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Mitochondrial functions and telomere functions have mostly been studied independently.
In recent years, it, however, has become clear that there are intimate links between
mitochondria, telomeres, and telomerase subunits. Mitochondrial dysfunctions cause
telomere attrition, while telomere damage leads to reprogramming of mitochondrial
biosynthesis and mitochondrial dysfunctions, which has important implications in
aging and diseases. In addition, evidence has accumulated that telomere-independent
functions of telomerase also exist and that the protein component of telomerase TERT
shuttles between the nucleus and mitochondria under oxidative stress. Our previously
published data show that the RNA component of telomerase TERC is also imported
into mitochondria, processed, and exported back to the cytosol. These data show a
complex regulation network where telomeres, nuclear genome, and mitochondria are
co-regulated by multi-localization and multi-function proteins and RNAs. This review
summarizes the connections between mitochondria and telomeres, the mitochondrion-
related functions of telomerase subunits, and how they play a role in crosstalk between
mitochondria and the nucleus.

Keywords: mitochondria, telomere, telomerase, TERT, TERC, aging

INTRODUCTION

The aging field has seen a dramatic expansion in the last three decades with the discovery that
it is controlled, at least to some extent, by evolutionally conserved pathways (Kenyon et al.,
1993). Nine hallmarks of aging have since been postulated. The primary causal hallmarks are
genomic instability, telomere damage, and epigenetic alterations, which are partially overlapped or
intertwined with each other (Lopez-Otin et al., 2013). For example, telomere damage also leads to
genomic instability (Fumagalli et al., 2012; Hewitt et al., 2012). Another hallmark is mitochondrial
dysfunction, which is also closely related to genomic instability, as cells have two genomes: the
nuclear genome and the mitochondrial genome. In addition, mitochondria are where the majority
of intracellular reactive oxygen species (ROS) are produced (Wallace, 2005). The free radical theory
of aging suggests that ROS cause oxidation damage in both mitochondrial DNA (mtDNA) and
nuclear DNA that leads to accumulation of mutations and eventually aging (Harman, 1956). It
is well known now that the theory is oversimplified and is only part of the story, as ROS may
also activate compensatory pathways that may negate their deleterious effects (Yee et al., 2014;
Wang and Hekimi, 2015).
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Of all the attempts to decelerate aging, caloric restriction (CR)
appears to be the only one that has an effect on most model
species (Madeo et al., 2019). In the nucleus, CR upregulates
DNA repair and ameliorates telomere erosion (Um et al.,
2003; Wang C. et al., 2010; Szafranski and Mekhail, 2014). In
mitochondria, it increases antioxidant functions and lowers ROS
production (Lopez-Torres et al., 2002; Ruetenik and Barrientos,
2015). Subsequent studies showed that NAD+/sirtuin pathways
play an important role in CR (Michan, 2014). SIRT1 and SIRT3
expression is upregulated by CR, and SIRT1 has been shown to
be essential for CR mediated lifespan extension (Chen et al., 2008;
Palacios et al., 2009; Mercken et al., 2014). In mammals, activation
of SIRT1 stimulates mitochondrial biogenesis, and SIRT3
regulates CR-mediated metabolic responses by deacetylating
proteins involved in mitochondrial functions (Hebert et al., 2013;
Tang, 2016). In addition to NAD+/sirtuin pathways, AMPK-
mTOR signaling has been shown to mediate the protective effects
of CR in aging kidneys (Dong et al., 2017). However, both in
yeast and mouse livers, CR and inhibition of mTOR pathway
with rapamycin affect distinct metabolites, suggesting different
mechanisms (Yu et al., 2015; Choi et al., 2017). Another pathway
that is involved in the CR effects is the insulin/IGF-1 pathway.
CR induces a reduction in both insulin and IGF-1 levels in
most animals, and mice with disruption of the insulin signaling
pathway have delayed aging biomarkers and increased lifespan
(Argentino et al., 2005; Selman et al., 2008). However, it should
be noted that the CR effect on IGF-1 levels is not universal. No
effect of long-term CR on human IGF-1 levels has been observed
(Fontana et al., 2008). These data suggest that the mechanism of
CR is more complex than the few known signaling pathways. For
mammals, exercise also has a generally beneficial effect against
aging, and shares many molecular pathways with CR (Robinson
et al., 2017; Escobar et al., 2019).

