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Time–frequency time–space 
LSTM for robust classification 
of physiological signals
Tuan D. Pham 

Automated analysis of physiological time series is utilized for many clinical applications in medicine 
and life sciences. Long short-term memory (LSTM) is a deep recurrent neural network architecture 
used for classification of time-series data. Here time–frequency and time–space properties of time 
series are introduced as a robust tool for LSTM processing of long sequential data in physiology. 
Based on classification results obtained from two databases of sensor-induced physiological signals, 
the proposed approach has the potential for (1) achieving very high classification accuracy, (2) saving 
tremendous time for data learning, and (3) being cost-effective and user-comfortable for clinical trials 
by reducing multiple wearable sensors for data recording.

Analysis and classification of clinical time-series data in physiology and disease processes are considered as a 
catalyst for biomedical research and education. Innovative computerized tools for physiological data classifica-
tion are increasingly needed to facilitate investigations on new unsolved challenging problems in clinical and 
life sciences with respect to both basic and translational perspectives. Conventional methods for classification 
of physiological time series to detect abnormal conditions include fractals, chaos, nonlinear dynamics, signal 
coding, pattern matching, and machine learning. The current surge of modern artificial intelligence (AI) opens 
a new approach for sequential data classification with long short-term memory (LSTM)  networks1, which are an 
architecture of deep learning. LSTM networks are a type of recurrent neural networks that learn order depend-
ence in sequential data.

There are many methods developed for classification of time series in different fields of applications. Time-
series classification algorithms based on discriminatory features can be categorized into six main  groups2: (1) 
whole series, (2) intervals, (3) shapelets, (4) dictionary, (5) combinations, and (6) model. For the whole-series 
approach, classification is performed by comparing the similarity between two time series using a distance meas-
ure. The methods of intervals choose one or multiple intervals of the series and use summary measures as features 
for classification. The methods of shapelets define a class with phase-independent patterns called shapelets, then 
a class is identified by the existence of one or more shapelets in the whole time series. The dictionary-based 
methods classify time series based on the frequency of its recurring subseries. The methods of combinations try 
to combine two or more methods of the whole series, intervals, shapelets, and dictionary for classification. The 
model-based methods fit a time series to mathematical models constructed for the classes and then assign the 
time series to the class that has the largest similarity score given by the class model. Most recently, deep-learning 
methods or deep neural networks have been reported to outperform many baseline time-series classification 
approaches and appear to be the most promising techniques for classifying temporal  data3.

Because LSTM networks can capture long-term temporal dependencies, they have been applied to provide 
solutions for many difficult problems in bioinformatics and computational  biology4. As a state-of-the-art method 
for learning physiological models for disease prediction, many applications of LSTM and other deep-learning 
networks have recently been reported in literature, such as classifying electroencephalogram (EEG) signals in 
emotion, motor imagery, mental workload, seizure, sleep stage, and event related  potentials5, non-EEG signals 
in Parkinson’s disease (PD)6, learning and synthesis of respiration, electromyograms, and electrocardiograms 
(ECG)  signals7, decoding of gait phases using  EEG8, and early prediction of stress, health, and mood using 
wearable sensor  data9.

The present work presents a time–frequency time–space LSTM tool for robust and efficient classification of 
physiological time series, while solutions obtained from conventional LSTM networks would result in lower 
accuracy and higher data training time. Furthermore, for the case of clinical gait analysis with the use of measure-
ment sensors to assess biomechanical patterns and therapeutic plan for rehabilitation in patients disabled from 
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conditions such as PD and post stroke, long walk trials are recommended to obtain at least 370  strides10. Such 
long-distance walks result in long records of physiological measurements, cause discomfort to the patients, and 
may be impractical to perform in many clinical  settings11.

