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Abstract

Rationale Many studies have reported deficits of mismatch
negativity (MMN) in schizophrenic patients. Pharmacological
challenges with hallucinogens in healthy humans are used as
models for psychotic states. Previous studies reported a
significant reduction of MMN after ketamine (N-methyl-
D-aspartate acid [NMDA] antagonist model) but not after
psilocybin (SHT, agonist model).

Objectives The aim of the present study was to directly
compare the two models of psychosis using an intra-
individual crossover design.
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Materials and methods Fifteen healthy subjects participated
in a randomized, double-blind, crossover study with a low and
a high dose of the SHT,, agonist dimethyltryptamine (DMT)
and the NMDA antagonist S-ketamine. During electroen-
cephalographic recording, the subjects were performing the
AX-version of a continuous performance test (AX-CPT). A
source analysis of MMN was performed on the basis of a
four-source model of MMN generation.

Results Nine subjects completed both experimental days
with the two doses of both drugs. Overall, we found
blunted MMN and performance deficits in the AX-CPT
after both drugs. However, the reduction in MMN activity
was overall more pronounced after S-ketamine intake, and
only S-ketamine had a significant impact on the frontal
source of MMN.

Conclusions The NDMA antagonist model and the SHT,
agonist model of psychosis display distinct neurocognitive
profiles. These findings are in line with the view of the two
classes of hallucinogens modeling different aspects of
psychosis.

Keywords Mismatch negativity - Model psychosis -
Dimethyltryptamine - S-Ketamine

Introduction

Disturbances of both automatic and controlled mechanisms
of information processing and attention are core symptoms
of schizophrenia, and recordings of event-related potentials
are commonly used to investigate them. Apart from the
well-documented deficits of P300 (Pfefferbaum et al. 1989;
Winterer et al. 2003), which reflect conscious attention to
expected salient stimuli, several studies demonstrated
impairments of the mismatch negativity (MMN), which is
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a “preattentive” component of the auditory-evoked poten-
tials (Umbricht and Krljes 2005).

MMN occurs after any discriminable deviation in an
ongoing repetitive acoustic stimulation with identical tones.
The repetitive standard stimuli are thought to generate a
memory template, and any incoming stimulus is compared
against it. If the incoming stimulus does not match the
template, a MMN is generated (Nédtdnen 1995; Ritter et al.
1995). Since MMN occurs whether or not stimuli are being
attended, it is supposed to reflect an automatic, i.e.,
preattentive process for detecting change (Picton et al.
2000). Hence, the MMN represents context-dependent infor-
mation processing at the level of the auditory sensory cortex
(Naétdnen et al. 2001). The main generators of the MMN lie
bitemporally within the primary and secondary auditory
cortices (Alho et al. 1996; Tiitinen et al. 1993). However,
frontal cortical areas seem to be also involved in the
generation of MMN (Rinne et al. 2000; Waberski et al. 2001).

The findings of deficient MMN in schizophrenia support
the hypothesis of impaired early information processing in
this disorder (Umbricht and Krljes 2005). MMN deficits
appear to be relatively specific for schizophrenia, since they
were not observed in other mental illnesses such as major
depression or bipolar disorder (Umbricht et al. 2003a; Catts
1995). Two recent studies failed to demonstrate abnormal
MMN in first-episode patients; hence, it is possible that the
MMN impairment develops in the ongoing course of the
schizophrenia (Salisbury et al. 2002; Umbricht et al. 2006).

Dopaminergic, glutamatergic, and serotoninergic sys-
tems are all involved in the pathophysiology of schizo-
phrenia but may modulate different symptom domains
within this complex disorder. Acute dopamine receptor
stimulation did not affect MMN in healthy subjects (Leung
et al. 2007). In contrast, dysfunction in the N-methyl-D-
aspartic acid (NMDA) receptor system is considered to play
an important role in schizophrenia-related deficits in MMN
(Light and Braff 2005a, b). Competitive and noncompeti-
tive NMDA antagonists selectively block the generation of
MMN in awake monkeys (Javitt et al. 1996). It is
interesting to note that NMDA receptor antagonists such
as phencyclidine and ketamine elicit psychosis-like symp-
toms in humans, and pharmacological challenges with
ketamine are used as a model for psychosis in human
experimental research. Ketamine in subanesthetic dosages
decreased MMN without affecting other event-related
potential (ERP) activity in healthy humans (Umbricht et
al. 2000; Kreitschmann-Andermahr et al. 2001). However,
a study that used an even lower ketamine dose, which
elicited only very subtle psychological effects, reported no
MMN deficit (Oranje et al. 2000).

