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Abstract

To study social sequence learning, earlier functional magnetic resonance imaging (fMRI) studies investigated the neural correlates of a 
novel Belief Serial Reaction Time task in which participants learned sequences of beliefs held by protagonists. The results demonstrated 
the involvement of the mentalizing network in the posterior cerebellum and cerebral areas (e.g. temporoparietal junction, precuneus 
and temporal pole) during implicit and explicit social sequence learning. However, little is known about the neural functional interaction 
between these areas during this task. Dynamic causal modeling analyses for both implicit and explicit belief sequence learning revealed 
that the posterior cerebellar Crus I & II were effectively connected to cerebral mentalizing areas, especially the bilateral temporoparietal 
junction, via closed loops (i.e. bidirectional functional connections that initiate and terminate at the same cerebellar and cerebral 
areas). There were more closed loops during implicit than explicit learning, which may indicate that the posterior cerebellum may be 
more involved in implicitly learning sequential social information. Our analysis supports the general view that the posterior cerebellum 
receives incoming signals from critical mentalizing areas in the cerebrum to identify sequences of social actions and then sends signals 
back to the same cortical mentalizing areas to better prepare for others’ social actions and one’s responses to it.
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Introduction
Although it has an established role in motor functioning and 
coordination, there is a growing interest in the role of the cere-
bellum in non-motor mental functions, such as social cognition 
(Van Overwalle et al., 2014). Recent research has shown that the 
posterior cerebellum is consistently activated during the process 
of understanding others’ mental states (e.g. inferring their traits, 
beliefs and intentions), which is termed ‘Mentalizing’ or ‘Theory 
of Mind’ (Van Overwalle et al., 2014, 2020a; Guell et al., 2018; 
Metoki et al., 2021). Also, research showed that posterior cerebellar 
activity increased with mentalizing complexity such as tracking 
multiple different mind states (Lewis et al., 2017). Several meta-
analyses have reliably identified key areas in the cerebral cor-
tex in the mentalizing processes, including the temporoparietal 

junction (TPJ), precuneus (PCun), temporal pole (TP) and medial 

prefrontal cortex (mPFC; Van Overwalle, 2009; Schilbach et al., 
2012; Schurz et al., 2014; Molenberghs et al., 2016). However, less 
is known about how the posterior cerebellum interacts with the 

cerebral mentalizing network in social cognition.

How does the posterior cerebellum contribute to mentalizing? 

Inspired by the sequence detection hypothesis of the cerebellum 

(Leggio and Molinari, 2015), (Van Overwalle et al. 2019b) pro-
posed that the posterior cerebellum encodes social sequences 

of people’s actions, automatizes social sequences that occur 

frequently and hence immediately detects violations to these 

acquired sequences. This sequence detection function allows us 
to understand how social behaviors unfold over time and to react 
proactively to social actions of others. For example, when a person 
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rummages in his or her pocket and then shows a candy to a 
child, this sequence of movements signals an invitation for the 
child to take the candy. It will come as an unwelcome surprise 
if that person starts eating the candy him- or herself instead. 
(Van Overwalle et al. 2019a) proposed that many social signals 
and interactions are based on this sort of social action sequences 
that become routines and so facilitate social understanding and 
behavior.

In line with this hypothesis, cerebellar patients showed signifi-

cant difficulties in comprehending the correct sequence of social 

stories depicted in cartoon-like pictures (picture sequencing task), 
especially when a good understanding of the story is required to 
consider divergent beliefs held by other persons (Van Overwalle 
et al., 2019a). In one of the cartoons, for example, a boy was sur-
prised to see that his chocolates were gone, because he did not 
know that they were eaten by a girl while he went away playing. To 

understand how this story unfolds, it is necessary to switch to the 

boy’s perspective and initial belief that nothing happened in his 

absence. Using the same picture sequencing task, healthy partici-
pants showed stronger activation of the posterior cerebellar Crus 
I & II for stories involving social beliefs in comparison with nonso-
cial events (Heleven et al., 2019). The involvement of the posterior 
Crus I & II has been confirmed in many other tasks that compared 
generating or remembering sequences of social actions vs non-
sequencing or nonsocial control conditions (Van Overwalle et al., 
2021b), as well as in meta-analyses encompassing social cognition 
in general (Van Overwalle et al., 2014, 2020a).

It is generally assumed that the sequencing function of the 
cerebellum is accomplished through multisynaptic communica-
tion with the cerebral cortex (Ito, 2008). Early evidence from 
anatomical studies on animals documented connections between 
the cerebellum and the cerebral cortex (Glickstein et al., 1985; 
Schmahmann, 1996; Kelly and Strick, 2003; Suzuki et al., 2012). 
Subsequent studies on humans using diffusion tensor imaging 
(DTI) to reconstruct cerebello–cerebral white matter pathways 
documented many cerebellar interconnections with the cerebral 
cortex (Sokolov et al., 2014; Karavasilis et al., 2019; Metoki et al., 
2021). The specific cerebral areas where these connections make 
contact may determine the specificity of the cerebellar process 
(Diedrichsen et al., 2019). In particular, closed-loop circuits, which 
involve the same cerebellar and cerebral areas as the origin and 
target of reciprocal connectivity (Kelly and Strick, 2003), may pro-
vide the anatomical substrate for the domain-specific interaction. 
In the social domain, using DTI, Metoki et al. (2021) recently doc-
umented robust structural connections between cerebellar and 
cerebral mentalizing areas, including between Crus I and the 
TPJ, when participants were required to infer intentions of mov-
ing shapes. This finding provides initial support for the idea that 
incoming signals from key cerebral mentalizing areas responsible 
for intention understanding, such as the TPJ, are forwarded to the 
cerebellar Crus to identify the sequences of social events and are 
then fed back to cortical mentalizing areas, producing error sig-
nals in case of sequence violations. However, anatomical studies 
by themselves do not provide evidence for reciprocal functional 
closed-loop circuits in mentalizing.

The functional connectivity between the cerebellum and the 
cerebrum in social cognition has been demonstrated using sev-
eral methodologies. Resting-state parcellation analyses showed 
that the cerebellum is organized in domain-specific networks 
and that the posterior cerebellum (especially Crus I & II) and 
some anterior parts (lobule IX) are topographically mapped to 
the mentalizing network in the cerebrum (Buckner et al., 2011; 
Guell et al., 2018). Task-related psychophysiological interaction 

connectivity analysis supported an intimate cerebello–cerebral 
mentalizing network by revealing strong functional connections 
from the posterior cerebellum to cerebral mentalizing areas 
(Metoki et al., 2021). However, a limitation of these methods is 
that they are unable to identify the direction of connectivity 
between the cerebellum and the cerebrum, although this is essen-
tial to uncover bidirectional functional closed loops which are 
key to the sequencing hypothesis (Leggio and Molinari, 2015; Van 
Overwalle et al., 2019b). Dynamic causal modeling (DCM), in con-
trast, is a more powerful method that can identify the direction of 
functional connectivity and that avoids spurious (or indirect) cor-
relations, because it rests on a comprehensive mechanistic model 
of the causal effects that generate the data. Therefore, this type 
of ‘bidirectional functional’ connectivity has also been referred to 
as ‘effective’ connectivity. Earlier DCM analyses have identified 
bidirectional effective closed loops between the bilateral poste-
rior cerebellum and the bilateral TPJ when people were inferring 
others’ traits (Van Overwalle et al., 2019c) and comprehending 
social stories involving other’s beliefs in the picture sequencing 
task mentioned earlier (Van Overwalle et al., 2020b).