Differentiating patients with PD from healthy controls using gait data was studied  in12, which trained fuzzy 
neural networks with wavelet features extracted from the gait data. Another study extracted gait features with 
the short-time Fourier transform and used the support vector machines (SVMs) for the classification  task13. 
To capture the local changes in the dynamics of gait signals, the feature-extraction method of shifted 1-D local 
binary patterns and a multilayer perceptron, which is a class of feed-forward artificial neural networks, were 
used for the classification of PD and healthy  controls14. The extraction of time-domain and frequency-domain 
features of gait data for training with random decision forests, which are an ensemble machine-learning method 
for classification, was reported in a more recent study for detecting patients with  PD15. All these studies employed 
shallow neural networks or SVMs. However, deep neural networks are known to be the most advanced models of 
the neural-network approach and shown to be of performance superior to other types of statistical  classifiers16.

The novel idea for classification of physiological data with LSTM presented herein is the creation of comple-
mentary time–frequency and time–space features of time series. In signal processing, instead of viewing a time 
series as a one-dimensional signal, time–frequency analysis studies a signal in both time and frequency domains 
simultaneously by some function whose domain is the two-dimensional real plane to extract transient features 
from the signal by a time–frequency transform. Time–frequency signal processing for feature extraction was 
reviewed as a useful approach for pattern  recognition17 that provided successful applications, including EEG 
seizure detection and  classification17, classification of ultra-high-frequency  signals18, classification of vibration 
 events19, and classification of EEG signals and episodic  memory20.

In nonlinear dynamics, the time–space analysis attempts to transform one-dimensional signal into a two-
dimensional space to enable the visualization of the recurrences of states of a dynamical system at certain times 
and enable the extraction of distinctive features representing behaviors of different dynamical mechanisms 
underlying nonlinear time series. The extraction of novel features from time series not only facilitate the power 
of signal compression for deep learning but also enhances the capability of LSTM networks for robust signal 
classification. In chaos theory, the method of recurrence plots (RPs) was developed for nonlinear time-series 
 analysis21. RPs and extended methods were further addressed for the analysis of complex  systems22,23 and dynami-
cal features of nonlinear time  series24. While an RP is a binary visualization of recurrences of states of a dynamical 
system at certain pairs of time, a fuzzy recurrence plot (FRP)25 displays the visualization as a grayscale image. 
Because of being much richer in texture than RPs, the technique of FRPs of time series is a preferred approach 
for texture analysis and has been successfully applied to extract texture features for pattern recognition, includ-
ing classification of PD and control subjects using deep  learning6,26, tensor  decomposition27, and  SVMs28; and 
other neuro-degenerative  diseases29.

In general, the time–frequency analysis is known a preferred approach for the representation and essential 
feature extraction of non-stationary signals because it is effective for estimating the underlying characteristics 
composing the  signals17, whereas the time–space analysis provides another kind of visual information about the 
signals by detecting hidden dynamical features being inherent in the data. The combination of complementary 
features generated by both time–frequency and time–space analysis methods is therefore promising for enhanc-
ing the classification power of the sequential deep learning.

Data
ECG data. ECG signals capture the electrical activity of a human heart over a period of time. ECG signals 
are used by physicians for examining the condition of a patient’s heartbeat to detect if the condition is normal 
or irregular. Atrial fibrillation (AF) is a type of irregular heartbeat that occurs when the upper chambers of the 
heart (atria) beat out of coordination with the lower chambers (ventricles). The ECG  data30 used in this study 
are publicly available from the PhysioNet: The Research Resource for Complex Physiologic Signals. The data consist 
of ECG signals sampled at 300 Hz and classified by a group of experts into normal sinus rhythm, AF, alternative 
rhythm, and noise. The purpose of the creation of this challenging database was to call for the development of 
new methods for classifying these types of cardiac arrhythmias. Information about the number of participants in 
the recordings of normal rhythm, AF rhythm, and other rhythms is not available from the data  source31.