These discoveries together show that aging is regulated by
multiple cellular processes that are interconnected and multiple
organelles that communicate with each other. Stress–response
pathways may be activated or upregulated during aging as a
protective compensatory mechanism (Walker et al., 2006; Loerch
et al., 2008). In this review, we will focus on mitochondrial
dysfunction and telomere damage, the two aging hallmarks, and
the two organelles where these processes occur: mitochondria
and the nucleus.

Telomeres are structures with repetitive nucleotide sequences
and particular binding proteins at the ends of eukaryotic
chromosomes (Greider, 1991; de Lange, 2005). These structures
are carefully maintained to safeguard genomic stability. In most
human somatic cells that do not express telomerase, the enzyme
capable of extending telomere DNA, progressive shortening of
the DNA occurs with each cell division, which eventually leads
to replicative senescence (Harley et al., 1990; Shay, 2016). In
humans, telomere lengths in blood show a correlation with health
and lifespan in individuals aged 60 years or older (Cawthon et al.,
2003). However, it has also been shown that the percentage of
short telomeres rather than the average telomere length is what
matters in predicting lifespan (Vera et al., 2012). Telomerase is
a holoenzyme that adds telomere repeat sequence to the 3′-end
of telomeres (Shay and Wright, 2019). It is a ribonucleoprotein

with an RNA subunit TERC and a reverse transcriptase enzymatic
subunit TERT (Feng et al., 1995; Nakamura et al., 1997; Shay
and Wright, 2019). Interestingly, human TERC is expressed in
most normal human cells, but TERT is not detected in most,
suggesting that TERC may have functions other than the template
for telomere extension (Kim et al., 1994; Feng et al., 1995). It
has now been reported that telomerase-independent functions
of TERC do exist. They include inhibition of apoptosis in
immune cells, protection of neuron cells from oxidative stress,
and enhancement of cellular inflammatory responses (Gazzaniga
and Blackburn, 2014; Eitan et al., 2016; Liu et al., 2019). TERT,
however, is expressed in most cancer cells, some adult stem cells
and some proliferating cells such as human T cells and B cells
(Kim et al., 1994; Hiyama et al., 1995). It is also expressed in
early embryos, but the expression is turned off in most somatic
cells (Wright et al., 1996). In addition, expression in several non-
dividing cells such as neurons and cardiac myocytes has been
reported and telomere-independent roles in protecting these cells
from oxidative damage and other stresses have been proposed
(Kang et al., 2004; Richardson et al., 2012; Iannilli et al., 2013).
The expression pattern of TERT is also different in rodents
from that in humans. For example, rodents continue to express
TERT in several tissues throughout life (Golubovskaya et al.,
1997). These different patterns may have implication in cancer
development in long-lived mammals such as humans. The sub-
nuclear localization of TERT protein, the localization of the TERT
gene, and the 3D interaction of telomeres with other sections of
the genome and the nuclear envelope all appear to play a role in
fine tuning the timing and functions of telomerase and telomeres
(Wood et al., 2014, 2015; Robin et al., 2015).

Deletion of either TERT or TERC in mice results in a
complete loss of telomerase activity, shortens the life span of
late generation mice, reduces their stress-responding capacity,
and increases spontaneous malignancies in highly proliferative
tissues as a consequence of chromosomal instability (Rudolph
et al., 1999; Yuan et al., 1999). The appearance of these
tumors is consistent with the finding that telomerase is not
required for oncogenic transformation (Blasco et al., 1997).
However, these late-generation telomerase-deficient mice are
more resistant to multi-stage skin carcinogenesis, suggesting that
for cell types that are less sensitive to chromosomal instability
induced by telomere loss, telomerase activity may still be a
target for cancer therapy (Gonzalez-Suarez et al., 2000). TERT
overexpression has been shown to increase the maximum life
span of mice up to 10% and reduce the incidence of certain age-
related degenerative diseases (Gonzalez-Suarez et al., 2001, 2005).
However, mice overexpressing TERT are also more susceptible
to both induced and spontaneous tumorigenesis, as a result of
TERT driving cell proliferation (Gonzalez-Suarez et al., 2001,
2005). It should be noted that TERC expression is limiting for
telomere maintenance, as terc+/− heterozygotes but not tert+/−

heterozygotes are deficient in telomere elongation (Chiang et al.,
2004). Overexpressing TERT but not TERC may not increase
the total telomerase activity, as the overexpressed TERT may not
have TERC to form telomerase with. Whether the effect of TERT
overexpression is telomerase dependent remains to be examined.
Attempts have been made by overexpressing TERT in the terc−/−