Implicit social sequence learning
An important feature of the cerebellum is that sequence detection 
and automatization occur largely implicitly, that is, beyond con-
scious awareness. This is immediately evident in motor learning 
such as learning to ride a bike, where verbal instructions aid little 
in keeping one’s balance. The aim of the current study is to inves-
tigate the effective cerebello–cerebral connectivity of mentalizing 
areas during implicit social sequence learning and compare it 
with explicit social sequence learning.

To measure implicit sequence learning, the classic serial reac-
tion time (SRT) paradigm (Nissen and Bullemer, 1987) was used. 
In this paradigm, participants rapidly respond to a sequence of 
stimuli, which are surreptitiously repeated (e.g. spatial locations 
on a screen). The results show that participants responded faster 
to the hidden repetition and slower to any sequence disturbances, 
demonstrating implicit sequence learning. Based on this SRT 
paradigm, Ma and colleagues (Ma et al., 2021) created a novel Belief 
SRT task that involves sequences of social beliefs (Figure 1). Par-
ticipants had to report how many flowers the two protagonists—
Papa Smurf and Smurfette—believed they were offered. This task 
had two critical features. First, crucially for a social belief manipu-
lation, the protagonists were either oriented toward the flowers so 
that they could see them or oriented away so that they could not 
see them. When oriented toward the flowers, the protagonist held 
‘true’ beliefs about the flowers (i.e. trial 1 in Figure 1) and when 
oriented away, the protagonist held outdated or ‘false’ beliefs (i.e. 
trial 2 in Figure 1). Secondly, participants were not informed that 
there was a repeated sequence of true or false beliefs held by 
each protagonist (i.e. implicit learning; Ma et al., 2021). Learning 
this sequence could nonetheless make the task easier, because 
it allows participants to anticipate each protagonist’s subsequent 
beliefs and participants could respond accordingly. To test how 
implicit vs explicit instructions contribute to this task, an explicit 
version of the Belief SRT task was also developed. The explicit task 
is identical to the implicit learning task except that participants 
were informed about the existence of a sequence, although the 
exact sequence was not given (i.e. explicit learning; Ma et al., 2022).

In the implicit and explicit Belief SRT tasks, there was an initial 
Training phase where the standard sequence was repeated, fol-
lowed by a subsequent Test phase where the standard sequence 
was interrupted by random sequences. The initial Training phase 
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Fig. 1. Schematic example showing the first six trials of the standard sequence in the Belief SRT task. In each trial, participants had to report the 
number of flowers as seen by the protagonists (Papa Smurf or Smurfette). Belief orientations followed a standard sequence. In the Belief SRT task, 
when the protagonist was oriented to the screen and could see the flowers (true trial), the number of target flowers had to be reported from the 
current trial; when the protagonist was oriented away from the screen and could not see the flowers (false trial), the number of target flowers had to 
be reported from the previous true trial from the same protagonist. The number of flowers was random (1 or 2), making the response unpredictable, 
and dissociating sequence learning from motor responses. Each trial was self-paced, with all stimuli remaining on screen for 3000 ms until a response 
was given and was followed by a response-stimulus interval of 400 ms before the next trial started (Trials 1 and 2). To illustrate the instructions for the 
Belief SRT task, in Trial 1, there is one flower that Papa Smurf can see because he is oriented toward the screen, meaning that the correct response is 1. 
In Trial 2, there are two flowers. Because Papa Smurf is oriented away from the screen, he cannot see the number of flowers on this trial; hence, he still 
thinks to have received one flower which he last saw on the previous (1st) trial. The correct response is thus again 1.

captures how the standard sequence is gradually learned dur-
ing repeated practice, and the later Test phase captures how 
the learned standard sequence is applied while being occasion-
ally disturbed by random sequences. Of main behavioral interest 
is the random sequence where a slowing down of responses 
compared to the standard sequence captures that the repeated 
sequence was learned and anticipated (Nissen and Bullemer, 
1987). Although this behavioral effect was robustly replicated 
in the implicit and explicit Belief SRT tasks, the typical con-
trast of the repeated standard sequence against the random 
sequence (cf. meta-analysis by Janacsek et al., 2020) did not 
reveal activations of the cerebellum. Therefore, the current study 
focuses on the Training and Test phases of the standard belief
sequence.

Regardless of the implicit or explicit instruction, the Belief SRT 
task showed that the posterior cerebellar Crus I and lobule VI, 
and cortical areas like the TPJ and PCun were activated during 
the initial Training phase. The cerebellar Crus II and (sub)cortical 
caudate and TP were additionally activated during the later Test 
phase (Table 1; Ma et al., 2021). Together, these results indicate 
that distinct areas are involved during different learning phases. 

It is of interest to note that the posterior cerebellum was 
slightly more activated during implicit learning compared to 

explicit learning when participants tried to maintain the learned 
standard sequence in the later Test phase (Ma et al., 2021).

Effective connectivity
To analyze the cerebello–cortical effective connections during 
these implicit and explicit Belief SRT tasks, we applied DCM. As 
noted before, DCM is a well-established and biologically plausible 
method that allows us to estimate the strength of the connections 
from one area to the other and vice versa, that is, in two directions 
(Friston et al., 2003). This bidirectional connectivity allows us to 
test the existence of effectively closed loops. DCM estimates fixed 
and modulatory connections: Fixed (or ‘endogenous’ or ‘intrin-
sic’) connections reflect the connectivity between brain areas 
which are unmodulated by various experimental conditions and 
modulatory connections reflect modulation by conditions, that 
is, increase or decrease of connectivity depending on condition 
(Friston et al., 2003). By estimating all (bidirectional) connections 
at once in a single DCM model, false connectivity caused by indi-
rect connections via other areas is controlled for (Van Overwalle 
et al., 2019c).

To test the effective cerebello–cerebral connectivity during 
social sequence learning, we applied DCM to our previous fMRI 
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Table 1. ROIs for the DCM analysis and total number of participants (n) and number of participants at reduced thresholds

 MNI Coordinate  Implicit Belief (n = 18)  Explicit Belief (n = 22)

Region and anatomical label x y z <0.1 <1 <0.1 <1

Standard block at Training > standard block at Test
 Cerebellar ROIs
 L Crus I −40 −70 −40 1 2 2
 L Crus II −25 −75 −40 3 4 4
 R Crus II 25 −75 −40 1 6 4 7
 L Lob. VI −24 −54 −20 1 1 1
 R Lob. VI 24 −54 −20 2
 Cerebral ROIs
 PCun 0 −60 40 1
 L TPJ −50 −55 25 1
 R TPJ 50 −55 25
Standard block at Test > standard block at Training
 Cerebellar ROIs
 L Crus I −40 −70 −40 4 2
 L Crus II −25 −75 −40 1 3 1
 R Crus II 25 −75 −40 1
 Cerebral ROIs
 L TP −51 0 −19
 R TP 53 0 −21
 L caudate −18 6 −4
 L TPJ −50 −55 25 1
 R TPJ 50 −55 25 1 2 1

Note: L = Left, R = Right, Lob. VI = Cerebellar lobule VI.

studies on implicit and explicit Belief SRT tasks (Ma et al., 2021). 
We hypothesized that there would be effective connectivity, 
mainly as closed loops, between the posterior cerebellum Crus 
I & II and the bilateral TPJ as suggested by previous DCM connec-
tivity studies on social reasoning and belief understanding (Van 
Overwalle et al., 2019c, 2020b). Given the activation in additional 
brain areas (e.g. cerebellar lobule VI, caudate, PCun and TP) dur-
ing the Belief SRT tasks mentioned earlier (Ma et al., 2021), we 
further expected that these brain areas might also be involved 
and connected. Based on earlier DCM analyses on social cogni-
tion where few modulatory connections were found depending on 
domain (social vs nonsocial) or consistency (consistent vs incon-
sistent contexts; Van Overwalle et al., 2019c, 2020b), we expect 
here also little modularity of the connections depending on the 
learning phase.