The NMDA antagonist model is the most widely
accepted model of psychosis, and it is thought to be an
appropriate model for undifferentiated or disorganized
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psychoses with positive and negative symptoms. However,
lysergic acid diethylamide (LSD) and LSD-type hallucinogens
are also used to model psychoses in animal and human
experimental research. LSD-type drugs are agonists at
serotonin SHT, 4 receptors, and the SHT,, agonist model of
psychosis is thought to resemble more the positive symptoms
of schizophrenia (Abi-Saab et al. 1998; Gouzoulis-Mayfrank
et al. 2005; Vollenweider et al. 1998). It is interesting to note
that a previous study of MMN in the SHT, agonist model
of psychosis showed no significant effect of the serotonergic
hallucinogen psilocybin on MMN (Umbricht et al. 2003a, b).
However, acute tryptophan depletion, which reduces the
brain synthesis of serotonin, did lead to increased MMN
amplitude (Kéhkonen et al. 2005).

The aim of the present study was to investigate the effects
of the SHT, agonist hallucinogen N,N-dimethyltryptamine
(DMT) and the NMDA antagonist hallucinogen S-ketamine
on the generation of MMN using two different dosages of
each drug. Both drugs can be given intravenously and have
similar pharmacokinetics with rapid onset at the beginning
and rapid fading of action after the end of the infusion.
Hence, it is possible to study the effects of the two drugs in a
randomized, double-blind design. Based on the principles of
model psychosis and the robust findings of diminished
MMN in patients with schizophrenia, we expected a dose-
dependent decrease in MMN activity after both hallucino-
gens. Furthermore, this study aimed to analyze possible
differences between the two hallucinogens in terms of the
modulation of the frontal and temporal sources of MMN.

Material and methods

The present study was part of a more comprehensive
investigation, which also assessed the psychological effects,
spatial orienting of attention, and startle modification in
healthy subjects after S-ketamine and DMT intake (for
details, see Gouzoulis-Mayfrank et al. 2005, 2006; Heekeren
et al. 2007). The study was carried out in accordance with
the Declaration of Helsinki and was approved by the local
ethics committee at the Medical Faculty of the University of
Technology Aachen and the Federal Health Administration
(Berlin). Written informed consent was obtained from all
subjects after we described the experimental procedures in
detail and explained that they might withdraw from the study
at any time, if they wished so, without having to explain the
reasons.

Subjects
Fifteen healthy volunteers (nine men, six women; mean age

38.0 years, range=28-53) with no current physical and no
current or previous history of neurological or psychiatric
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disorder (axis I and II according to Diagnostic and
Statistical Manual of Mental Disorders [DSM]-IV criteria)
were included in the study. Subjects with a positive family
history of severe psychiatric disorder in first-degree
relatives, a personal history of current or previous drug
abuse, or any regular medication were excluded. All
subjects were screened with a medical history, a standard-
ized psychiatric interview according to DSM-IV (Structured
Clinical Interview for DSM) and a physical examination
including a clinical test for normal hearing, electrocardio-
gram, and a routine laboratory testing. Twelve subjects
completed the experimental day with both doses of DMT,
and ten subjects completed the day with both doses of S-
ketamine. Nine subjects completed both experiments with
both doses of DMT and S-ketamine. Data are presented for
these nine subjects (for details on subjects and reasons for
dropouts, see Gouzoulis-Mayfrank et al. 2005).