Frontiers in Cell and Developmental Biology | www.frontiersin.org 2 November 2019 | Volume 7 | Article 274

https://www.frontiersin.org/journals/cell-and-developmental-biology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-07-00274 November 4, 2019 Time: 15:41 # 3

Zheng et al. Mitochondria, Telomeres and Telomerase

background (Cayuela et al., 2005). However, the results are not
direct answers to the question, because TERC deletion itself has
telomerase-independent effects on cells and animals.

Recent discoveries have also shown that telomere maintenance
is not simply regulated by nuclear events. Nuclear processes
are also tightly regulated by signals coming from outside of the
nucleus. One of the best examples is the forward and backward
trafficking of proteins and metabolites, and signaling between
mitochondria and the nucleus. These co-regulations could be
temporal or under specific conditions. For example, nuclear
localization of mitochondrial TCA cycle enzymes has been shown
to be a critical step in mammalian zygotic genome activation
(Nagaraj et al., 2017). Telomere maintenance, subcellular
localization of telomerase subunits, and mitochondrial functions
also share some intimate links, which are reviewed in the
following sections.

MITOCHONDRIAL DYSFUNCTIONS
INDUCE TELOMERE DAMAGE

Mitochondria are the power plants of eukaryotic cells and also
the main site of ROS production. A significant portion of the
electrons that pass from reduced substrates to oxygen in the
mitochondrial respiratory chain leak to form superoxide (Raha
and Robinson, 2000). Superoxide, although relatively unreactive
itself, is the parent of a number of damaging ROS (Beckman
and Koppenol, 1996). Whether a cell experiences oxidative stress
is dependent on the balance between ROS production, their
removal, and the activities of the damage repair pathways.
Changes that occur to mitochondrial activity may significantly
increase ROS levels and cause oxidative stress (Korshunov et al.,
1997; Figure 1). High oxidative stress leads to breakage of
single and double strand DNA (Sohal et al., 1994). It also
increases the rate of telomere shortening, as telomeres are rich in
guanine and more susceptible to oxidative damage (von Zglinicki
et al., 1995; Oikawa and Kawanishi, 1999; Figure 1). H2O2 plus
Cu2+ induces 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG)
formation more efficiently in telomere sequences than in non-
telomere sequences, suggesting that the sequence context may
also play a role in the oxidation (Oikawa and Kawanishi, 1999).
Treatment of human fibroblasts with hydrogen peroxide leads
to an acceleration of telomere shortening in these proliferating
cells, while a reduction of intracellular peroxide activities by
alpha-phenyl-t-butyl-nitrone decreases the shortening rate (von
Zglinicki et al., 2000; Figure 1). Another antioxidant MitoQ
that is targeted specifically to mitochondria also shows a similar
decelerating effect on telomere shortening, while mitochondrial
depolarization in mouse embryos with FCCP [carbonyl cyanide-
4-(trifluoromethoxy)phenylhydrazone] treatment leads to an
increase in ROS production and telomere shortening, suggesting
a connection between mitochondrial dysfunctions and telomere
shortening (Liu et al., 2002; Saretzki et al., 2003).

Patients with primary mitochondrial disorders (such as
diseases caused by mutations in mitochondrial genome)
and secondary dysfunctions (such as metabolic diseases,
neurodegenerative diseases, and others) also have shorter

FIGURE 1 | The crosstalk between mitochondria and telomeres.
Mitochondrial defects increase ROS release, which has a damaging effect on
telomeres (Sohal et al., 1994; von Zglinicki et al., 1995, 2000; Korshunov
et al., 1997; Oikawa and Kawanishi, 1999; Liu et al., 2002; Saretzki et al.,
2003). Antioxidant treatment ameliorates the negative effect (Serra et al.,
2003; Stauffer et al., 2018). Telomere damages lead to mitochondrial
biosynthesis reprogramming and mitochondrial dysfunction through different
signaling pathways (Simpson and Russell, 1998; Biswas et al., 2005; Iwabu
et al., 2010; Passos et al., 2010; Guo et al., 2011; Sahin et al., 2011;
Scarpulla, 2011; Correia-Melo et al., 2016).

telomeres compared to healthy controls (Gonzales-Ebsen
et al., 2017). Studies done on highly stressed women and
people with major depressive disorders also show a correlation
between mitochondrial dysfunction, oxidative stress, and
telomere shortening (Epel et al., 2004; Simon et al., 2006;
Lindqvist et al., 2015).