Method
We applied DCM to prior fMRI studies on implicit and explicit 
Belief SRT tasks (Ma et al., 2021). We briefly repeat here the main 
methodological features of these studies and refer to the original 
articles for more detailed information. After that, we describe the 
DCM analyses.

Participants
There were a total of 18 (14 female, mean age 21.2 ± 2.7) healthy, 
right-handed, Dutch-speaking participants in the implicit Belief 
SRT task and 22 (17 female, mean age 23.3 ± 4.1) in the explicit 
Belief SRT task. All of them had normal or corrected-to-normal 
vision and color perception. To avoid any carry-over effects (Geiger 
et al., 2018), participants completed the Belief SRT task with 
either implicit or explicit instruction. All participants gave written 
informed consent with the approval of the Medical Ethics Com-
mittee at the University Hospital of Ghent. Participants were paid 
20 euros, and transportation costs were reimbursed in exchange 
for their participation.

Stimuli material
In the Belief SRT task (Figure 1A), the target consisted of one or 
two flowers, appearing in one of four horizontal locations, marked 
by four little smurfs on the top of the screen. The target flower(s) 
were presented with clovers as distractors. The two protagonists, 
Papa Smurf and Smurfette, were each shown individually at the 
bottom of the screen with their faces oriented to or away from the 
screen. Participants were told: ‘One of the four little smurfs will 
give the flowers while Papa Smurf or Smurfette is watching (facing 
the screen) or not watching (facing you). Papa Smurf and Smur-
fette count the flowers they receive. Throughout the task you have 
to track how many flowers Papa Smurf or Smurfette thinks he or 
she will get (1 or 2). If they are turned with their back to the four 
smurfs, you have to indicate how many flowers they (remember 
that they) received the last time’ (Best translation from Dutch).

Participants only received the above information in the implicit 
task. In the explicit task (Ma et al., 2022), participants received 
additional information about a sequence they should search for: 
‘WATCH OUT! In this task, there is a fixed sequence of Papa Smurf 
and Smurfette and their orientations (toward or away from the 
screen). Try to find this sequence as that will make the task eas-
ier for you. After the task you will have to demonstrate that you 
have found this order’ (Best translation from Dutch). Note that 
participants were explicitly informed about the kind of sequence 
they should search for (i.e. protagonists and their orientations), 
avoiding possible misunderstandings such as sequences tied to 
the flowers’ location (which varied also throughout the experi-
ment in an unrelated sequence). However, participants were not 
informed about the exact sequence itself so that the task tapped 
on sequence learning rather than memory processes (Deroost and 
Coomans, 2018).

Procedure
Here, we briefly summarize the essential aspects of the sequence 
learning procedure. For more details, we refer to prior fMRI studies 
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on implicit and explicit Belief SRT tasks (Ma et al., 2021). The whole 
experimental task consisted of 30 blocks with 32 repeated trials 
each and was divided into a Training phase (blocks 1–5) and a Test 
phase (blocks 6 – 30). Participants provided responses with their 
left middle or index finger (i.e. one or two flowers, respectively) via 
an MRI-compatible two-button response box.

In an initial Training phase, the standard sequence was 
repeated throughout five blocks. This standard sequence con-
sisted of 16 trials of protagonists (smurfs) and orientations 
(beliefs) and was repeated two times per block. In a subsequent 
Test phase, there were eight standard blocks, identical to those 
in the Training phase, which were each followed by two types of 
random blocks: total random block, where protagonist and orien-
tation were totally randomized with the limitation of at most two 
subsequent trials of the same orientation type, consistent with 
the standard blocks; random orientation blocks, where the ori-
entation was changed into a different pseudo-random sequence, 
while the order of protagonists was identical as in the standard 
blocks (Supplementary Table S1). The last block at the end of the 
whole task was always a standard block.

Imaging procedure and preprocessing
Images were collected with a Siemens Magnetom Prisma fit 3T 
scanner system (Siemens Medical Systems, Erlangen, Germany) 
using a 64-channel radiofrequency head coil. Stimuli were pro-
jected onto a screen at the end of the magnet bore and viewed 
by way of a mirror mounted on the head coil. Stimulus presen-
tation was controlled by E-Prime 2.0 (www.pstnet.com/eprime; 
Psychology Software Tools) running under Windows XP. Partic-
ipants were placed head first and supine in the scanner bore 
and were instructed not to move their heads to avoid motion 
artifacts. Foam cushions were placed within the head coil to min-
imize head movements. First, high-resolution anatomical images 
were acquired using a T1-weighted 3D MPRAGE sequence (Rep-
etition Time (TR) = 2250 ms, Echo Time (TE) = 4.18 ms, Inversion 
Time (TI) = 900 ms, Field of View (FOV) = 256 mm, flip angle = 9∘, 
voxel size = 1 × 1 × 1 mm). Secondly, a fieldmap was calculated to 
correct for inhomogeneities in the magnetic field (Cusack and 
Papadakis, 2002). Thirdly, whole-brain functional images were 
collected in a single run using a T2*-weighted gradient multi-
band echo sequence, sensitive to Blood Oxygenation Level Depen-
dent (BOLD) contrast (TR = 1000 ms, TE = 31.0 ms, FOV = 210 mm, 
flip angle = 52∘, slice thickness = 2.5 mm, distance factor = 0%, 
voxel size = 2.5 × 2.5 × 2.5 mm, 56 axial slices, acceleration factor 
GRAPPA = 4).

SPM12 (Wellcome Department of Cognitive Neurology, London, 
UK) was used to process and analyze the fMRI data. To remove 
sources of noise and artifact, data were preprocessed. Inho-
mogeneities in the magnetic field were corrected using the 
fieldmap (Cusack and Papadakis, 2002). Functional data were 
corrected for differences in acquisition time between slices 
for each whole-brain volume, realigned to correct for head 
movement and co-registered with each participant’s anatomi-
cal data. Then, the functional data were transformed into a 
standard anatomical space (2 mm isotropic voxels) based on the 
ICBM152 brain template (Montreal Neurological Institute). Nor-
malized data were then spatially smoothed (6 mm full width 
at half maximum) using a Gaussian Kernel. Finally, using the 
Artifact Detection Tool (ART; http://web.mit.edu/swg/art/art.pdf; 
http://www.nitrc.org/projects/artifact_detect), the preprocessed 
data were examined for excessive motion artifacts and for cor-
relations between motion and experimental design, and between 
global mean signal and experimental design. Outliers were 

identified in the temporal differences series by assessing between-
scan differences (Z-threshold: 3.0 mm, scan to scan movement 
threshold: 0.5 mm; rotation threshold: 0.02 radians). These out-
liers were omitted from the analysis by including a single regres-
sor for each outlier. A default high-pass filter was used for 128 s, 
and serial correlations were accounted for by the default auto-
regressive (1) model.