Drugs

DMT fumarate was synthesized in the Pharmaceutical
Institute, University of Tiibingen (Germany), and prepared
as solution for intravenous use by Wiilfing Pharma (Gronau,
Germany). Two different DMT dosages were used:

1. Low DMT: a bolus injection over 5 min with 0.15-
0.2 mg/kg followed by a break of 1 min, followed by
continuous infusion with 0.01125-0.015 mg/kg xmin
over 84 min

2. High DMT: bolus injection with 0.2-0.3 mg/kg and
continuous infusion with 0.015-0.02 mg/kgxmin

S-Ketamine (Ketanest® S, Parke-Davis, Karlsruhe, Ger-
many) was administered in the following dosages:

1. Low S-ketamine: a bolus injection over 5 min with 0.1—
0.15 mg/kg followed by a break of 1 min, followed by
continuous infusion with 0.0066—-0.01 mg/kg x min over
54 min, followed by continuous infusion at a rate of
75% of the previous dose over 30 min

2. High S-ketamine: bolus injection with 0.15-0.2 mg/kg,
continuous infusion with 0.01-0.015 mg/kg>xmin over
54 min, followed by continuous infusion at a rate of
75% of the previous dose over 30 min

Due to interindividual differences in the strength of
psychological effects to the same drug dose, we always
started with a medium dose, which was on the maximum of
the low and at the same time at the minimum of the high
dose range. Depending on the intensity of effects during the
first infusion period, we decided to go higher or lower for
the second infusion period. This procedure leads to
comparably strong psychological effects within each dose
condition in spite of the interindividual differences in
responsiveness to the drug. To avoid a cumulation of plasma

levels and clinical effects, the S-ketamine infusion rate was
reduced after 60 min. Due to the fast elimination time of
DMT, a reduction in the DMT dosage over the 90-min
administration period was not necessary. With these doses,
the psychological effects of both drugs developed fully
within about 15 min and were kept relatively constant over
the following period of 75 min from the start to the end of
the infusion (for details on the dosage regimes, see
Gouzoulis-Mayfrank et al. 2005).

Study design

On a separate day prior to the first experiment, all
participants underwent a baseline MMN recording without
drug administration. Thereafter, each subject participated in
one experiment with DMT and one experiment with S-
ketamine 2 to 4 weeks apart in a double-blind, crossover
design and in a pseudorandomized order. On each exper-
imental day, the same substance (DMT or S-ketamine) was
administered in a low and a high dosage with a 2-h break
between.

The order of administration of the two dosages was
single blind and was low—high on ten and high—low on 12
experiments. The drugs were administered by a physician,
who had no other role in these experiments and did not
communicate with the subjects and the other members of
the research team. Both drugs were administered intrave-
nously by an automatic infusion pump (Perfusor®, Braun,
Melsungen, Germany). Blood pressure and heart rate were
monitored automatically (Dinamap®, Critikon, Tampa, FL,
USA) during the entire duration of the experiment. About
20 min after the onset of the infusion, the recording of the
MMN started and lasted for about 30 min. After stopping
the infusion, the psychological effects of the drugs
completely vanished within 10 to 30 min.

EEG recording and AX-CPT

For the recording of the electroencephalogram (EEG), we
used a 94-channel montage equally spaced around the
reference electrode (Cz). Two additional channels were
used to monitor vertical and horizontal electrooculogram
(EOG). The individual position of each electrode was
determined for each subject with a three-dimensional
digitizer (ZEBRIS®, Isny, Germany). Electrode impedance
was kept below 5 k). The activity was recorded with an
amplifier system (NeuroScan® Labs, El Paso, USA) and
digitized continuously at a sampling rate of 1 kHz.
Recording band pass was 0.3 to 250 Hz (6 dB). Three
thousand auditory stimuli were presented binaurally with
foam insert earphones at an intensity of 75 dB and with an
interstimulus interval (ISI) of 500 ms. The acoustic stimuli
consisted of 80% standard stimuli with a 50-ms duration at
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1,000 Hz intermixed pseudorandomly with 10% pitch-
deviant (50 ms at 1,200 Hz) and 10% duration-deviant
(100 ms at 1,000 Hz) stimuli.

