39]. UMLS Metathesaurus lists 188,050 concepts with at 
least one textual definition, each with its Concept Unique 
Identifier (CUI). Each concept has one or more medical 
terms associated with it, where each term has its String 
Unique Identifier (SUI). Each SUI can have one or more 
Atomic Unique Identifiers (AUI) that link the term to its 
definition from a particular source vocabulary. UMLS 
Metathesaurus has 773,692 SUIs. Although there are over 
2.5 million medical concepts listed in UMLS Metathesau-
rus, in this study, we only consider those with at least one 
definition because definition2vec requires them.

MIMIC-III: Medical Information Mart for Intensive 
Care (MIMIC-III) is a publicly available deidentified data 
set that contains EHRs of 41,127 ICU patients from Beth 
Israel Deaconess Medical Center recorded between 2001 
and 2012 [40]. This data set contains both structured 
(medical codes, lab results) and unstructured (medical 
notes) data. MIMIC-III contains several types of medi-
cal notes such as progress notes, radiology reports, and 
discharge summaries. In this study, we only consider 
discharge summaries prepared by a health provider at 
the conclusion of an ICU stay. There is a total of 59,652 
discharge summaries in MIMIC-III indicating that most 
patients have a single EHR in the data set. In our study, 
we are also interested in ICD-9-CM diagnosis codes [41] 
listed with each patient stay in the MIMIC-III data set. 
There is a total of 6,717 unique diagnosis codes listed in 
the data set.

Data processing
Given a discharge summary, we performed several pre-
processing steps illustrated in Fig.  3. First, we removed 
digits and special characters, converted all characters into 
lower case, and tokenized the text. Then, we used Meta-
Map v16.2 [42] to automatically match the tokens with 
UMLS CUIs. Each token can remain unmatched, become 
directly matched to a medical concept, or become a part 
of a multi-word phrase that is matched to a medical con-
cept. If a matched concept is a multi-token such as “Par-
kinson disease” we concatenated the tokens into a single 
token by adding an underscore special character such as 



Page 5 of 12Chanda et al. BMC Medical Informatics and Decision Making          (2022) 22:114 	

“Parkinson disease”. Finally, we removed all unmatched 
tokens, such that each discharge summary becomes a 
sequence of tokens matched with medical concepts from 
UMLS Metathesaurus. This preprocessing procedure 
matches the previous work [12].

To find definitions of each matched token, we per-
formed the following steps. First, we identified the CUI 
of each matched token. Then, we found all AUIs corre-
sponding to the CUI, retrieved the medical term defi-
nition of each AUI, and concatenated the definitions. 
Finally, we preprocessed the definition sentences to 
remove digits and special characters, lowercase all char-
acters, tokenize, and remove stop words and rare words. 
Figure  3 illustrates the process that starts from a dis-
charge note and ends with a sequence of CUI-matched 
tokens with their corresponding definitions.

Learning medical term embeddings
After preprocessing the discharge summaries from 
MIMIC-III following the procedure illustrated in Fig. 3, 
each medical term in the resulting corpus is linked to 
its definition sequence. In this subsection, we describe 
experimental design that was used to produce embed-
dings by definition2vec and the baseline algorithms.

Our first step was to split the set of preprocessed dis-
charge summaries randomly into training, validation, 
and test sets. Similar to [7], the resulting training data set 
contained 47,423 notes from 36,998 patients, test data 
had 3372 notes from 2,755 patients, and validation set 
had 1632 notes from 1374 patients. One patient can have 
their discharge notes in only one of the three subsets.

We used the training data set to learn the embeddings 
of medical terms. In this way, we learned the embeddings 
of 46,861 medical terms corresponding to 29,740 medi-
cal concepts. Some statistics about the training data set 
are listed in Table  1. We trained definition2vec and the 

baselines on the preprocessed training data to learn med-
ical term embeddings. We used Python Gensim imple-
mentation of three popular embedding algorithms as 
baselines: GloVe,1 skip-gram,2 and fastText.3

We used the same hyperparameters for all embedding 
algorithms: word context neighborhood (or window 
size) = 5, embedding vector length (or feature size) = 100, 
learning rate = 0.01, number of negative samples = 5. 
Those same parameters had been used in previous 
research [16, 43]. All models were trained for 10 epochs, 
which was sufficient for convergence.