Statistical analysis of neuroimaging data
The statistical analyses were performed using the general linear 
model of SPM12 (Wellcome Department of Cognitive Neurology, 
London, UK). At the first (single participant) level, an event-related 
design for measuring transient activity across trials was mod-
eled by entering separate regressors for the trials of interest: two 
regressors for the trials in the standard blocks at the Training and 
Test phases (i.e. standard block at Training and standard block 
at Test), two regressors for the trials in the total random blocks 
and the trials in the random orientation blocks at the Test phase 
(i.e. total random at Test and random orientation at Test) and two 
additional regressors of no interest for pauses and error trials. This 
last regressor involved incorrect trials as well as one trial after 
each incorrect trial, because these latter trials may be affected by 
error processing on the prior trial.

At the second (group) level, we conducted a within-participant 
one-way analysis of variance and defined t-contrasts between 
regressors of interests. As mentioned earlier, the often-used fMRI 
contrast of the standard sequence at Test > Random sequence at 
Test (cf. meta-analysis by Janacsek et al., 2020) did not reveal 
any activation of the cerebellum in the original fMRI studies (Ma 
et al., 2021). Therefore, we focus the analysis here on two con-
trasts related to different phases in learning the standard belief 
sequence.

1. Initial training: brain activations during initial learning of 
the standard sequence are tested by the contrast: standard 
block at Training > standard block at Test.

2. Later test: brain activations during late learning in a context 
of sequence violations (in the Test phase) are tested by the 
contrast standard block at Test > standard block at Training. 
Note that this contrast does not show the mere late phase of 
sequence learning, as it also involves reinstating the learned 
standard sequence after random sequences.

Dynamic causal modeling
Selection of regions of interest
Since we hypothesized that key mentalizing areas in the posterior 
cerebellar Crus I & II and in the cortical TPJ would be involved 
during SRT learning, we took a priori regions of interest (ROIs) of 
these areas from previous meta-analyses (Table 1; Van Overwalle 
and Baetens, 2009; Van Overwalle et al., 2020a), which were also 
used in previous DCM studies (Van Overwalle et al., 2019c, 2020b).

There were additional activations of cerebellar (e.g. lobule VI) 
and cerebral areas (e.g. PCun and TP) related to sequence learn-
ing and mentalizing processes in the implicit and explicit Belief 
SRT tasks. However, instead of using the peak coordinates from 
these studies, we took a more generalized approach by taking 
a priori coordinates from meta-analyses (Hardwick et al., 2013; 
Schurz et al., 2014; Van Overwalle and Baetens, 2009; Table 1). 
To verify that these meta-analytic coordinates would also fit the 
activation data from the Belief SRT tasks, we constructed spheres 
around their centers with radius = 15 or 10 mm for the cerebrum 
and cerebellum/subcortical areas, respectively (given the smaller 
size of the cerebellum and subcortical areas). A small volume 
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correction analysis revealed significant activations in the bilateral 
cerebellar lobule VI and PCun during the initial Training phase 
(i.e. standard block at Training > standard block at Test) and addi-
tional clusters in the bilateral TP and caudate during the later 
Test phase (i.e. standard block at Test > standard block at Train-
ing). Thresholds were similar as in the original Belief SRT studies, 
that is, cluster-forming threshold of P < 0.001 (uncorrected) with 
a minimum extent of 10 voxels and a cluster-wise significance 
level of P < 0.05 with family-wise error correction for multiple
comparisons.

Individually tailored cerebral ROIs were created by extract-
ing the time series using the eigenvariate within a sphere 
with a radius of 8 or 5 mm (for the cerebrum and cerebel-
lum, respectively) around the nearest local maximum within the 
corresponding ROIs listed above, using a whole-brain threshold 
of the contrast at P < 0.05 (uncorrected). All voxels contributing 
to the ROI were conducted on an F-contrast involving the com-
parison of interest and adjusted using an F-contrast involving all 
experimental effects. If the individual ROI did not contain a peak 
surviving the P < 0.05 uncorrected threshold, the same procedure 
was repeated with reduced thresholds P < 0.10 and P < 1.00 (uncor-
rected) so that the time series of all ROIs were included for all 
participants (see Table 1 for details). In the latter case of P < 1.00, 
ROIs were centered around the group-based centers (Zhou et al., 
2007). This procedure was used because pairwise exclusion is not 
possible in a DCM analysis as all time series from all ROIs are 
required. Setting a more tolerant threshold in some individual 
cases implies an optimal compromise between maximizing the 
effect of interest at the individual level while having all partici-
pants in the DCM analysis so that the results are not biased by 
excluding some participants (Zhou et al., 2007).

DCM specification.
We used exactly the same procedure as in the earlier DCM anal-
ysis by (Van Overwalle et al. 2020b) which followed the steps 
described in Friston et al. (2016) and Friston et al. (2015) and 
detailed in https://en.wikibooks.org/wiki/User:Peterz/sandbox.

First, a full DCM was specified and estimated for each partici-
pant using SPM12 (cf. SPM procedure: spm_dcm_fit). A full model 
allows all connectivity parameters in all directions to be freely 
estimated. We specified a bilinear deterministic DCM without cen-
tering around the mean (Friston et al., 2003), which included (i) all 
forward and backward fixed connections between the ROIs, (ii) all 
the modulatory connections or parameters that reflect condition 
changes due to each experimental condition and (iii) direct input 
parameters that reflect the input driving the activity in the ROIs 

in all experimental and control conditions. Stated differently, the 

driving input in Matrix C consists of one vector with all the onsets 

of all experimental and control conditions combined as one input, 

and the modularity connections in Matrix B are specified only 

for the experimental conditions so that both matrix inputs are 

nonredundant to each other (Hillebrandt et al., 2014).
Secondly, we constructed a parametric empirical Bayes (PEB) 

model for the whole group of participants over all parameters 

(cf. SPM procedure: spm_dcm_peb). This makes it possible to esti-
mate the effective connectivity averaged across all participants 

(cf. group average), considering the within-participants variability 

on the connectivity parameters, unlike a classical test (e.g. t-test) 

which ignores the estimated uncertainty (variance) about the con-
nection strengths. Moreover, a group-level PEB allows us to control 

for differences between sets of studies by treating them as covari-
ates, for example, any differences in the behavioral measures and 
procedures (Friston et al., 2016).

Thirdly, we automatically pruned away any connectivity 
parameter from the group-level PEB which did not contribute 
to the model evidence using Bayesian model reduction (cf. SPM 
procedure: spm_dcm_peb_bmc). This approach has the advan-
tage that any reduced model at the group level can be estimated 
efficiently without having to re-estimate the reduced models at 
the lower level (single-participant levels) and is therefore rec-
ommended (Friston et al., 2015). Specifically, a greedy search 
iteratively prunes connection parameters from the full model 
until model evidence starts to decrease so that the most relevant 
nested models from the full PEB model are tested (a greedy search 
is recommended because the model space of all possible nested 
models is too large to be fully evaluated). Bayesian model averag-
ing of the parameters of the best 256 pruned models is applied 
and used for group inferences (Zhou et al., 2018, p. 707, 2.7.4) 
and so determines the winning model empirically. We considered 
connectivity parameters as significant given a posterior proba-
bility of P > 0.95 (based on model comparisons with and without 
each parameter). This Bayesian approach both for first-level con-
nectivity analysis (DCM) as well as group-level inference (PEB) on 
connectivity parameters eschews the multiple comparisons prob-
lem (Friston et al., 2003, p. 1276, 1.3). We applied these recent 
developments in DCM analysis to ensure that the connections 
revealed by the analyses are entirely data-based.