Cells, however, possess their own machineries for ROS
detoxification. For example, superoxide is scavenged by
cytochrome c, and superoxide dismutases in the matrix
(MnSOD), cytoplasm (Cu/Zn SOD), and the extracellular space
(EC-SOD) (Raha and Robinson, 2000; Serra et al., 2003). Mice
with higher superoxide dismutase activity have longer telomeres
(Stauffer et al., 2018). Induction of an extracellular superoxide
dismutase in the presences of mitochondrial dysfunctions has
been shown to mitigate the effects of oxidation stress and slow
telomere shortening (Serra et al., 2003).

TELOMERE DAMAGE LEADS TO
MITOCHONDRIAL BIOSYNTHESIS
REPROGRAMMING AND
MITOCHONDRIAL DYSFUNCTIONS

Among all the organelles, mitochondria probably are the most
sensitive to environmental cues, and can quickly change their
functional state and energy output to meet the needs of the
cells. The number of mitochondria in a cell is controlled by
the balance between mitochondrial biosynthesis and mitophagy.
Mitochondrial biosynthesis itself involves multiple organelles and
is the concerted result of mtDNA replication, transcription, and
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mitochondrial RNA (mtRNA) translation within mitochondria,
and the import of macromolecules (such as proteins and
RNAs) and smaller molecules (such as lipids) into mitochondria.
Mitochondrial biosynthesis is regulated by the PGC-1 family
of coactivators that consist of PGC-1α, PGC-1β, and PRC
(Scarpulla, 2011). Expression of these coactivators is modulated
by extracellular signals that control metabolism, differentiation,
or cell growth (Scarpulla, 2011). Post-translational modification
by energy sensors such as AMPK and SIRT1 has also been
shown to modulate their activities (Iwabu et al., 2010; Scarpulla,
2011). In addition, mitochondrial biosynthesis responds to
mitochondrial functional states. Low mitochondrial membrane
potential in damaged mitochondria affects mitochondrial intake
of cytosolic Ca2+, which changes cytosolic Ca2+ levels and
Ca2+ signaling in the cytosol, consequently changing the gene
expression pattern in the nucleus and promoting mitochondrial
biosynthesis (Simpson and Russell, 1998; Biswas et al., 2005).

In 2009, a study in mice showed that short telomeres reduce
mitochondrial membrane hyperpolarization and Ca2+ influx in
β-cells (Guo et al., 2011; Figure 1). A possible mechanism for
short telomeres to affect mitochondrial functions is through
DNA damage responses (DDRs). Overexpression of a dominant-
negative telomere-binding protein TRF2 induces DDR, which
activates p21, and in turn induces mitochondrial dysfunction and
increases ROS production through GADD45-MAPK14-GRB2-
TGFBR2-TGFβ signaling cascade. These ROS induce more
DNA damage, maintaining an ongoing DDR. This vicious loop
locks the cells in a deep senescence state (Passos et al., 2010;
Figure 1). In a 2011 study, p53 and PGC coactivators were
identified as the master regulators that link telomere dysfunction
and mitochondrial compromise (Sahin et al., 2011). Telomere
dysfunction activates p53 and the activated p53 binds PGC-1α
and PGC-1β promoters, suppressing their expression and in turn
mitochondrial biosynthesis (Sahin et al., 2011; Figure 1). More
importantly, forced expression of PGC-1α or deletion of p53
in the setting of telomere dysfunction restores mitochondrial
respiration (Sahin et al., 2011). In addition, the ATM, Akt,
and mTORC1 phosphorylation cascade has been shown to
integrate signals from DDR to PCG-1β-dependent mitochondrial
biogenesis, contributing to DDR activation by ROS, which
eventually leads to cellular senescence (Correia-Melo et al., 2016).
mTORC1 inhibition or PCG-1β deletion reduces mitochondrial
content and prevents senescence in aging mouse livers (Correia-
Melo et al., 2016). It appears that telomere damage or nuclear
DNA damage in general could affect mitochondrial functions and
mitochondrial biosynthesis through multiple signaling pathways.