Glove, skip-gram, fastText, and definition2vec embed-
dings are non-contextualized, meaning that every term 
has a fixed vector representation. In contrast, recent 
research resulted in contextualized embeddings, where 
vector representation of a given term depends on the 
context in which it is mentioned. The most notable rep-
resentative of contextualized embeddings is BERT neu-
ral network [44], which was trained on a large corpus of 
general-purpose text. In particular, given an input text, 

Fig. 3  Illustrating a process for extracting definitions of medical terms

Table 1  Statistics of discharge summaries in the MIMIC-III 
training data

# training notes 47,423

# of unique medical terms in training data 46,861

Average # of medical terms in a discharge summary 671

# of unique medical concepts in training data 29,740

Average # of medical concepts per discharge summary 364

Average # of definition words per medical concept 16

# of unique diagnosis codes in training data 6717

Average # of diagnosis codes per discharge summary 11

1  https://​radim​rehur​ek.​com/​gensim/​scrip​ts/​glove​2word​2vec.​html.
2  https://​radim​rehur​ek.​com/​gensim/​models/​word2​vec.​html.
3  https://​radim​rehur​ek.​com/​gensim/​models/​fastt​ext.​html.

https://radimrehurek.com/gensim/scripts/glove2word2vec.html
https://radimrehurek.com/gensim/models/word2vec.html
https://radimrehurek.com/gensim/models/fasttext.html
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the final hidden layer of BERT provides a 768-dimen-
sional embedding for every WordPiece [45] token. Each 
word can be represented with the embedding of the first 
WordPiece token of the word. Such embedding is con-
textualized. A recent study [46] found that the BERT 
contextualized embeddings can outperform context-
free embeddings from skip-gram, fastText, and GloVe 
in several downstream tasks. Thus, we compared BERT 
embeddings with the non-contextualized embeddings in 
our experiments.

To get BERT contextual-embedding of medical terms 
in a discharge note, we sent the lowercased note to the 
BERT model and recorded the embedding of every medi-
cal term. If the discharge note has more than 512 tokens, 
we first divided it into subsequences shorter than 512 
and concatenated medical term embeddings from all the 
subsequences.

We performed two types of studies to evaluate 
the baseline and our proposed term embeddings, as 
explained next.

Downstream evaluation: predicting ICD‑9‑CM diagnosis 
codes
Our first evaluation was to use the embeddings in a 
downstream task of predicting ICD-9-CM diagnostic 
codes for a given discharge summary. This is a multi-label 
classification where the prediction model provides multi-
ple outputs, one for each ICD-9-CM diagnosis code. The 
employed prediction model was Convolutional Atten-
tion for Multi-Label classification (CAML) [7], which is 
a convolutional neural network (CNN) with the attention 
mechanism. In CAML, each medical term from the pre-
processed discharge summary is converted to a vector 
according to its embedding and provided as an input to 
the neural network. The output of CAML is a binary vec-
tor of predictions of ICD-9-CM diagnosis codes.

For measuring the accuracy, we use “recall at 8”, micro-
averaged (MIC) and macro-averaged (MAC) F1, and 
area under the ROC curve (AUC), similar to the previ-
ous research [7]. Recall at k (k = 8), is the fraction of cor-
rectly predicted ICD-9-CM diagnosis codes among the 
k most confidently predicted codes. To calculate F1, we 
must first calculate recall and precision. Recall is a frac-
tion of true ICD-9-CM diagnosis codes predicted by 
CAML. Precision is a fraction of true ICD-9-CM diag-
nosis codes among the predicted codes. The F1 score is 
measured by the harmonic mean of recall and precision. 
In MIC calculations, each pair (discharge note, code) is 
taken as a separate prediction. Then, all predictions are 
used to calculate the F1 accuracy. On the other hand, 
the MAC values are computed by first calculating F1 on 
each individual ICD-9-CM diagnosis code. Then, the 
code- specific F1 accuracies are averaged to obtain the 

MAC F1 accuracy [7]. Compared to MIC F1 accuracy, 
the MAC F1 accuracy places a higher emphasis on rare 
code predictions.

We used the CAML implementation provided by the 
authors.4 We used the learned embeddings of our pro-
posed method and the three non-contextualized base-
lines as input for CAML. The embeddings were not 
modified during CAML training. All trained models had 
identical neural network architecture and the default 
hyperparameters given in the original paper. Each CAML 
was trained on all available training data. We checked 
the “recall at 8”, accuracy on the validation set after each 
epoch as stopping criteria. If the “recall at 8” value did 
not increase after ten consecutive epochs, we stopped the 
training. For definition2vec, we tuned β value by explor-
ing different values i.e., 1, 2, 5, 10, 20, 50, and 100. Based 
on the validation data, we obtained the best results for 
β = 10. The CAML model had 2690 outputs with sigmoid 
neurons, corresponding to all ICD-9-CM diagnosis codes 
with frequency ≥ 10 in our training data.