Moreover, to rule out multicollinearity in the DCM estimates 
due to the relatively large number of ROIs within the smaller vol-
ume of the cerebellum, we ran two additional reduced models 
for the two Belief SRT tasks. One DCM model included only the 
hypothesized mentalizing cerebellar and cerebral areas (i.e. the 
left Crus I, the bilateral Crus II and the bilateral TPJ). Another 
DCM model included only robustly significant ROIs. These results 
did not change the main results appreciably and are therefore 
reported in Supplementary Tables S2–S5.

Results
The fixed and modulatory estimates of the connectivity between 
the cerebral and cerebellar ROIs of the reduced model (after prun-
ing) in the implicit and explicit Belief SRT tasks are listed in Table 2 
for the initial Training phase and in Table 3 for the later Test phase. 
We first report the fixed estimates which reflect the intrinsic con-
nections between regions, and then we report the modulatory 
estimates which reflect the modulation of connections depend-
ing on the learning phases. We do not report the direct inputs, 
because none of the driving inputs reached significance. 

Of most interest are the estimates in the off-diagonal cells of 
Tables 2 and 3. These values reflect how much activation in the 
source ROI (i.e. the top row) changes the activation in the target 
ROI (i.e. the left column), which is expressed in units per second 
or 1/s (Hz). Here, positive estimates indicate excitation, and neg-
ative estimates indicate inhibition between ROIs. Of less interest 
are the estimates in the diagonal cells of Tables 2 and 3 which 
correspond to self-connections, with positive estimates indicat-
ing greater self-inhibition, whereas negative estimates indicate 
less self-inhibition than the default (−0.5 Hz). Decreased self-
inhibition suggests increased sensitivity to input from other brain 
areas (Zeidman et al., 2019).

As hypothesized, we found fixed bidirectional connectivity (i.e. 
closed loops) between the posterior cerebellar Crus I & II and the 
bilateral TPJ in both implicit and explicit Belief SRT tasks during 
both learning phases. Also, we found that the posterior cerebel-
lum was linked to other hypothesized cerebral areas (i.e. PCun, 
TP and caudate). Additionally, we did not find many modulations. 
This is supported by the following detailed results.

https://en.wikibooks.org/wiki/User:Peterz/sandbox
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Table 2. Averaged connections in units of 1/s (Hz) for the contrast: standard block at Training > standard block at Test

Notes: L = left, R = right, Lob. VI = cerebellar lobule VI. Cell entries refer to the connections from the top row ROIs to the left column ROIs with posterior 
probability. Empty cells denote connectivity = 0. Bold denotes the closed loops. Italic denotes the self-inhibitions in diagonal cells. Light gray denotes the 
cerebellar–cortical connectivity.
**P > 0.95,
*P > 0.50.

Connectivity in the initial training of the 
standard sequence
We first contrasted the standard blocks in the initial Training 
phase vs the standard blocks in the later Test phase to find out 
how the ROIs interact with each other during the initial learning of 
the belief sequence. For each task, we first discuss the ‘fixed’ con-
nectivity between the cerebellum and the cerebrum, then within 
the cerebrum and then within the cerebellum. This is followed by 
a short discussion of modular connectivity.

For the implicit Belief SRT task (Table 2; Figure 2A), we found 
significantly closed loops between left Crus I, bilateral lobule VI 
and the right TPJ and a closed loop between left Crus I and the 
left TPJ, but only unidirectional links from the right Crus II to the 
bilateral TPJ. Closed loops were also found between the PCun and 
left Crus I and the right lobule VI. Within the cerebrum, the PCun 
was bidirectionally connected with the right TPJ, and the left TPJ 
was unidirectionally linked to its right counterpart. As shown in 
Figure 2B, within the cerebellum, most cerebellar ROIs were con-
nected via closed loops to each other, except for a limited number 
of unidirectional links: on the left hemisphere from Crus II to Crus 

I, from the Crus II to lobule VI and from the lobule VI to the Crus I; 
on the right hemisphere, from lobule VI to Crus II, between hemi-
spheres, from the left Crus I to the right lobule VI and from the 
left Crus II to the right Crus II.

The modularity connections showed decreased self-inhibition 
in the bilateral Crus II, left lobule VI and bilateral TPJ during the 
initial Training phase. There were almost no modulations of the 

connections between ROIs, except for a weaker connection from 
the left to the right lobule VI during the initial Training phase.

We observed a largely similar pattern of connectivity for the 

explicit Belief SRT task (Table 2; Figure 2C, D) with again a few 

unidirectional exceptions which are, however, different than dur-
ing the implicit task. As can be seen in Figure 2C, we found again 
significantly closed loops between the cerebral ROIs and the bilat-
eral TPJ, except for unidirectional links from the left TPJ to the left 
Crus I and from the right TPJ to the left Crus II. Significant con-
nections were also found between the PCun and cerebellar ROIs, 
and they were more numerous here: closed loops to all left cere-
bellar ROIs and unidirectional links to all the right ROIs. Within 
the cerebrum, we see again the same links between the left and 
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Table 3. Averaged connections in units of 1/s (Hz) for the contrast: standard block at Test > standard block at Training

Notes: L = left, R = right. Cell entries refer to the connections from the top row ROIs to the left column ROIs with posterior probability. Empty cells denote 
connectivity = 0. Bold denotes the closed loops. Italic denotes the self-inhibitions in diagonal cells. Light gray denotes the cerebellar–cortical connectivity.
**P > 0.95,
*P > 0.50.

right TPJ and between the PCun and the right TPJ, but they were 
now all closed loops. As shown in Figure 2D, within the cere-
bellum, some cerebellar ROIs were connected via closed loops 
to each other: on the left hemisphere between the Crus I and 
Crus II, on the right hemisphere between lobule VI and Crus II 
and between hemispheres between left Crus I and right lobule VI. 
Unidirectional links were also observed on the left hemisphere 
from lobule VI to Crus II, between hemispheres from the left 
Crus I to the firth Crus II and from the right Crus II to the left
Crus II.

The modularity connections showed significantly decreased 
self-inhibitions in the bilateral lobule VI, PCun and right TPJ 
during the initial Training phase. There were again almost no 
modulations of the connections, except for a weaker connec-
tion from the left TPJ to the PCun given the initial Training
phase.

Connectivity in the later test of the standard 
sequence
We next used the reverse contrast of the later Test phase vs the ini-
tial Training phase to reveal the connectivity during maintaining 

the learned belief sequence in the later Test phase. We use the 
same order as before. For each task, we first discuss the ‘fixed’ con-
nectivity between the cerebellum and the cerebrum, then within 
the cerebrum and then within the cerebellum, followed by a brief 
discussion of modular connectivity.