TERT SHUTTLES BETWEEN THE
NUCLEUS AND MITOCHONDRIA UNDER
OXIDATIVE STRESS

Recent discoveries have also shown that there are extra-nuclear
pools of telomerase protein TERT. The functions of TERT outside
of the nucleus were originally defined as telomere independent
functions. It, however, has become abundantly clear that these
functions also play important roles in telomere maintenance,

genomic stability, and the crosstalk between the nucleus and
mitochondria. In 2004, an immunohistochemical study showed
that in TERT-positive cells, TERT could not only be detected
in the nucleus, but also occasionally in the cytoplasm (Yan
et al., 2004). It was later shown that in fully differentiated
neurons, cytoplasmic TERT interacts with the messenger RNA
(mRNA) of the cyclin kinase inhibitor p15INK4B, suppressing
its translation (Iannilli et al., 2013). Under stress conditions,
the mRNA is released and p15NK4B protein is translated as a
pro-survival response (Iannilli et al., 2013). In endothelial cells,
continuous cultivation results in an increase of endogenous ROS
accompanied by mtDNA damage and export of TERT from the
nucleus to the cytoplasm (Haendeler et al., 2004; Figure 2).
Treating the cells with the antioxidant N-acetyl cysteine (NAC)
decreases the nuclear export and delays the onset of replicative
senescence (Haendeler et al., 2004). A nuclear export signal (NES)
motif that interacts with nuclear export receptor CRM1/exportin
has been identified at the C-terminus of TERT (Seimiya et al.,
2000; Haendeler et al., 2003; Figure 2). The export requires
an active nuclear Ran GTPase and is inhibited by binding
of 14-3-3 proteins to TERT (Seimiya et al., 2000; Haendeler
et al., 2003). Under oxidative stress, TERT nuclear export is
regulated by phosphorylation. Src kinase phosphorylates TERT
on tyrosine 707, which induces TERT nuclear export and is
reversed by a protein tyrosine phosphatase Shp-2 (Haendeler
et al., 2003; Jakob et al., 2008; Figure 2). A mitochondrial
localization sequence at the N-terminus of TERT has also been
identified (Santos et al., 2004; Haendeler et al., 2009). In Hela
cells that express endogenous telomerase and in NHF primary