During the recording of the EEG, subjects performed a
visual AX-continuous performance task (AX-CPT), which
distracted their attention from the acoustic stimuli. The AX-
CPT requires the subjects to press a button, whenever the
letter X follows the letter A. Whenever a letter different
than A is presented prior to X (“BX”) the subject has to
inhibit the tendency to respond to it. It is interesting to note
that schizophrenic patients commit more BX errors,
suggesting a deficient use of contextual information in this
task (Cohen et al. 1999; Javitt et al. 2000; Umbricht et al.
2003a, b). Therefore, the influence of the two drugs on the
utilization of contextual information in this AX-CPT was
also an object of our study.

The visual AX-CPT was programmed using the presen-
tation software (Neurobehavioral Systems, Albany, USA)
according to Umbricht et al. (2000): Single letters were
presented for 250 ms visually on a computer screen, which
was positioned in front of the subject. The instruction was
to press a button whenever the letter A (correct cue) was
followed by the letter X (correct target), “AX.” The three
other orders (correct cue—incorrect target “AY,” incorrect
cue—correct target “BX,” and incorrect cue—incorrect target
“BY”) had to be ignored. Incorrect cues and targets
consisted of all letters other than A or X. Fifty percent of
the cue—target sequences were presented pseudorandomly
intermixed with a short ISI of 0.8 s and the remaining 50%
with a long ISI of 4 s. The time between stimulus pairs was
constant at 0.8 s. The correct cue—target sequence (A—X)
occurred with a probability of 70% and the three other
orders with a probability of 10% each.

Data analysis
MMN and N1

Digital tags were logged to all auditory stimuli, and the
continuous data were divided on the basis of these tags into
600-ms epochs (100 ms pre- and 500 ms poststimulus).
Parallel to the EEG, we registered two EOG channels, one for
vertical and one for horizontal eye movements. If there was an
eye movement registered in either EOG channel, the
contemporaneous EEG epoch was rejected. After correction
for blinks, epochs with amplitudes exceeding £80 uV were
also rejected offline during the averaging procedure (BESA
2000 software, MEGIS, Munich, Germany). Grand averages
were built separately for the standard and the two deviant
stimuli. Data were digitally filtered using a 30-Hz low-pass
and a 1-Hz high-pass (12 dB) filter. After averaging and
artifact rejection, the MMN waveform was calculated sepa-
rately for each subject and each condition (baseline, DMT
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moderate/high, S-ketamine moderate/high) by subtracting the
standard waveform from the deviant (frequency-respective
duration) waveform using the BESA software. In a first step,
we assessed the peak MMN amplitude by using the MMN
waveforms from the surface electrodes Fz, F3, and F4. The
peak negativity within a latency window of 100-200 ms
poststimulus for the frequency deviant and 150-250 ms for
the duration deviant in the corresponding surface waveforms
was defined as the MMN peak amplitude. The effects of the
two drugs on the MMN peak amplitude were analyzed
separately for the duration and the frequency deviants by
means of a repeated-measures analysis of variance (ANOVA)
using the position of the electrode as a within-subject factor.
Initially, we performed analyses of variance for each of the
two drugs with the factor condition (baseline, low dose, high
dose). Then, to directly compare the two drugs with each
other, we performed ANOVAs with the factors drug (DMT,
S-ketamine) and dosage (low, high). Post-hoc least-square
difference (LSD) tests were performed if indicated.

In a second step, individual electrode positions from all
nine subjects were matched to a common head model to
perform the source analysis of the MMN. A source analysis
was performed individually for each subject, deviant
stimulus, and drug condition with the BESA software on
the basis of the four generators model of MMN as described
by Waberski et al. (2001). Figure 1 displays the location of
the four sources: S1 right superior temporal lobe, S2 left
superior temporal lobe, S3 right inferior temporal lobe, and
S4 anterior cingulate gyrus. The Talairach coordinates for
the sources are presented in Table 1. The peak values of the
MMN amplitude were determined at each source in a time
window of 100-200 ms poststimulus for the frequency
deviant and 150-250 ms for the duration deviant in the
corresponding source waveforms.