For the implicit Belief SRT task (Table 3; Figure 3A), we found 
again significantly closed loops between the cerebral ROIs and the 
bilateral TPJ. The left Crus I was connected via a closed loop to the 
left TP and received a link from the left caudate. There were signif-
icantly closed loops between the bilateral Crus II and additional 
(sub)cortical areas (i.e. bilateral TP and left caudate), except for 
a unidirectional link from the left Crus II to the right TP. Within 
the cerebrum (Figure 3B), most cerebral ROIs showed closed loops 
with each other, except for a limited number of unidirectional 
links: on the right hemisphere from the TPJ to TP, between hemi-
spheres from the right TP to its left counterpart and from the right 
TPJ to the left TP and to the left caudate. Within the cerebellum, 
the left Crus I showed a closed loop with the right Crus II.

The modularity connections showed significantly decreased 
self-inhibitions in the left caudate and the bilateral TPJ but 
no change of self-inhibitions in the cerebellum. There was a 
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Fig. 2. Fixed connections retained in the reduced model for the contrast: standard block at Training > standard block at Test, including cerebellar Crus 
and lobule VI, TPJ, PCun for the implicit Belief SRT task (A, B) and for the explicit Belief SRT task (C, D). (A–D) Solid arrows indicate the bidirectional 
connections; dashed arrows indicate the unidirectional connections. (A, C) Dark blue arrows involve the bidirectional connections between the 
cerebrum and the cerebrum, light blue arrows involve the top-down connections from the cerebrum to the cerebellum, purple arrows involve the 
bottom-up connections from the cerebellum to the cerebrum. Red arrows involve the connections within the cerebrum. (B, D) Green arrows involve 
the connections within the cerebellum. The left and right areas represent the left and right of the figure.

decreased connection from the left TP to the left Crus I given the 
later Test phase.

For the explicit Belief SRT task, we see a similar pattern of 
connectivity as the implicit counterpart but now with more uni-
directional than closed loops (Table 3; Figure 3C, D). As can be 
seen in Figure 3C, most closed loops between the cerebral ROIs 
and bilateral TPJ dropped, except for one closed loop between 
the left Crus I and the right TPJ. Instead, there were numerous 
unidirectional connections: from the left Crus II to the left TPJ, 

from the left TPJ to the left Crus I and from the bilateral TPJ to 
the contralateral Crus II. Again, the left Crus I showed a unidi-
rectional link to the left TP and received a link from the right TP. 
We also found closed loops between the bilateral Crus II and the 
additional (sub)cortical areas (i.e. left caudate and bilateral TP), 
except for a unidirectional link from the right Crus II to the left 
TP. Within the cerebrum, some cerebral ROIs were connected via 
closed loops to each other: between the bilateral TPJ, between the 
left TPJ and the right TP. Unidirectional links were also observed on 



10  Social Cognitive and Affective Neuroscience, 2023, Vol. 18, No. 1

Fig. 3. Fixed connections retained in the reduced model for the contrast: standard block at Test > standard block at Training, including cerebellar Crus, 
TPJ, TP and caudate, for the implicit Belief SRT task (A, B) and explicit Belief SRT task (C, D). (A–D) Solid arrows indicate the bidirectional connections; 
dashed arrows indicate the unidirectional connections. (A, C) Dark blue arrows involve the bidirectional connections between the cerebrum and the 
cerebrum, light blue arrows involve the top-down connections from the cerebrum to the cerebellum, purple arrows involve the bottom-up 
connections from the cerebellum to the cerebrum. Green arrows involve the connections within the cerebellum. (B, D) Red arrows involve the 
connections within the cerebrum. The left and right areas represent the left and right of the figure.

the left hemisphere from the TP to the TPJ and from the TPJ to the 
caudate; between hemispheres from the right TP to the left TPJ, 
from the right TPJ to the left TP and from the left caudate to the 
right TP. Within the cerebellum, most cerebellar ROIs were con-
nected via closed loops to each other, except for a unidirectional 
link from the left Crus I to the right Crus II.

The modularity connections showed significantly decreased 
self-inhibitions in the left Crus II, right TP and left caudate. There 
were decreased connections from the right to the left Crus II and 
from the left TPJ to the right TP given the later Test phase.

Summary
To sum up, in line with our hypothesis, many connections 
revealed closed loops between the posterior cerebellum and the 
bilateral TPJ during both implicit and explicit Belief SRT tasks.

For both tasks, additional cerebellar ROIs were also linked to 
cerebral mentalizing areas. There were numerous (uni- and bidi-
rectional) connections between the cerebellar lobule VI and the 
bilateral TPJ and the PCun during the initial Training phase 
(in comparison with the Test phase) and between the posterior 
cerebellum and the bilateral TP and left caudate during the later 
Test phase (in comparison with the Training phase). Additionally, 
there were numerous (uni- and bidirectional) connections within 
the cerebellum and the cerebrum. Another important observa-
tion is that the connectivity patterns were largely similar between 
the implicit and explicit tasks, although there were more closed 
loops in the implicit tasks. All connections showed positive as well 
as negative estimates without a clear downward vs upward pat-
tern. Modulations of cerebellar and cerebral self-inhibitions were 
rare, and modulations of connections between ROIs were largely
absent.
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Discussion
In the current study, we used DCM to investigate dynamic 
cerebello–cerebral connectivity, particularly within the posterior 
cerebellum and the bilateral TPJ, during implicit and explicit Belief 
SRT tasks (Ma et al., 2021). After pruning away connections that 
did not significantly contribute to the model, the DCM analysis 
offered a model of effective connectivity that provided the best fit 
with the group-level data of the implicit and explicit tasks. Consis-
tent with our hypothesis, we found that the posterior cerebellum 
Crus I & II and the bilateral TPJ were connected via closed loops. 
Moreover, we found that additional brain areas (the cerebellar lob-
ule VI, PCun, TP and caudate) were bi- or unidirectionally linked 
to the posterior cerebellum and TPJ and so further contributed to 
belief sequence learning.

Overall, our current study supports the idea that the posterior 
cerebellum synchronizes neural activation with related mental-
izing cerebral areas (i.e. TPJ, PCun and TP) during learning and 
maintaining a given belief sequence. It is important to emphasize 
that our ROIs for the DCM analysis were based on earlier meta-
analyses and that we used a data-driven greedy search algorithm 
to reveal significant connections. In this way, a potential bias in 
favor of our hypothesis was strongly reduced.

The Belief SRT task is the first one to investigate implicit 
sequence learning in the social mentalizing domain and reveals 
distinct cerebellar processes and topography compared to nonso-
cial domains. This is attested by the observation that earlier 
research on visuomotor sequencing tasks revealed activation in 
more anterior cerebellar parts (Hardwick et al., 2013; Janacsek 
et al., 2020), whereas the Belief SRT task robustly activated the 
posterior cerebellum (Ma et al., 2021). Despite this distinct topog-
raphy, the current DCM analysis demonstrates that cerebellar 
and cerebral mentalizing areas are functionally connected and 
continuously exchange neural signals.

Many cerebello–cerebral connections have 
closed-loop properties
In our DCM analysis, the so-called ‘fixed’ cerebello–cerebral con-
nections reflected systematic links among brain areas indepen-
dent of the initial Training and later Testing phases. In line with 
our hypothesis, for both implicit and explicit Belief SRT tasks, 
we found fixed connectivity, mainly as effectively closed loops, 
between the posterior cerebellum Crus I & II and the bilateral TPJ. 
The TPJ considered to be a key area for shifting to others’ perspec-
tives and inferring their transient mental states (Van Overwalle, 
2009; Schurz et al., 2013). The current analysis confirms earlier 
DCM studies documenting closed-loop connectivity between the 
posterior cerebellum Crus II and the TPJ during social mentalizing 
(Van Overwalle et al., 2019c, 2020b), and our findings extend this 
functional synchronization to the left posterior cerebellum Crus I.