FIGURE 2 | Telomerase-independent trafficking and functions of TERT. Under
stress conditions, TERT is exported out of the nucleus and imported into
mitochondria, where it may have a protective role (Seimiya et al., 2000;
Haendeler et al., 2003, 2004, 2009; Santos et al., 2004; Yan et al., 2004;
Jakob et al., 2008; Maida et al., 2009; Kovalenko et al., 2010; Sharma et al.,
2012; Singhapol et al., 2013; Miwa et al., 2016; Green et al., 2019).
Phosphorylation by Src and dephosphorylation by Shp-2 regulate TERT
nuclear export (Haendeler et al., 2003; Jakob et al., 2008). The NES motif of
TERT interacts with the nuclear export receptor CRM1/exportin, which is
inhibited by 14-3-3 binding (Seimiya et al., 2000; Haendeler et al., 2003).
Import of TERT into mitochondrial depends on a N-terminal MTS, TOM20 and
TOM40 translocases at the outer membrane and TIM23 translocase at the
inner membrane (Haendeler et al., 2009; Kovalenko et al., 2010; Sharma
et al., 2012; Green et al., 2019).
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fibroblasts, an exogenous TERT–EGFP has been detected in
mitochondria (Santos et al., 2004). NHF fibroblasts expressing
TERT also display higher level of mtDNA damage (Santos et al.,
2004). However, other studies have shown that overexpression of
TERT has a protective effect on mtDNA integrity under oxidative
stress (Haendeler et al., 2004, 2009). It should be noted that
the nuclear export of endogenous TERT was detected both in
the endothelial cells and HEK293 cells, but the mitochondrial
localization in these studies was examined with overexpression
of an exogenous TERT. The discrepancy between the effects of
TERT overexpression on mtDNA integrity could be the results
of different TERT overexpression levels or different growth
conditions of the cells. The sub-mitochondrial localization of
TERT was later shown to be in the mitochondrial matrix with
another ectopically overexpressed TERT (Figure 2). Interaction
of TERT with TOM20 and TOM40 at the mitochondrial outer
membrane and TIM23 at the inner membrane has also been
observed, suggesting an active mitochondrial import mechanism
(Haendeler et al., 2009; Figure 2). In the mitochondrial matrix,
TERT binds to mtDNA at ND1 and ND2 coding regions,
and protects mtDNA against ethidium-bromide treatment
(Haendeler et al., 2009). In addition, it has been shown that
mitochondrion-targeted TERT has the most protective effect
on H2O2-induced apoptosis (Haendeler et al., 2009). In a 2010
study, mutant TERT proteins that are disrupted in the NES but
retain the enzymatic activity were used to better understand the
biological effects of TERT shuttling (Kovalenko et al., 2010).
The mutant failed to immortalize cells compared to its wild-type
counterpart. Overexpression of the mutant also has deleterious
effect on mitochondrial functions and resulted in higher levels
of mitochondrial ROS, damage in telomeric and extratelomeric
DNA, and premature senescence in fibroblasts (Kovalenko et al.,
2010). Even though the mutant is catalytically active in a cell-free
extract, it failed to extend telomeres in the cell (Kovalenko et al.,
2010). It is possible that the NES region is somehow involved in
telomere maintenance in the cell. Another possibility is that the
mitochondrial dysfunction caused by the mutant expression has
a negative effect on telomere that outweighs the positive effect of
an active telomerase. However, it remains to be answered why
expression of the nucleus-only mutant in telomerase negative
cells has a negative effect on mitochondrial functions. It is
possible that nuclear gene expression pattern is affected by the
damage in telomeric and extratelomeric DNA caused by the
mutant expression, hence affecting mitochondrial function.

In 2009, the RNA component of mtRNA processing
endoribonuclease (RMRP) was shown to interact with TERT
and form a complex with RNA polymerase activity in vitro
(Maida et al., 2009). However, whether this enzymatic activity
exists in mitochondria in vivo remains to be examined. In
2012, endogenous TERT was detected in mitochondria in
HEK293 cells (Sharma et al., 2012; Figure 2). In the same
study, an ectopically overexpressed TERT was shown to interact
with mitochondrial tRNAs, RMRP, and 5.8S rRNA (Sharma
et al., 2012). It was also shown that in a cell-free extract,
TERT functions as a TERC-independent reverse transcriptase,
using mitochondrial tRNAs as templates (Sharma et al., 2012).
However, whether the protein is involved in synthesis of mtDNA

in vivo remains unanswered. In an attempt to understand the
biological function of TERT in the cell, fibroblasts untransfected
or stably expressing WT or mutant TERT [with mutations in
the mitochondrial targeting sequence (MTS)] that is catalytically
active in the nucleus and proficient in cellular immortalization,
but unable to enter mitochondria were compared (Sharma et al.,
2012; Green et al., 2019). The results, however, only suggest
that mitochondrial localization of an ectopically overexpressed
TERT positively affects mitochondrial function and inhibits
H2O2-induced autophagy, but not that lack of TERT in the
mitochondria negatively affects mitochondrial function and
activates H2O2-induced autophagy.

In cancer Hela and MCF7 cells, export of endogenous TERT
from the nucleus and import of TERT into mitochondria has
also been observed after H2O2 treatment (Singhapol et al.,
2013). The nuclear TERT exclusion lasts up to several days after
a single bolus dose of H2O2, and positive correlation of the
exclusion and the protection effect against nuclear DNA damage
has been observed (Singhapol et al., 2013). Overexpression of
the mitochondrion-localized TERT, but not the nucleus-localized
TERT, has a protective effect on nuclear DNA damage and
apoptosis after H2O2 treatment (Singhapol et al., 2013). These
results suggest that cancer cells use nuclear exclusion and
mitochondrial targeting of TERT to protect themselves from
nuclear DNA damage and apoptosis.