To evaluate the contextualized BERT embeddings, we 
also used the same CAML architecture and training pro-
cedures. The only difference was the dimensionality of 
the embeddings, which was 768 for BERT versus 100 for 
the non-contextualized embeddings.

The results in Table 2 show accuracy measured on test 
data. It can be observed that definition2vec is more accu-
rate than the baselines on the F1 MAC measure, while it 
is comparable to skip-gram and fastText on other accu-
racy measures. We note that the F1 MAC accuracy gives 
a larger weight to rare ICD-9-CM diagnosis codes than 
the F1 MIC measure.

The results also show that BERT contextualized embed-
dings are not better than the non-contextualized defini-
tion2vec embeddings. We think that the main reason is 

Table 2  Accuracy of ICD-9-CM diagnosis code prediction using 
large training data set (predicting top 2690 ICD-9-CM diagnosis 
codes having frequency at least 10 times in training data)

Bold font emphasizes the best method for each accuracy category

Model AUC​ F1

MIC MAC MIC MAC R@8

BERT 0.9580 0.8769 0.4516 0.0932 0.3922

GloVe 0.9703 0.8888 0.4727 0.1126 0.3938

skip-gram 0.9790 0.9316 0.4995 0.1333 0.4147

fastText 0.9794 0.9340 0.4950 0.1372 0.4168

definition2vec 0.9794 0.9350 0.5065 0.1489 0.4173

4  https://​github.​com/​james​mulle​nbach/​caml-​mimic

https://github.com/jamesmullenbach/caml-mimic
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that BERT was pre-trained on large general-purpose cor-
pus while the definition2vec and the other baseline meth-
ods (i.e., GloVe, skip-gram, and fastText) were trained on 
a specialized discharge note corpus.

Downstream evaluation: predicting ICD‑9‑CM diagnosis 
codes using small training data
In many medical informatics applications, the available 
corpus is much smaller than the MIMIC-III data set. Our 
hypothesis is that definition2vec is very appropriate for 
small data scenarios where most of medical terms are not 
observed often enough to enable baseline algorithms to 
learn good embeddings.

We repeated the CAML experiments described in the 
previous subsection using smaller training data sets. In 
particular, we created four training data sets by randomly 
sampling 1000, 2000, 5000, and 10,000 discharge summa-
ries from the training data. We trained definition2vec and 
the baselines (GloVe, skip-gram, fast- Text) on the small 
data sets for 40 iterations to learn concept embedding 
with the same parameters as before (window size = 5, fea-
ture size = 100, learning rate = 0.01, and number of nega-
tive samples = 5).

After learning the representations of medical terms, 
we trained a CAML model in the same manner, using the 
full training data set. We only predicted ICD-9-CM diag-
nosis codes that occurred at least 10 times in the training 

data set. For each size of training data, we used validation 
to determine the best choice for β in definition2vec from 
among the following choices.

β = 1, 2, 5, 10, 20, 50, and 100. We found β = 50 gives 
the best results for 1000 and 2000 data sets, β = 20 is 
the best choice for the 5000 data set, and β = 10 for the 
10,000 data set.

Table 3 shows CAML accuracy for each data set. For all 
four small training data sets, definition2vec outperforms 
the baselines on all metrics. The difference between defi-
nition2vec and the baseline methods is particularly large 
on the two smallest training data sets (1000 and 2000) 
and the difference reduces on the two largest training 
data sets (5000 and 10,000). Therefore, Table  3 results 
strongly support our hypothesis that definition2vec is 
particularly useful on small corpora.

In addition, we found that larger β in definition2vec 
were appropriate for smaller training data sets and vice 
versa. This result supports our hypothesis that if a term is 
rare or unseen in the training corpus, its representation 
should be heavily influenced by its definition words.