In addition to the MMN, we assessed the N1 amplitude
by using the waveforms generated by the standard stimulus
at electrode Fz. The peak negativity within a latency
window of 50 to 150 ms poststimulus was defined as the
N1 amplitude. The N1 peak amplitudes were measured to
ensure that MMN deficits under the drug conditions are not
only caused by a general reduction in EEG activity.

We analyzed the effects of the two drugs on the MMN
amplitude separately for the duration and the frequency
deviants and for each source by means of ANOVAs.
Initially, we performed ANOVAs for each of the two drugs
with the factor condition (baseline, low dose, high dose).
Then, we performed ANOVAs with the factors drug (DMT,
S-ketamine) and dosage (low, high). Post-hoc LSD tests
were performed if indicated. Similarly, the amplitude and
latency of the N1 to the standard stimulus were analyzed by
means of ANOVAs, first separately for each drug with the
factor condition and then without the baseline data using
the factors drug and dosage.
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Fig. 1 The generators of the MMN according to Waberski et al. (2001)

AX-continuous performance task

The dependent parameter missings (no response after “AX”
combination) were also analyzed by means of ANOVAs,
initially, separately for each drug with the factors condition
(baseline, low dose, high dose) and ISI (0.8 s, 4 s.) and then
with the factors drug (DMT, S-ketamine) and dosage (low,
high). For the analysis of the false-alarm rates (response
after “AY,” “BX,” or “BY” combination), we also
performed two ANOVAs, separately for each drug, with
the factors condition, ISI (0.8 or 4 s), and false-alarm type
(“AY,” “BX,” or “BY”). Finally, we performed an ANOVA
with the factors drug (DMT, S-ketamine), dosage (low,
high), false-alarm type, and ISI.

All analyses were performed using the SPSS software
(version 12.0). Statistical significance was set at p<0.05.

Results
Psychological effects
The global intensity of psychological effects was similar for

DMT and S-ketamine and was dose dependent. With the
low dosage, most subjects displayed some degree of

positive formal thought disorder such as loosening of
associations and heightened distractibility, and some sub-
jects reported alterations of visual perception and visual
hallucinations. With the high dosage, all subjects had
significant psychotomimetic effects including perceptional
distortions and hallucinations, transient paranoid ideation,
alterations of mood and drive, prominent formal thought
disorder, and attention deficits. Phenomena resembling
positive symptoms of schizophrenia, particularly positive
formal thought disorder and inappropriate affect, were
stronger after DMT intake. Phenomena resembling negative
symptoms of schizophrenia such as hypomimia and
psychomotor poverty, attention deficits, body perception
disturbances, and catatonia-like motor phenomena were
stronger after S-ketamine intake. The global scores of the
Scale for the Assessment of Positive Symptoms (SAPS)
and the Scale for the Assessment of Negative Symptoms
(SANS) are presented in Fig. 2. Repeated-measures
ANOVAs revealed significant main effects of drug and
dose for the global SAPS (F=20.76, p=0.002 and F=
32.19, p<0.0001) and the global SANS scores (F=29.41,
and F=26.32, both p<0.001). For details on the psycho-
pathological effects, see Gouzoulis-Mayfrank et al. (2005).

AX-CPT performance

The descriptive statistics for missings (AX errors) and false
alarms (BX, AY, and BY error rates) are presented in Fig. 3.
There was a significant main effect of condition on the
missings rate for both DMT (]2, 7]=8.26, p=0.019) and
S-ketamine (F[2, 7]=10.22, p=0.012). The post-hoc LSD
tests revealed a significantly lower missings rate in the
baseline condition compared to low DMT (p=0.009), high
DMT (p=0.008), low S-ketamine (p=0.021), and high S-
ketamine (p=0.002). There was no significant main effect
of the factor ISI on the missing rate. Remarkably, the
descriptive data showed a tendency for the expected effect
of ISI for ketamine but not for DMT. The ANOVA with the
factors drug and dosage revealed no significant effect of
any factor on the missings rate.