Gait in Parkinson’s disease data. The Gait in Parkinson’s Disease  database32 consists of time series of 
vertical ground reaction force in Newtons of gait dynamics from 93 patients with idiopathic PD and 73 healthy 
controls. This database is also publicly available from the PhysioNet: The Research Resource for Complex Physi-
ologic Signals. The data consist of the vertical ground reaction force (in Newtons) signals of the subjects as they 
walked at their usual, self-selected pace for approximately 2 minutes on level ground. The force was measured as 
a function of time with 8 sensors placed underneath each foot. The force signals of each of the 16 sensors placed 
under the two feet of each subject were digitized and recorded at 100 samples per second.

Time–frequency and time–space analysis
Instantaneous frequency. The instantaneous frequency (IF) of a non-stationary signal is a time-varying 
parameter that relates to the average of the frequencies f present in the signal as it evolves over time instants t33,34. 
The IF function estimates the IF of a signal at a sampling rate by computing the spectrogram power spectrum 
P(t, f) and estimating the IF as
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The power spectrum is a mathematical expression of the amount of the signal at a frequency f. For a periodic 
signal, peaks at the fundamental frequency and its harmonics are observed at the spectrum; for a quasiperiodic 
signal, peaks at linear combinations of related frequencies observed; and a chaotic signal yields broad band 
components to the spectrum. In practice, the exact solution for the power spectrum cannot be determined 
because a signal x(t) is not infinitely long but measured over a finite interval 0 ≤ t ≤ T . Therefore, the power 
spectrum needs to be numerically estimated. A method for estimating the power spectrum of a time series xk , 
k = 0, . . . ,N − 1 is described as follows.

The spectral density of a time series of length N can be approximated  as35

where �t is the sampling interval.
If the spectral value is calculated at f = j�f  , where �f = 1/(N�t) , and �t = 1 , then

which indicates the discrete Fourier transform (DFT), Xj , as

However, it was proved that the power spectrum estimate expressed in Eq. (3) is not properly  scaled35. Therefore, 
the estimate is modified as

in which

where wj , j = 0, . . . ,N − 1 , are the weights or coefficients of a window function (the Kaiser  window36 is applied 
in this study).

The estimate of Pj expressed in Eq. (5) using the fast Fourier transform (FFT) can be sequentially carried 
out as  follows35.

• Truncate the time series or pad with zeros so that N = 2n , where n is a positive integer.
• Weight the time series with a window function.
• Calculate the DFT of the weighted time series (wkxk) using the FFT.
• Calculate Pj using Eq. (5).

Spectral entropy. The spectral entropy (SE) of a signal is a measure of its spectral power  distribution33,34. 
The SE treats the normalized power distribution of the signal in the frequency domain as a probability distribu-
tion and calculates its Shannon entropy. The Shannon entropy in this context is known as the spectral entropy of 
the signal. Given a time–frequency power spectrogram P(t, f), the probability distribution at time t, 0 ≤ t ≤ T ; 
and frequency point m, m = 1, . . . ,N ; denoted as p(t, m), is

where f ∈ [0, fs/2] is specified in this study, and fs is the sampling frequency.
The spectral entropy at time t, denoted as H(t), is given as

Fuzzy recurrence plot. In the study of dynamical systems, a sequence of values in time can be transformed 
into an object in space. This transformation allows the sequence to be analyzed in space. Such space is called 
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the phase space. The object in the phase space is called the phase space set. The transformation of a sequence of 
values in time into an object in the phase space can be done using the time-delay  embedding37. The embedding 
dimension describes the space (such as a line, an area, or a volume) that contains the  object38. Time delay, which 
is also called lag, expresses the amount of offset in a time series. Mathematically, the phase-space reconstruction 
using time-delay embedding for a time series ( z1, z2, . . . , zI ) can be performed as yi = (zi , zi+φ , . . . , zi+(d−1)φ , 
i = 1, . . . , I − (d − 1)φ , where φ and d are time delay and embedding dimension, respectively.