The current analysis also revealed additional fixed cerebello–
cerebral effective closed loops between the posterior cerebellum 
and other neocortical mentalizing areas, including the PCun and 
TP. The PCun contributes to the mentalizing process by con-
structing mental images and social contexts related to different 
perspectives (Frith and Frith, 2006; Van Overwalle and Baetens, 
2009; Schurz et al., 2013). The TP is believed to store social knowl-
edge about others, such as social rules and etiquette (Schurz 
et al., 2013; Molenberghs et al., 2016). Understanding the differ-
ent beliefs that protagonists maintain in a variety of situations 
is an indispensable process supported by these two areas so that 
their synchrony with cerebellar areas likely contributed to per-
formance in the Belief SRT tasks. These findings extend earlier 

DCM studies on social mentalizing which found only unidirec-
tional connections from the right cerebellar Crus II to the PCun 
(Van Overwalle et al., 2019c, 2020b). Overall, the closed loops iden-
tified in this analysis support the assumption put forward by (Van 
Overwalle et al. 2019b) that incoming social signals from men-
talizing areas in the neocortex are sent further to the posterior 
cerebellum to identify and automatize their sequences and are 
then are fed back to cerebral mentalizing areas to affirm ongo-
ing social behaviors or to warn and prepare for unexpected social 
violations.

The effectively closed loops observed here are supported by 
anatomical research documenting white matter connections that 
form closed loops between cerebellar and cerebral cortices. Using 
DTI on healthy adults, Karavasilis et al. (2019) found that the 
cerebellum is anatomically connected with the frontal and tem-
poral cortices and to a lesser extent to the parietal cortex. A more 
recent DTI study by Metoki et al. (2021) provided evidence for 
white matter connections between mentalizing areas in the cere-
bellum (i.e. the posterior Crus I & II) and the cerebral cortex (i.e. 
mPFC, PCun, TP and TPJ). Interestingly, in that study, the right TPJ 
revealed strong contralateral pathways toward the cerebellum, 
while in the reverse direction, the cerebellum displayed weaker 
contralateral pathways to the TPJ and stronger ones to the mPFC, 
PCun and TP.

Other subcortical areas contribute to 
connectivity with the mentalizing neocortex
This analysis also found that the bilateral cerebellar lobule VI and 
the left caudate were linked to cerebral and cerebellar mental-
izing areas via numerous closed loops. A recent study on social 
intentions inferred from moving geometrical shapes also revealed 
strong connectivity between the cerebellar lobule VI and men-
talizing areas in the cerebral cortex (Metoki et al., 2021). The 
cerebellar lobule VI and the caudate were consistently found in 
recent meta-analyses on visuomotor learning in classical SRT 
tasks (Hardwick et al., 2013; Janacsek et al., 2020). Recent DCM 
analyses on visuomotor sequence learning revealed connections 
between the cerebellum and putamen (including caudate (Tzvi 
et al., 2015; Liebrand et al., 2020). Because these subcortical areas 
have never been implicated in other DCM analyses related to 
social mentalizing as far as we are aware (Van Overwalle et al., 
2019c, 2020b), this may suggest that the cerebellar lobule VI and 
the caudate subserve sequence learning not only in visuomotor 
contexts but also in some social settings. Alternatively, this may 
suggest that these areas are specific to some key aspects of the 
SRT paradigm (i.e. rapidly responding to sequential stimuli with 
minimal motor actions; Hardwick et al., 2013), rather than general 
visuomotor or social sequence learning processes.

Implicit sequence learning reveals more closed 
loops than explicit sequence learning
We observed similar patterns of connectivity between the implicit 
and explicit Belief SRT tasks. This implies that both types of belief 
sequence learning, in a social context, share the same effective 
connectivity within and between the cerebellar and cerebral men-
talizing areas. However, interestingly, there were more within-
cerebellar and cerebello–cerebral closed loops in implicit belief 
sequence learning compared to explicit learning. This seems con-
sistent with the general assumption that the cerebellum is specif-
ically involved in implicit learning and automatization (Taylor 
et al., 2010; Morgan et al., 2021). For instance, cerebellar patients 
had impaired performance when implicitly learning a sequence 
of a shape’s locations but had comparable performance when 
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they were explicitly told to learn and reproduce a given letter 
sequence (Morgan et al., 2021). It will be of interest for future 
studies to test behavioral performance and effective cerebello–
cerebral connectivity for patients with cerebellar deficits during 
the completion of the implicit and explicit Belief SRT task. This 
will allow us to gain insight into how the cerebellum might go 
awry in social thinking and tailor diagnostic instruments for 
mentalizing sequencing to the specific needs of these clinical
populations.

Little modulation of cerebello–cerebral 
connectivity
We did not find many modulations of cerebello–cerebral con-
nectivity induced by the initial Training phase or the later Test 
phase. For both the implicit and explicit versions, the results 
revealed a few suppressive modulations within the cerebellum 
or within the cerebrum, and almost none between the cerebel-
lum and cerebrum, when comparing the initial Training with the 
Test phase or vice versa. These limited modulations are consis-
tent with earlier DCM research on explicit inferences of social 
beliefs and traits (Van Overwalle et al., 2019c, 2020b). Note, how-
ever, that the Belief SRT tasks measured implicit (and explicit) 
learning of belief-related sequences, but not of implicit men-
talizing itself (i.e. participants were explicitly told to mentalize 
protagonists’ beliefs). Overall, this seems to indicate that neu-
ral synchrony between the cerebello–cerebral mentalizing areas 
is rather robust and largely unaffected by task changes, such as 
learning phase, degree of implicitness or type of social inference 
(e.g. trait or belief). This observation needs to be followed up in 
future research.

No clear pattern of positive and negative 
connections
Although the present analysis largely confirms the hypothe-
sized cerebello–cerebral connectivity between mentalizing areas, 
there was no clear pattern of positive and negative values for 
these connections. In earlier DCM analyses on social mentaliz-
ing, researchers found that all top-down connections from the 
TPJ to the posterior cerebellum were positive, and all bottom-up 
connections were negative (Van Overwalle et al., 2019c, 2020b). 
This pattern was absent in the current study, where downward 
and upward estimates between the bilateral TPJ and the posterior 
cerebellum showed mixed signs of estimates. We ran additional 
DCM analyses with reduced sets of ROIs to rule out that this was 
caused by the large number of ROIs within the smaller volume 
of the cerebellum, which may have led to a statistical prob-
lem of multicollinearity and hence a contradictory pattern of 
estimates. These reduced analyses, however, showed largely the 
same valence of connectivity as the original analyses. Another 
methodological explanation is that the earlier DCM analyses by 
Van Overwalle and colleagues used quite large samples (n = 91 
and 49; Van Overwalle et al., 2019c, 2020b, respectively). Perhaps 
more participants than the current study (n = 18–22) are needed 
to discern a clear pattern of positive and negative connectivity. 
Alternatively, the tasks in the earlier analyses involved famil-
iar social scenes (cf. chocolate scenario from the introduction), 
of which the correct sequence is well-known, while the Belief 
SRT task is set in a somewhat artificial context, with a new and 
unfamiliar sequence to be learned implicitly or explicitly. As the 
level of awareness and knowledge of the sequence might vary 
greatly between participants, this may have resulted in this mixed 
pattern.