Regarding the false-alarm rates, there were significant
main effects of the factors ISI and false-alarm type under
both drugs and the interaction of the two factors was also
significant (ISI: F[1, 8]=13.24, p=0.008 for DMT and F[1,

Table 1 Location of MMN sources in Talairach coordinates (mm)

Source X y z

S1 49.2 53 -6.2
S2 —42.4 —-18.0 8.3
S3 48.1 -67.9 1.1
S4 22 38.1 8.3
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Fig. 2 Global SAPS and SANS
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Table 2 Peak amplitudes (V) and latencies (ms) of N1

Baseline Low DMT High DMT Low S-ketamine High S-ketamine

Mean SD Mean SD Mean SD Mean SD Mean SD
Amplitude (1V) —0.67 0.40 —-0.34 0.34 —0.58 0.63 —0.86 0.48 —0.57 0.23
Latency (ms) 119.44 30.08 112.44 19.18 109.33 27.99 119.78 25.73 111.67 17.13

factors drug (F1, 8]=6.94, p=0.034) and ISI (F[1, 8]=
12.74, p=0.009). Hence, the “BX” error rate was higher
under the DMT conditions compared to S-ketamine.

N1 peak amplitude and latency

Mean peak amplitudes and latencies of N1 are displayed in
Table 2. The separate ANOVAs for the two drugs with the
factor condition (baseline, low dose, high dose) revealed a
significantly diminished amplitude of N1 only after DMT
intake compared to baseline (F=6.20, df=2.7, p=0.028).
The post-hoc tests revealed a lower peak amplitude of the
low DMT dose compared to baseline (p=0.008). The
second ANOVA with the factors drug and dosage revealed
a significant main effect of drug indicating a lower
amplitude of NI under the DMT condition compared to
S-ketamine (F=5.62, df=1.8, p=0.045). There where no
significant changes in N1 latencies between the different
conditions in all performed ANOVAs.

MMN surface waveforms

The grand average MMN surface waveforms of the
electrodes F3, Fz, and F4 are presented in Fig. 4. For the
duration-deviant-induced MMN, we found a significant
effect of the factor condition over all three waveforms only
for S-ketamine (F[2, 7]=4.97, p=0.045) but not for DMT.
For the frequency-deviant-induced MMN, the factor condi-
tion showed only a trend for S-ketamine (F[2, 7]=3.70, p=
0.08). In the second ANOVA with the factors drug and
dosage, there was a significant effect of the factor drug (¥
[1, 8]=9.01, p=0.017), indicating a lower MMN peak
amplitude under the S-ketamine condition compared to
DMT.

MMN source activity

The time course of duration-deviant-induced MMN activity
at the four sources is presented in Fig. 5. In the separate
ANOVAs for each drug, we found a significant main effect
for S-ketamine at all four sources, S1 (F[2, 7]=6.31, p=
0.027), S2 (F[2, 7]=9.48, p=0.01), S3 (F[2, 7]=6.46, p=
0.026), and S4 (F[2, 7]=5.09, p=0.043), and for DMT only
at S1 (F[2, 7]=5.04, p=0.044). These results indicate a
diminished MMN activity in the drug conditions compared

to baseline. The significant results of the post-hoc LSD tests
are presented in Fig. 5. In the second ANOVA with the
factors drug and dosage, we found only a significant effect of
the factor drug at S4 (F[1, 8]=5.62, p=0.045) and a
significant interaction of drug and dosage at S3 (F[1, 8]=
11.81, p=0.009). These results indicate that only S-ketamine
affects the frontal generator.

The frequency-deviant-induced MMN at the four sources
is presented in Fig. 6. In the separate ANOVA for S-
ketamine, we found a marginal effect of condition at S3 (F]2,
71=4.17, p=0.064) and S4 (F12, 7]=4.19, p=0.064). The
separate ANOVA for DMT revealed a significant effect of
condition at S1 (F[2, 7]=5.22, p=0.041) and S3 (F[2, 7]=
4.86, p=0.048).The significant results of the post-hoc LSD
tests are presented in Fig. 6. The second ANOVA with the
factors drug and dosage revealed no significant effects.