In fuzzy  logic39, a fuzzy set is defined as a collection of distinct objects whose membership grades in the set 
are expressed with real numbers. In mathematic terms, let U be a universe of discourse and F a subset of U. The 
fuzzy set F is characterized by a fuzzy membership function µF(x) that maps each element x ∈ U  to the interval 
[0, 1]: µF(x) : U → [0, 1] . The real value of µF(x) is called the fuzzy membership grade of x in F. The notion of 
a fuzzy set can be expressed in the following three cases: 1) µF(x) = 0 if x is not totally in F, 2) µF(x) = 1 if x is 
totally in F, and 3) 0 < µF(x) < 1 if x is partially in F. Thus, the greater value of the fuzzy membership grade is, 
the more certain x is a member of F.

In cluster analysis, data points can be assigned to different groups or clusters. Points that are most similar to 
each other belong to the same cluster. Based on the concept of fuzzy sets, fuzzy clustering assigns the data points 
to all clusters with different degrees of fuzzy membership. In other words, the fuzzy membership value of a data 
point for a certain cluster indicates how positive the data point belongs to that cluster.

Now let X = (x1, . . . , xN ) ∈ R
Nm with xi ∈ R

m be a phase-space collection of a signal transformed by the 
time-delay embedding method, c a pre-defined number of clusters, V = {v1, . . . , vc} a set of clusters, and µ(xi , vq) , 
i = 1, . . . ,N , q = 1, . . . , c , fuzzy membership grades expressing the degrees of phase-space vectors xi belonging to 
cluster centers vq ∈ V . These fuzzy membership grades can be determined using the fuzzy c-means  algorithm40. 
An FRP, denoted by R̃ , is defined  as25

where µ(xi , xj) ∈ [0, 1] is the fuzzy membership of similarity between xi and xj.
The elements of an FRP, R̃(i, j) , i = 1, . . . ,N  , j = 1, . . . ,N  , can be inferred using three properties of fuzzy 

relations as follows. 

1. Reflexivity: 

2. Symmetry: 

3. Transitivity: 

As an example, to illustrate some difference in the visual display of an RP and an FRP, Fig. 1 shows a time series 
of 2000 points of the X-component of the Lorenz (chaotic)  system41, and its RP and FRP. The RP was constructed 
using the embedding = 3 , time delay = 1 , and a conventional value for the similarity threshold = 5% of the 
standard deviation of the signals. The FRP was constructed using the embedding = 3 , time delay = 1 , and num-
ber of clusters = 3 . The grayscale image of the FRP is much richer in texture than the binary image of the RP.

(9)R̃(i, j) = µ(xi , xj), i, j = 1, . . . ,N ,

(10)µ(xi , xi) = 1, i = 1, . . . ,N .

(11)µ(xi , vq) = µ(vq, xi), i = 1, . . . ,N , q = 1, . . . , c.

(12)µ(xi , xj) = max[min{µ(xi , vq),µ(xj , vq)}], q = 1, . . . , c.

Figure 1.  Recurrence of a dynamical system: (a) time series of the Lorenz X-component, (b) recurrence plot, 
and (c) fuzzy recurrence plot.
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Fuzzy recurrence image entropy. Entropy of a grayscale image is a statistical measure of randomness to 
characterize the texture of the image. As an FRP is a grayscale image, the entropy of an FRP image is defined as

where K = 256 , which is the number of gray levels of the FRP (obtained by converting real values of pixels in [0, 
1] to integers in [0, 255]), and pk is the probability associated with the intensity level k, k = 1, . . . ,K , obtained 
from the normalized histogram for the k-th bin.

Fuzzy recurrence entropy. Based on the definition of the non-probabilistic entropy of a fuzzy  set42, the 
entropy of an N × N FRP or fuzzy recurrence entropy that is a measure of the degree of uncertainty of recur-
rences of the reconstructed phase space of a signal is defined  as43

where µ(xi , xj) corresponds to R̃(i, j) defined in Eq. (9).