Semantic similarity evaluation: 3 human labeled data sets
Several studies [12, 27] used similarity scores between 
pairs of medical concepts or terms to evaluate learned 
embeddings. For the evaluation of our learned 

Table 3  Accuracy of ICD-9-CM diagnosis code prediction using small training data sets (UT: number of unique medical terms, DC: 
number of ICD-9-CM diagnosis codes, PDC: number of predicted ICD-9-CM diagnosis codes occurring at least 10 times in training 
data)

Bold font emphasizes the best method for each accuracy category

Model 1000 data set
UT: 9632 DC: 1351 PDC: 138

5000 data set
UT: 19,601 DC: 3114 PDC: 500

AUC​ F1 AUC​ F1

MIC MAC MIC MAC R@8 MIC MAC MIC MAC R@8

GloVe 0.8240 0.6919 0.1546 0.0266 0.3560 0.9122 0.8386 0.2829 0.0805 0.3997

BERT 0.8368 0.7212 0.1675 0.0341 0.3588 0.9198 0.8389 0.3016 0.1013 0.4063

skip-gram 0.8409 0.7426 0.1440 0.0320 0.3797 0.9439 0.9002 0.4274 0.2056 0.4621

fastText 0.8414 0.7720 0.1968 0.0711 0.4001 0.9468 0.9053 0.4291 0.2081 0.4663

definition2vec 0.8587 0.7958 0.2583 0.0985 0.4323 0.9475 0.9066 0.4314 0.2108 0.4696

2000 data set
UT: 13,551 DC: 1932 PDC: 272

10,000 data set
UT: 26,738 DC: 4186 PDC: 1100

AUC​ F1 AUC​ F1

MIC MAC MIC MAC R@8 MIC MAC MIC MAC R@8

GloVe 0.8505 0.7512 0.2175 0.0500 0.3306 0.9496 0.8761 0.4257 0.1355 0.4352

BERT 0.8636 0.7731 0.2022 0.0466 0.3431 0.9427 0.8743 0.3680 0.0970 0.3827

skip-gram 0.8709 0.7873 0.2050 0.0312 0.3455 0.9604 0.9105 0.4539 0.1796 0.4445

fastText 0.8722 0.7929 0.2059 0.0362 0.3539 0.9613 0.9128 0.4554 0.1847 0.4472

definition2vec 0.8891 0.8338 0.2915 0.1055 0.3985 0.9613 0.9136 0.4564 0.1875 0.4488
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embeddings, we used three different data sets as 
described below.

Pedersen data set: Pedersen [47] provides a data set of 
30 UMLS medical term pairs with semantic similarity 
judgments by 3 physicians and 9 clinical terminologists.

Pakhomov data set: This data set [48] consists of 101 
clinical term pairs whose similarity was determined by 9 
medical coders and 3 physicians from Mayo Clinic.

UMNSRS data set: The UMNSRS data set [49] has 566 
medical term pairs. Each medical term pair has a seman-
tic similarity score determined by 8 medical residents 
from the University of Minnesota Medical School.

For this experiment, we treated all strings in the three 
data sets as medical terms and we matched them with 
our embeddings. To compare the embeddings, we meas-
ured the cosine similarity between them and calculated 
the Pearson correlation coefficient between the cosine 
similarity scores and the scores by the human experts. 
Some medical terms from the three data sets do not exist 
in the vocabulary of our learned embeddings. Thus, we 
used 25, 67, and 306 medical term pairs from the three 
semantic similarity data sets, respectively. Since BERT 
is a contextual embedding model that provides different 
vectors for the same term in different contexts, we did 
not include this model as a baseline for this experiment. 
Table  4 shows the Pearson correlation coefficients for 
definition2vec and baseline methods. The results indicate 
that definition2vec better reflects the underlying semantic 
relationships between the medical terms.

Semantic similarity evaluation: UMLS semantic types
UMLS semantic network has 127 different semantic 
types such as “drug”, “virus”, “disease”, and “procedure”, 
which categorize medical concepts and reveal the rela-
tionships between them. We labeled each of the embed-
ded medical terms into one of the 127 classes. Then, we 
applied a k-means clustering algorithm with k = 127 on 
the embeddings learned from the full training data set. 
We used normalized mutual information (NMI) to evalu-
ate the purity of the clusters with respect to their seman-
tic network labels. A high NMI value indicates that the 
clusters are pure and contain a limited set of semantic 
types in each cluster.

Table 5 compares the NMI values obtained with four 
different embedding algorithms. Clusters obtained with 
GloVe embeddings have the lowest conformity with 
semantic labels. Clusters obtained with definition2vec 
embeddings show the largest conformity. The clusters 
obtained with fastText were similar to definition2vec’s, 
with slightly less conformity. The results indicate that 
definition2vec is successful in keeping similar medical 
terms close together in the learned vector space.