Discussion

The present investigation studied the influence of the two
hallucinogens N,N-DMT and S-ketamine on the generation
of MMN and performance in an AX-CPT. Overall, the
intensity of the hallucinogenic effects of both drugs was
similar; however, phenomena that resemble positive symp-
toms of schizophrenia were more pronounced after DMT
intake, and phenomena that resemble negative and catatonic
symptoms of schizophrenia were clearly more pronounced
after S-ketamine intake (Gouzoulis-Mayfrank et al. 2005).
Taken together, these results are in line with the assumption
that the two classes of drugs tend to model different aspects
of psychoses. The NMDA antagonist state (S-ketamine)
may be an appropriate model for psychoses with prominent
negative and possibly also catatonic features, while the 5-
HT,5 agonist state (DMT) may be a better model for
psychoses with prominent positive symptoms (Abi-Saab et
al. 1998; Gouzoulis-Mayfrank et al. 2005).

Inspection of the descriptive data suggests a decrease in
the generation of MMN under both substances. However,
this effect was more pronounced after S-ketamine. The
analyses of the grand average data showed that the MMN to
the duration deviant was significantly reduced by S-
ketamine. Moreover, there was a trend reduction for the
frequency-deviant-induced MMN. According to the source
analyses, S-ketamine reduced the duration-deviant MMN
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Fig. 4 Grand average MMN
surface waveforms in
microvolts (baseline=solid line,
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DMT

low dosage=dotted line, high
dosage=dashed line; p values
from post-hoc tests; n=9)
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activity of the temporal (S1, S2, S3) and the frontal sources
(S4). Regarding the frequency-deviant stimuli, the effect of
S-ketamine was somewhat weaker: We found only a
marginal MMN reduction at one temporal source (S3) and
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at the frontal source (S4). Nevertheless, the difference
between frequency- and duration-deviant MMN did not
reach statistical significance. The activity of the frontal
source was only affected by S-ketamine and not by DMT.
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Fig. 5 Time course of MMN
activity in nanoampere meters at
the four sources for the duration-
deviant stimuli (baseline=solid
line, low dosage=dotted line,
high dosage=dashed line;
means; p values from post-hoc
tests; n=9)
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S-Ketamine had no effect on the N1 amplitude; therefore,
the reduction in MMN by S-ketamine was not caused by a
general weakening of ERP activity.

Our findings regarding the NMDA antagonist S-ketamine
are in line with the observation that MMN deficits in
schizophrenia are more pronounced to duration deviants than
to frequency-deviant stimuli (Michie et al. 2000). A recent

study also found a reduction in MMN to duration but not to
frequency deviants in patients with schizophrenia and a short
length of illness (Todd et al. 2008). Remarkably, in the same
study, patients with a longer length of illness showed a
stronger reduction to frequency compared to duration
deviants. The authors interpreted their findings as a result
of a pronounced age-related decline in duration-deviant
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Fig. 6 Time course of
MMN activity in nanoampere
meters at the four sources for the

S-ketamine \

DMT

frequency-deviant stimuli

\

(baseline=solid line, low
dosage=dotted line, high
dosage=dashed line; means;
p values from post-hoc tests;
n=9)

nAm

source 1

not significant

ms

low dose < baseline (p=0.043)

25

N/

20 4

nAm

source 2

50 100
ms

not significant

150 50 100 150
ms

not significant

N

\ / source 3

source 4

o 10
9 4 94
8 1 8
7 7
6 6
E 54 E 5
€ 44 NN —/-\ X <=7
3 4 e N N R N A .
2 1 2
1 1
0 - r r , . r 0 : : . . r r
50 100 150 50 100 150
ms ms
. ) B low dose < baseline (p=0.027)
high dose < baseline (p=0.017) high dose < baseline (p=0.017) /
| 1 1
18
16
14
12
: %]
c c 84~
6
44
2 4
0

ms

-

high dose < baseline (p=0.024)