Time–frequency time–space long short-term memory networks
Based on LSTM  networks1,4,44, in which the proposed input time–frequency (TF) and time–space (TS) features 
are included, the architecture for a TF–TS LSTM block is graphically described in Fig. 2. This figure illustrates 
the flow of an input time series u = (u1, . . . ,uM) ∈ R

MQ through an LSTM layer, where M is the number of 
segments split from the original time series of length L, and Q the number of features. In this study, M = ⌈L/N⌉ , 
where N = 128 , ⌈⌉ denotes the ceiling function, and Q = 4 . The input at a time point is the concatenation of the 
four features extracted for the segment at the same time point, i.e., uτ = (Fτ1, Fτ2, Fτ3, Fτ4)

T , τ = 1, . . . ,M , 
where Fτ1 , Fτ2 , Fτ3 , and Fτ4 are the instantaneous frequency, spectral entropy, fuzzy recurrence image entropy, 
and fuzzy recurrence entropy extracted from segment uτ , respectively.

The learnable weights of an LSTM layer are the input weights, denoted as a , recurrent weights, denoted as r , 
and bias, denoted as b. The matrices A , R , and vector b are the concatenations of the input weights, recurrent 
weights, and bias of each component, respectively. The concatenations are expressed as

where i, f, g, and o denote the input gate, forget gate, cell candidate, and output gate, respectively.
The cell state at time step τ is defined as

where ◦ is the Hadamard product.
The hidden state at time step τ is given by

where σc is the state activation function that is usually computed as the hyperbolic tangent function (tanh).
At time step τ , the input gate ( iτ ), forget gate ( fτ ), cell candidate ( gτ ), and output gate ( oτ ) are defined as

(13)EFRI = −

K
∑

k=1

pk log2 pk ,

(14)EFR =

N
∑

i=

N
∑

j=1

−µ(xi , xj) log2 µ(xi , xj)− [1− µ(xi , xj)] log2[1− µ(xi , xj)],

(15)A = [ai , af , ag , ao]
T ,

(16)R = [ri , rf , rg , ro]
T ,

(17)b = [bi , bf , bg , bo]
T ,

(18)cτ = fτ ◦ cτ−1 + iτ ◦ gτ ,

(19)hτ = oτ ◦ σc(cτ ),

Figure 2.  TF–TS LSTM layer architecture.
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where σg denotes the gate activation function that usually adopts the sigmoid function.
A bidirectional LSTM (bi-LSTM)45 is an extension of traditional LSTM that can improve performance on 

sequence classification problems. Instead of being trained with one LSTM on the input time series, a bi-LSTM 
architecture is trained with both time directions simultaneously with hidden forward and backward layers. The 
first on the input time series as it is and the second on a reversed copy of the time series. This architecture learns 
bidirectional long-term dependencies between time steps of time series and therefore can provide additional 
context to the network and result in fuller learning on the data.

The procedures for obtaining data balance for training and testing sets, and the transformation of raw time 
series into TF and TS features for LSTM learning and classification are outlined in Fig. 3.

To obtain signals of the same length contained in both training and testing datasets, the histogram of the 
distribution of the lengths of the signals is observed to detect the majority length. Signals of lengths that are 
less than the majority are discarded, and those that are longer than the majority are split into segments of the 
majority length and the remaining samples of the signal are ignored if there are any. Creating signals of equal 
length is particularly useful for the training of the networks that breaks the data into mini-batches. In the same 
mini-batch, the training pads or truncates the signals to have the same length. However, it is known that the 
process of padding or truncating can reduce the performance of the networks because of the added or missed 
information caused by the padding or truncating, respectively. To obtain the data balance in each class for 
both training and testing, copies of the signals of the minority class are repeated to achieve the same size of the 
signals of the majority class. This step is described in Fig. 3a. The next step is to extract the TF features of the 
signals using the instantaneous frequency and spectral entropy and the TS features of the signals using the fuzzy 
recurrence image entropy and fuzzy recurrence entropy for training the networks (Fig. 3b). The same TF and 
TS features are extracted from the testing signals as the input for the trained TF–TS LSTM networks to carry 
out the classification task (Fig. 3c).