Qualitative evaluation
We learned definition2vec and baseline embeddings on 
the full training data set (47,423 summaries) and on 
the smallest training data set (1,000 summaries). Then, 
we searched the nearest neighbors in the embedding 
space for a range of medical terms. For a given medical 
term, we found its 10 nearest neighbors based on the 
cosine similarity between the embeddings. For exam-
ple, Table 6 shows the nearest neighbor terms of “heart 
attack” based on learning from the full and the smallest 
training data sets. For the full data set, both definition-
2vec and skip-gram provide similar results, with block-
age, heart muscle, heartblockage, and slow heart rate 
in the results of both methods. However, the results 
based on the smallest training data set are different. 
definition2vec finds myocardial infarctions, acute mi, 
hemorrhagic stroke, and hypertensive crisis, which are 
all the concepts related to “heart attack”. On the other 
hand, skip-gram finds pain, cough, blood, scheduling, 
skip, and cell phone, which are not as closely related to 
“heart attack”.

Table  7 shows another example with the nearest 
neighbors of “bipolar disorder”. Similar to the previ-
ous example, definition2vec and baseline embeddings 
result in similar neighborhoods when trained on the 
full training data set. For example, the top neighbors 
for both methods are schizophrenia, schizoaffetive dis-
order, bpad, and mood disorder. However, the results 
obtained by learning on the smallest training data set 
are different. definition2vec finds several concepts that 
are related to the “bipolar disorder”, such as depres-
sion, psychosis, and hyperlipidemia, while the nearest 

Table 4  Pearson correlation coefficient for semantic pair 
similarity

Bold font emphasizes the best method for each accuracy category

Data set GloVe skip-gram fastText definition2vec

Pedersen 0.2963 0.4297 0.6256 0.6468
Pakhomov 0.1712 0.5310 0.5732 0.5888
UMNSRS 0.2182 0.6058 0.6188 0.6392

Table 5  Cluster NMI value for different models

Bold font emphasizes the best method for each accuracy category

Model NMI value

GloVe 0.1339

Skip-gram 0.2130

fastText 0.2834

definition2vec 0.3054
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neighbors found by skip-gram are less related, such as 
armour, parkinson disease, and ckd (abbreviation of 
chronic kidney disease). From these results, we can con-
clude that definition2vec provides similar embeddings 
to skip-gram when both are trained on the full training 
data set, while it seems to be superior when the training 
data set is small.

Qualitative evaluation: out‑of‑vocabulary (OOV) medical 
terms
There might be many important medical terms that 
do not occur in the training data, but have definitions 
in UMLS Metathesaurus. Since definition2vec learns 
word embeddings through medical term definitions, 
it can calculate the embeddings of OOV terms by tak-
ing the average of their definition word embeddings. 
For example, in Table  8 we show the top 10 neigh-
bors of “nicotine replacement therapy” and “gastric 
pains” which do not occur in the full training data set. 
definition2vec properly finds “nicotine replacement”, 

“smoking cessation therapy”, “nicotine patches” among 
the nearest neighbors of the OOV “nicotine replace-
ment therapy” term. Similarly, it properly identifies 

Table 6  Showing top 10 nearest neighbor terms for “heart attack” in definition2vec and skip-gram

Large data set Small data set

definition2vec skip-gram definition2vec skip-gram

blockage blocked artery myocardial infarctions pain

heart muscle blockage acute mi cough blood

heart attacks heart blockage infarction scheduling

heart blockage heart muscle hemorrhagic stroke aortic aneurysms

blocked heart blocked heart myocarditis abuse substance

heart block diagnosis heart muscles hypertensive crisis providers

block heart blood clots lung myocardial skip

slow heart rate heart function restrictive cardiomyopathy caregiver

heart function slow heart rate ischemic change substance abuse problem

myocardia myocardial infarction ischemia cell phone

Table 7  Showing top 10 nearest neighbor terms for “bipolar disorder” in definition2vec and skip-gram