ms

/

not significant

MMN in the healthy control group (Todd et al. 2008).
Baldeweg et al. (2002) found a pronounced reduction in
MMN at frontocentral electrodes in patients with schizo-
phrenia in the presence of normal activity at mastoid
electrodes and concluded that the frontal generators of
MMN may be preferentially affected in schizophrenia.
However, our descriptive data suggest that S-ketamine
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affected the frontal and temporal sources of MMN genera-
tion. Since magnetoencephalography (MEG) predominantly
detects the temporal sources of MMN generation (Rinne et
al. 2000; Rosburg et al. 2004), the MEG findings of reduced
MMN activity in schizophrenia (Kreitschmann-Andermahr
et al. 1999; Pekkonen et al. 2002) also support the
involvement of temporal sources in reduced MMN activity
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in patients with schizophrenia. The detection of frontal
sources only in EEG and not in MEG recordings is in line
with the assumption that these sources are either predomi-
nantly radial in orientation or located deeply in the brain
(Rinne et al. 2000; Waberski et al. 2001). Nevertheless, even
though several studies support a frontal lobe involvement in
MMN generation (for a review, see Néaitinen et al. 2007),
we cannot exclude that the frontal source is simply an artifact
due to the inverse problem of source analyses.

The lack of influence on peak amplitude and latency of
N1 and the predominant reduction in MMN activity after
duration deviants in the NMDA antagonist model of
psychosis are in line with observations in schizophrenic
patients. It is noteworthy that recent studies reported an
association between MMN deficits and poor functioning in
schizophrenia (Light and Braff 2005a, b). These reports are
in line with the psychological findings in our study, which
suggest that the NMDA antagonist state (S-ketamine) is an
appropriate model for psychoses with prominent negative
symptoms (Gouzoulis-Mayfrank et al. 2005). Furthermore,
two studies that investigated first-episode patients failed to
find alterations in MMN activity (Salisbury et al. 2002;
Umbricht et al. 2006). These findings suggest that the
MMN impairment may develop in the ongoing course
of the schizophrenic disorder. Hence, in terms of our
model, the S-ketamine state may resemble not only the
negative syndrome but also the more advanced stages of
schizophrenia.

Unlike S-ketamine, the SHT,, agonist DMT reduced the
N1 peak amplitude. This finding is in line with the increase
of the N1 amplitude after treatment with SHT, 5 antagonists
(Juckel et al. 2003). On the basis of the grand average data,
DMT had no significant effect on MMN activity. However,
regarding the sources of MMN, DMT diminished the MMN
activity to frequency-deviant stimuli at the two right
hemispheric sources (S1 and S3). Noteworthy, Umbricht
et al. (2003a, b) also found a significant reduction in the N1
amplitude and a stronger effect on MMN to frequency
compared to duration deviants after administration of the
S5HT,, agonist hallucinogen psilocybin. However, we
cannot exclude that the changes in MMN activity under
DMT are confounded by the significant reduction in the N1
amplitude.

Both drugs led to higher missing and error rates,
particularly for “BX” errors, in the AX-CPT. Javitt et al.
(2000) reported a similar AX-CPT response pattern in
patients with schizophrenia (Javitt et al. 2000). This is in
line with an impairment in the use of contextual informa-
tion, as indicated by a selective deficit in the ability of
schizophrenia patients to inhibit responses to targets
following presentation of incorrect no-go cues (Cohen et
al. 1999). Hence, in terms of the context-dependent visual
information processing at an attention-dependent level, both

models of psychosis seem to match previous findings with
schizophrenia patients.

It must be acknowledged that our study has methodo-
logical limitations mainly due to the absence of a blinded
placebo condition and the small sample sizes for com-
pleters, which limited the statistical power. These limita-
tions and the rationale for our study design were discussed
in detail in our previous publications (Gouzoulis-Mayfrank
et al. 2005, 2006). Taken together, although methodological
caveats have to be taken into account, the data from the
present study suggest that the NDMA antagonist and the
5HT; agonist models of psychosis share common features
regarding both automatic and conscious attentional mech-
anisms. However, in terms of the automatic acoustic MMN
generation, the NMDA antagonist model of psychosis
appears to be more close to the findings in schizophrenia,
whereas in terms of the visual context-dependent AX-CPT,
both drugs lead to a performance deficit pattern, which
comes close to previous findings in schizophrenic patients.
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