Performance measures
Let condition positive P be the total number of disease signals, condition negative N the total number of healthy 
control signals, true positive TP the number of disease signals correctly identified as disease, false positive FP 
the number of healthy control signals incorrectly identified as disease, true negative TN the number of healthy 
control signals correctly identified as healthy control, and false negative FN the number of the disease signals 
incorrectly identified as healthy control.

Accuracy (ACC ) is defined as

Sensitivity (SEN) is defined in this study as the portion of the disease signals that are correctly identified as 
having the condition:

(20)iτ = σg (aiuτ + rihτ−1 + bi),

(21)fτ = σg (af uτ + rf hτ−1 + bf ),

(22)gτ = σc(aguτ + rghτ−1 + bg ),

(23)oτ = σg (aouτ + rohτ−1 + bo),

(24)ACC =
TP + TN

P + N
.

Figure 3.  Procedure for classification of physiological time series with TF–TS LSTM: (a) from raw data to 
data balance in training and testing, (b) transformation of raw time series into time–frequency and time–space 
features, and (c) classification of testing data.
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Specificity (SPE) is the portion of the healthy control signals that are correctly identified as not having the disease:

Precision (PRE) is calculated as

F1 score is the harmonic mean of precision and sensitivity and calculated as

Results
Tables 1 and 2 list the tenfold cross-validation results of two physiological databases: ECG, and Gait in Parkinson’s 
Disease, respectively. For the ECG database, this experiment used normal sinus rhythm (5050 signals) and AF 
(738 signals) for binary classification. For the Gait in Parkinson’s Disease data, this study used the time series 
recorded from only one sensor under the left foot labeled as L5 on the database. The purpose of selecting the 
sensor data recorded at the L5 location was to compare with the work reported  in47, which used four sensors at 
L5, L7, R7, and R8 for the classification of gait patterns. The LSTM used in this study was the bi-LSTM (LSTM will 
be used as bi-LSTM subsequently). To extract the TF features, sampling frequency was set as 300 Hz. To extract 
the TS features, the embedding dimension = 1 , time delay = 1 , and number of clusters = 3 for computing the 
FRPs. The specifications of the FRP parameters were based on previous  studies25,43, which provided satisfactorily 
results and were not as sensitive for constructing FRPs as for  RPs25.

All TF and TS features were standardized to improve the network training and  testing46. For the LSTM 
specifications, the network layer with an output size = 100 , fully connected layer = 2 (two classes), followed by a 
softmax layer and a classification layer. Training options of the bi-LSTM were set as optimizer = ‘Adam’ (adaptive 
moment estimation), including L2 regularization factor, maximum number of epochs = 80 , minimum batch size 
= 150 , initial learning rate = 0.01 , and gradient threshold = 1.

For the ECG data, the TF–TS LSTM significantly outperformed conventional LSTM in terms of classification 
accuracy (58% and 94% for conventional LSTM and TF–TS LSTM, respectively), other statistical measures (sen-
sitivity, specificity, precision, and F1 score), and training time (3506 minutes and 1 minute for LSTM and TF–TS 
LSTM, respectively, where the time for computing the four features was excluded in the TF–TS LSTM training). 
The specificity (34%) is much lower than the sensitivity (83%) obtained from the conventional LSTM, while 
these two measures are much more balanced using the TF–TS LSTM (sensitivity = 91% and specificity = 96%).

(25)SEN =
TP

P
.

(26)SPE =
TN

N
.

(27)PRE =
TP

TP + FP
.

(28)F1 =
2TP

2TP + FP + FN
.

Table 1.  Ten-fold cross-validation metrics for ECG of classification of atrial fibrillation and normal sinus 
rhythm. LSTM = direct use of time series by bi-LSTM, TF–TS LSTM = use of time–frequency and time–space 
features of time series by bi-LSTM.