In mouse brains, TERT expression decreases with age while
the release of ROS from mitochondria increases (Miwa et al.,
2016). Dietary restriction (DR) leads to an accumulation of
mitochondrial TERT that correlates to decreased ROS production
and improved cognition (Miwa et al., 2016). Rapamycin
treatment has a similar effect on mitochondrial TERT level and
ROS release as DR does. The beneficial effect of rapamycin on
mitochondrial functions is absent in the brains of tert−/− mice
(Miwa et al., 2016). Rapamycin-induced shuttling of TERT out of
the nucleus is dependent on Src kinase, and a Src kinase inhibitor
bosutinib blocks the rapamycin effect of ROS reduction (Miwa
et al., 2016). These results again suggest that mitochondrial TERT
has a protective effect on mitochondrial functions in the mouse
brain and in cellular models. Even though it was not specified in
this study what kind of brain cells this process occurs, a previous
paper by the same group showed that TERT is expressed in mouse
and human neurons and microglia cells, but not in astrocytes
(Spilsbury et al., 2015).

In conclusion, mitochondrial localization of TERT is a
cell type-specific event that protects the cells from oxidative
stress. What is the exact function of mitochondrion-localized
TERT within the mitochondrial matrix, however, remains to
be elucidated. Whether the mitochondrial pool of TERT is
from the nucleus also remains to be examined. Src activity has
been shown to be involved in the nuclear export of TERT,
but in mitochondria, it has been proposed to be involved in
its degradation (Haendeler et al., 2003; Buchner et al., 2010).
These data suggest that TERT exported from the nucleus is
mostly phosphorylated but TERT imported into mitochondria
is probably not. That the mutations in NES and those in MTS
have different effects on TERT’s capacity to immortalize cells
also suggest that TERT mitochondrial import may not be strictly
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downstream of TERT nuclear export (Kovalenko et al., 2010;
Sharma et al., 2012; Green et al., 2019). More studies are needed
to understand this part of trafficking.

MITOCHONDRIAL LOCALIZATION AND
PROCESSING OF TERC

Mitochondria import not only nucleus-encoded proteins but
also RNAs from the cytosol. These RNAs include tRNAs and
other non-coding RNAs (Mercer et al., 2011). Studies on
mtRNA import started as early as 1967, and the first report
was about nucleus-encoded tRNAs in the mitochondria of
Tetrahymena pyriformis (Suyama, 1967). In the following years,
more evidence accumulated. In 1988, it was shown in bean
Phaseolus vulgaris, four mitochondrial tRNA(Leu) are encoded
in the nuclear genome, and that these tRNAs are competent
in protein translation even though they have different post-
transcriptional modification from their cytosolic counterparts
(Marechal-Drouard et al., 1988). It was later discovered that
mitochondrial tRNA import also occurs in both Trypanosoma
brucei and Saccharomyces cerevisiae (Mottram et al., 1991;
Rinehart et al., 2005). In 2008, studies on mammals showed
that both rat and human mitochondria also import tRNAs by
a mechanism distinct from protein import (Rubio et al., 2008).
In 2009, microRNAs that are potentially involved in apoptosis
regulation were identified in rat liver mitochondria (Kren et al.,
2009). In another study, microRNAs were shown to directly
enhance mitochondrial translation during muscle differentiation
(Zhang et al., 2014).

A mitochondrial intermembrane space (IMS) protein
PNPASE was later shown to be directly involved in regulating
mtRNA import and a small stem-loop structure on the imported
RNAs has been identified as a possible import signal (Wang G.
et al., 2010, 2012). TERC also possesses such a stem loop
structure, and was shown to be imported into mitochondria,
processed within mitochondria to a smaller product TERC-53,
and then exported back to the cytosol (Cheng et al., 2018;
Figure 3). A previous study on mitochondrial TERT localization
also explored the possibility of mitochondrial localization of
TERC (Sharma et al., 2012). However, only RT-PCR was used
to examine the mitochondrial fraction and no product was
obtained. We have also done the RT-PCR and only primers that
anneal to the processed TERC fragment could amplify the RNA
(Cheng et al., 2018). The import of TERC into mitochondria is
also regulated by mammalian PNPASE that unlike its protozoan
counterparts does not possess a ribonuclease activity (Liu
et al., 2017; Cheng et al., 2018). Instead, processing of TERC
is performed by a mitochondrial IMS protein RNASET2 (Liu
et al., 2017; Cheng et al., 2018; Huang et al., 2018). RNASET2
is a protein of multi-localization. It has been shown to be also
localized in the lysosomes (Luhtala and Parker, 2010). Even
though the RNASET2 proteins in most other species have a
preference for lower pH, mammalian RNASET2 and a RNASET2
enzyme in Arabidopsis thaliana RNS2 that is localized to
endoplasmic reticulum (ER) have very low activities at lysosomal
pH of 5.0, indicating adaptation of the protein activities to their