Large data set Small data set

definition2vec skip-gram definition2vec skip-gram

schizophrenia schizophrenia depression armour

schizoaffective disorder schizoaffective disorder psychosis parkinson disease

major depression depression asthma sildenafil

paranoid schizophrenia major depression hyperlipidemia addison disease

bpad bpad neuropathy ckd

psychotic disorder multiple personality disorder diabetic neuropathy amenorrhea

bipolar affective disorder seizure disorder dyslipidemia renal carcinoma

mood disorder mood disorder hypertension obesity hypoventilation syndrome

bipolar illness pervasive developmental disorder malignant hypertension oa

bipolar mood disorder paranoid schizophrenia anxiety esophageal dilatation

Table 8  Showing top 10 nearest neighbor terms for two 
OOV terms, “nicotine replacement therapy” and “gastric pains” in 
definition2vec 

nicotine replacement therapy gastric pains

nicotine replacement stomach ache

smoking cessation therapy stomach pain

nicotine patches feeling bloated

nicotine transdermal patch pain esophagus

ceassation smoking gastrointestinal pain

nicotine dependence esophageal pains

nicotine addiction abdominal pains

quiting smoking low ache

nicotine lozenges low pains

dependence nicotine gi pain
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neighbors of the OOV term “gastric pains.” These 
results show that definition2vec can find the proper 
embeddings of OOV medical terms using defini-
tion word embeddings. This puts definition2vec at an 
advantage over Glove and skip-gram, which cannot 
provide embeddings for OOV terms. It also has an 
advantage over fastText, which relies purely on n-gram 
embeddings to calculate the embeddings of OOV 
terms.

Discussion
Often in practice, a document corpus is too small for 
training language models and is only useful for learn-
ing embeddings of the most common terms. To address 
this issue, we extended the skip-gram algorithm to incor-
porate the definitions of medical terms from external 
publicly available resources. In our case, we relied on 
the UMLS Metathesaurus as the external source. We 
note that the proposed definition2vec algorithm allows 
other sources of medical term definitions, including web 
resources such as Wikipedia.

Our experiments show that definition2vec results in 
better medical term embeddings, especially when the 
size of a document corpus is small. This could be particu-
larly useful in applications [19–21] where it is not feasible 
to have a large corpus, such as when the corpus is from 
a specialized medical practice, is related to the treat-
ment of a rare medical condition, or is written in a rare 
language. Definition2vec could also be applicable to non-
medical domains such as the embeddings of legal terms 
or specialized terms used in various scientific domains.

Recent advances in contextualized embedding repre-
sented by neural networks such as ELMo (Embedding 
from Language Models) [50] and BERT (Bidirectional 
Encoder Representations from Transformers) [44] allow 
embeddings to depend on the context of each term’s 
occurrence. Although a recent study [46] found that the 
BERT contextualized embeddings can be superior to 
context-free embeddings from skip-gram, fastText, and 
GloVe in some applications, our results indicate that in 
a small and specialized corpus setting it does not have to 
be the case. Another recent paper [51] also reported that 
BERT embeddings did not improve prediction accuracy 
on a medical code prediction task. We believe that this is 
because BERT is trained on general-purpose corpus that 
does not provide sufficient information to capture useful 
representations of highly specialized medical terms.

Limitations
The proposed study has some limitations. For example, 
there are versions of BERT specialized for medical text, 
such as ClinicalBERT [52], which was fine-tuned on all 

MIMIC-III medical notes. However, ClinicalBERT was 
not appropriate for our experiments, because we wanted 
to compare embeddings that could be learned on very 
small subsets of MIMIC-III. Thus, we had to constrain 
our evaluation to BERT contextualized embeddings.

Moreover, the presented experiments relied on Meta-
Map to match the text with medical concepts. MetaMap 
does not provide perfect coverage of medical terms, most 
often due to spelling mistakes or non-standard jargon 
or abbreviations. To enable matching of non-standard 
term variants, it might be helpful to consider character-
level embedding neural networks trained to reconstruct, 
or mimic, an embedding from a word-level embedding 
model [53].

Conclusions
In this paper, we proposed a new algorithm, definition-
2vec, which learns medical term embeddings by combin-
ing a data set of discharge summaries and definitions of 
medical terms. We evaluated the learned embeddings 
by comparing their usefulness when predicting medical 
codes from discharge summaries and how closely they 
match semantic similarities between medical terms. Our 
results indicate that definition2vec is particularly useful 
in downstream task when the training data set is small. 
Moreover, the medical term definitions are especially 
beneficial for the embedding of rarely seen or out-of-
vocabulary medical terms. Hence, the proposed method 
can be useful for analysis of rare medical conditions and 
treatments from EHR data.
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