Method Sensors % ACC % SEN % SPE % PRE F1 Time (mins)

ECG of atrial fibrillation and normal sinus rhythm

LSTM 1 58.37± 0.01 82.86± 0.03 33.88± 0.09 55.62± 0.06 0.67± 0.02 3506± 19

TF–TS LSTM 1 93.77 ± 0.07 91.43± 0.05 96.12± 0.01 95.93± 0.01 0.94± 0.02 1± 0.11

Table 2.  Ten-fold cross-validation metrics for classification of gait of patients with Parkinson’s disease and 
healthy controls. LSTM = direct use of time series by bi-LSTM, TF–TS LSTM = use of time–frequency and 
time–space features of time series by bi-LSTM, and n/m = not mentioned.

Method Sensors % ACC % SEN % SPE % PRE F1 Time (mins)

Lee and  Lim12 8 77.33 81.10 65.48 n/m n/m n/m

Daliri13 16 91.20 91.71 89.92 n/m n/m n/m

Ertugrul et al.14 16 88.89 93.93 77.66 n/m n/m n/m

Acici et al.15 16 98.04 99.10 95.70 n/m n/m n/m

Zeng et al.47 4 96.99 96.77 97.26 n/m n/m n/m

LSTM 1 78.95± 0.03 100.00± 0.00 60.00± 0.10 69.23± 0.05 0.82± 0.04 111± 9.95

TF–TS LSTM 1 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 1± 0.00 < 1
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For the gait data, using the signals recorded from only one sensor, TF–TS LSTM provided perfect classification 
metrics (accuracy = 100% , sensitivity = 100% , specificity = 100% , precision = 100% , and F1 score = 1 ) with the 
training time of < 1 minute (the time for computing the four features was excluded). The use of conventional 
LSTM yielded the accuracy = 79% with 111 minutes for data training. Other five previous  methods12–15,47 that 
studied the same database used the number of sensors between 4 and 16 obtained accuracy rates between 77%12 
and 98%15 (standard deviations of classification results obtained from these five methods were not given in 
 literature47).

Discussion
Computer experiments have shown that TF–FS LSTM achieved very high performance in the classification task 
and saved tremendous training time in comparison with the conventional implementation of the conventional 
LSTM. As an example, Fig. 4 shows the contrast of the training processes of conventional LSTM and TF–TS 
LSTM with respect to the convergence of accuracy and the number of iterations. Not only the TF–TS LSTM out-
performed conventional LSTM, classification results of gait in Parkinson’s disease in terms of accuracy, sensitivity, 
specificity, precision, and F1 score obtained from the TF–TS LSTM are higher than those previously reported in 
literature. In particular, the TF–TS LSTM used the data recorded from only one sensor. The significant reduc-
tion in biomedical sensors to measure human physiological parameters in real time for disease detection has 
an implication for promising the user’s comfort and contributing to the low cost, simplicity, and portability in 
wearable sensor technology.

In this study, only the gait data recorded by one sensor located at L5 were used to compare with the other 
 work47 that included the data recorded by four sensors located at L5, L7, R7, and R8. The gait classification with 
the use of a single sensor located at L5 obtained from the proposed TF–TS LSTM outperformed the use of the 
four sensors for the classification obtained from the methods of phase space reconstruction, empirical mode 
decomposition, and neural  networks47. Tests of the TF–TS LSTM for the gait classification using data recorded 
from other single sensors were not carried out. However, the current comparison has shown the better per-
formance of the TF–TS LSTM. As the five  methods12–15,47, which were compared with the TF–TS LSTM using 

Figure 4.  Training processes of (a) bi-LSTM and (b) TF–TS bi-LSTM, using tenfold cross-validation of the 
ECG data.
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the gait data, were proposed and implemented by other authors, it would be difficult to fairly implement these 
methods for the classification of the ECG data without the provision of the source codes. However, it is shown 
that the test results obtained from the TF–TS LSTM are significantly higher than the LSTM using the two data-
sets, and the classification accuracy obtained from the LSTM using the gait data from only one sensor (79%) is 
higher than the result reported  in12 using the gait data from 8 sensors (77%).