Connectivity was not directly modulated by 
random sequences
As mentioned earlier, prior meta-analyses of SRT tasks (Hardwick 
et al., 2013; Janacsek et al., 2020) often compare the learned stan-
dard sequence against a random sequence or another baseline 
condition without a learned sequence. This reflects the assump-
tion that a learned sequence rests on robust cerebellar involve-
ment for encoding and automatizing, while novel or random 
sequences recruit a cerebellar process to a lesser extent. Surpris-
ingly, this contrast did not reveal any activation of the cerebellum 
in the original Belief SRT studies (Ma et al., 2021). Therefore, we 
could not include it in the current DCM analysis. Some differ-
ences in SRT designs may account for this lack of a random 
sequence effect. Perhaps most importantly, many earlier SRT 
tasks in neuroimaging studies presented a combination of stan-
dard and random sequences from the beginning (Hardwick et al., 
2013; Janacsek et al., 2020), while the present Belief SRT stud-
ies began with a long Training phase of a standard sequence 
without any random disruption, as is typically done in behav-
ioral research (Ma et al., 2021). Although this set-up precluded 
an immediate examination of connectivity patterns in compar-
ison with random sequences (in the Training phase), it showed 
significant contrasts against the later Test phase when random 
violations were introduced. It would be of theoretical interest 
for future studies to test how cerebello–cerebral connectivity is 
modulated by novel sequences against an already automatized
sequence.

Connectivity within the cerebrum and the 
cerebellum
Within the cerebrum, we found connections between the right 
and left TPJ, and connections between the right TPJ and the 
PCun during the initial Training phase. During the later Test 
phase, almost all cerebral ROIs (bilateral TPJ, bilateral TP and 
the caudate) were connected to each other, and most of these 
connections formed effectively closed loops during implicit learn-
ing. Although specific mentalizing areas are responsible for spe-
cific functions, our results suggest that these cerebral men-
talizing areas exchange signals with each other in integrative 
functional synchrony, especially when participants were learning 
and automatizing a social sequence. The effective connections 
between the bilateral TPJ and the bilateral TP support previous 
studies, showing that these cerebral areas are co-activated during 
mentalizing (see meta-analyses by Van Overwalle and Baetens, 
2009; Schurz et al., 2014; Molenberghs et al., 2016; Wang et al., 
2021). Also, while earlier studies on mentalizing showed effec-
tively closed loops between the bilateral TPJ using DCM (Van 
Overwalle et al., 2019c, 2020b), our DCM results further revealed 
effective connections between the TPJ and TP which are consis-
tent with anatomical connections between the TPJ and TP via fiber 
tracts (Wang et al., 2021).

Within the cerebellum, we found that most cerebellar ROIs 
were connected to each other within one hemisphere or across 
the two hemispheres, suggesting intra- and interhemispheric con-
nectivity in the cerebellum. Our DCM findings are supported 
by DTI analyses of the human cerebellum which revealed short 
intracerebellar fibers representing a local intracerebellar circuitry 
(Catani et al., 2008) as well as transverse white matter fibers cross-
ing the two hemispheres at the level of the cerebellar vermis 
(Salamon et al., 2007). It is likely that these paths are also used 
for exchanging social information.
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Implications
Studying the dynamic changes in activation of brain areas via 
connectivity is important to understand the functionality of the 
brain. In the current study, we showed robust effective cerebello–
cerebral connectivity during the learning of belief sequences. 
However, functional and structural connectivity is not always a 
simple one-to-one mapping (Suárez et al., 2020; Wang et al., 2021). 
Therefore, it will be of interest to use structural techniques like 
DTI to test in more depth how the cerebello–cerebral relation-
ships are organized via anatomical connections during implicit 
and explicit social sequence learning. This would provide even 
stronger evidence for the role of the posterior cerebellum in men-
talizing with the sequential organization (Van Overwalle et al., 
2019b).

Also, for clinical populations with social deficits, it will be of 
interest for future studies to investigate whether there is a deficit 
within-cerebellar and cerebral mentalizing areas, or whether 
there is distorted connectivity between these mentalizing areas 
(Van Overwalle et al., 2021a). For example, researchers showed 
that during the resting state, people with autism revealed no 
differences in TPJ organization and components compared to 
neurotypical participants, but they had a significant decrease in 
connectivity between the right TPJ and the left posterior cerebellar 
Crus II (Igelström et al., 2017). As DCM can reveal the effec-
tive direction of connectivity, future studies can further reveal 
whether autistic patients have weak connections from the pos-
terior cerebellum to the cerebral mentalizing areas or vice versa, 
resulting in their failure to flexibly learn and automatize sequen-
tial information during social cognition.

As the posterior cerebellum is close to the skull (Grimaldi et al., 
2016), our connectivity study suggests the posterior cerebellum as 
a possible new target for noninvasive brain stimulation (Cattaneo 
et al., 2021; Van Overwalle et al., 2021a). Previous studies showed 
that transcranial magnetic stimulation of the posterior cerebel-
lum reduced response times for generating the correct order of 
mentalizing stories (Heleven et al., 2021) and that transcranial 
direct current stimulation (tDCS) improved emotion discrimina-
tion (Ferrucci et al., 2012). Together with our results of functional 
connectivity, future studies stimulating the posterior cerebellar 
Crus I/II and cortical areas, such as the TPJ, could shed light on 
the causal roles of cerebello–cerebral areas involved in social pro-
cesses. Stimulating the cerebellum may also be possible indirectly. 
A study combining tDCS and fMRI showed that stimulating the 
prefrontal cortex not only induced stronger activation in this area 
but also resulted in increased cerebellar activation during implicit 
emotion regulation (Abend et al., 2019). Future studies combining 
stimulation and fMRI are needed to test how functional connec-
tivity is changed after stimulation. For example, during social 
sequence learning, it is of critical importance to see whether stim-
ulating the posterior cerebellar Crus I/II can result in stronger TPJ 
activation and stronger connectivity with the cerebrum and so 
improves mentalizing capacities. Also vice versa, how stimulating 
cortical mentalizing areas might impact the posterior cerebellum 
and mentalizing functionality. Perhaps the combined stimulation 
of both cerebellar and cerebral areas might result in an additive 
effect, which might be advantageous for clinical purposes.

Conclusion
Using DCM, we found closed loops between the posterior cere-
bellum (e.g. Crus I & II) and cerebral areas sensitive to mental-
izing (i.e. TPJ, PCun and TP). The analysis suggests that a specific 
cerebello–cerebral mentalizing network is engaged while learning 

social belief sequences. The closed loops in this network confirm 
the hypothesis by (Van Overwalle et al. 2019a) that the poste-
rior cerebellum receives signals from cerebral mentalizing areas 
about incoming social information and sends back confirmatory 
or corrective signals about the social sequences identified in this 
information to the same cerebral areas. Many unresolved ques-
tions remain and need to be answered in future studies: To what 
extent is awareness of a social sequence important in connectiv-
ity? Are there other sources that may lead to potential modula-
tions which were quite rare in the present studies? How robust 
are patterns of positive downward and negative upward connec-
tivity in social sequence learning revealed in prior DCM anal-
yses? Although many questions remain and research on social 
sequence learning is still young, one fact is obvious: social belief 
understanding relies heavily on the connectivity of key mental-
izing cerebral areas, such as the bilateral TPJ with the posterior 
cerebellum, and is therefore unlikely to function properly without 
the latter.
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