FIGURE 3 | Telomerase-independent trafficking and functions of TERC. TERC
is imported into mitochondria, processed to TERC-53, and then exported
back to the cytosol where it inhibits nuclear translocation of GAPDH (Luhtala
and Parker, 2010; Hillwig et al., 2011; Liu et al., 2017; Cheng et al., 2018;
Huang et al., 2018). Cytosolic TERC-53 relays the signal of mitochondrial
defects to the nucleus and is involved in cellular senescence and organismal
aging. Nuclear TERC can also bind directly to the promoter regions and
upregulate transcription of genes that are involved in inflammatory response
(Liu et al., 2019).

localizations (Luhtala and Parker, 2010; Hillwig et al., 2011;
Liu et al., 2017).

Interestingly, the majority of TERC-53 has been detected in
the cytosol instead of mitochondria, and the cytosolic levels of
TERC-53 are regulated by mitochondrial functions but have no
direct effect on mitochondria (Cheng et al., 2018; Figure 3). The
following studies showed that TERC-53 functions as a signaling
molecule, relating the functional states of mitochondria to the
nucleus, possibly by inhibiting GAPDH nuclear translocalization
(Zheng et al., 2019). TERC-53 itself does not affect and is
independent of telomerase activity (Zheng et al., 2019). The
whole process of TERC-53 production and function has been
shown to be involved in cellular senescence and organismal aging
(Zheng et al., 2019; Figure 3).

Unlike TERT that is not expressed in most tissues, human
TERC is expressed in most tissues (Kim et al., 1994; Feng
et al., 1995). Its functions are most likely broader than those
of TERT. Like TERT, whether there is a specific function of
TERC within mitochondria and if so, what the function is,
however, remains to be fully elucidated. Telomerase-independent
functions of TERC have been reported before. Overexpression of
telomerase-inactive TERC protects stimulated CD4 T cells from
dexamethasone-induced apoptosis, while TERC knockdown
but not TERT knockdown induces apoptosis without causing
telomere shortening or DDR (Gazzaniga and Blackburn, 2014).
In motor neuron cells, overexpression of an alternative TERC
(alTERC) protects the cells from oxidative stresses without
altering TERT protein level or telomerase activity (Eitan et al.,
2016). These observations still await mechanistic characterization
and whether mitochondria are directly involved or not remains
to be examined. A recent study has revealed another telomerase-
independent function of TERC and a new mechanism by which
TERC promotes an inflammatory response (Liu et al., 2019).
However, in this case, mitochondria are not directly involved.
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TERC was shown to enhance the expression and release of
inflammatory cytokines by directly binding to the promoters of
the genes encoding proteins that are involved in activation of
the NF-κB pathway (Liu et al., 2019; Figure 3). These results
again suggest that TERC has different functions at different
locations within the cell and that there are different mechanisms
of telomerase-independent functions.

CONCLUDING REMARKS

It has now become clear that the signaling between mitochondria
and the nucleus is a complex network of events with proteins and
RNAs as additional signaling molecules. There are lessons to be
learned from the studies on mitochondria, telomeres, telomerase
subunits, and aging in general. Aging does not start from a
single trigger. It is a process involving multiple organelles within
a cell and multiple organs in multicellular organisms. There
are big variations between cell types and species, and changes
are both spatial and temporal, as shown by the expression and
trafficking of TERT and TERC. Multi-localization of biological
molecules could be involved in co-regulation of processes in

different cellular compartments. Similar proteins in different
species do not necessarily have similar functions, and same
biological molecules in different cellular compartments also
do not necessarily have similar functions. Fine tuning of the
complex regulation networks plays big roles in normal aging
of multicellular organisms, and this fine tuning includes both
positive and negative feedbacks that are not necessarily linear
events as cells and animals age.
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