Here the signal lengths were made to be the same length of the majority. In case, if the majority does not 
exist or the histogram has a uniform distribution, the signal lengths can be made to be equal to the length of 
the shortest signal. In general, signals of lengths that are shorter than the majority can be included for the clas-
sification. However, it has been mentioned earlier, creating signals of equal length can be more effective for the 
network training and testing. In practice, the recording of physiological signals that meet some standard length 
for testing is feasible because it is based on the majority.

As shown in Fig. 4, the high accuracy of the TF–TS LSTM training could be reached while the training of the 
LSTM with raw time series could not improve much in accuracy. Furthermore, the TF–TS LSTM requires much 
shorter time for training in comparison with the training of raw long time series. This is because it is trained 
with sequential features of the time series instead of the time series, where the length of the features is much 
shorter than that of the original data and the effectiveness of the standardized features is an important factor for 
improving the network performance during training.

Feature extraction can be related to dimensionality reduction by which multivariate data can be reduced to 
lower-dimensional space for more manageable data processing. The physiological time series used in this study 
are one-dimensional time series. On the contrary, these time series were split into equal segments from which the 
four features were extracted for learning and classification by the TF–TS LSTM. In other words, the one-dimen-
sional time series were transformed into much shorter sequences of 4 feature dimensions as shown in Fig. 2. The 
extracted features provide essential information of the data in time–frequency and time–space domains, which 
are intended to be complementary, informative, and non-redundant responses. Thus, the transformed data can 
facilitate the subsequent learning and leverage discriminative power of the sequential deep learning, leading to 
better class predictions. The results obtained in this study have shown the TF–TS LSTM outperformed other 
statistical classifiers, including SVMs and multilayer perceptron.

In summary, the finding is that training the LSTM network with raw time series produce poor classification 
results but training the network with TF and TS features extracted from the signals can both significantly enhance 
the classification performance and reduce the training time.

The Matlab-based TF–TS LSTM software for classification of physiological signals is designed to be easily 
utilized by biomedical and life science users who do not have technical knowledge in AI, signal processing, and 
general physics by following provided step-by-step instructions (Supplementary Note). In biomedical data, the 
problem of data imbalance is common, which can significantly prevent classifiers from achieving good results. 
The software suggests how to design a balance of class samples for training and testing datasets when minority 
classes exist.

Conclusions
An AI-based approach for improving the performance in detecting diseases using physiological signals have 
been presented and discussed. The proposed method takes advantages of information extracted from both 
frequency and space out of the temporal data for effective deep learning to increase the classification task and 
lower computational complexity. Although the method was developed for classifying time series in physiology, 
it can be readily applied to the classification of other biological and clinical signals, such as time series in gene 
 expression48,  neurology49, and  epidemiology50.

The AI-based method presented in this work was tested using the records obtained from a single-sensor 
measurement of gait in PD. The results suggest the method has potential to be able to reduce the need of using 
multiple sensors for recording physiological data, thus resulting in both cost-saving and comfort to the partici-
pants. Further tests of the method with other multiple-sensor data would be necessary to confirm the finding. 
Wearable sensors are useful devices for evaluating patient outcomes in clinical trials. However, the devices need 
to provide physical ease to participants so that they are prepared to wear them. Otherwise, the deployment of 
such tools will not be practically feasible, particularly when applying to the older adult ( > 50 years )  population51.

Software availability
MATLAB software, ECG data for AF and normal sinus rhythm, and Supplementary Note for running the ECG 
data used in this paper are publicly available at the author’s personal homepage: https:// sites. google. com/ view/ 
tuan-d- pham/ codes under the title “TF–TS LSTM”.
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