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Abstract: Deuterium oxide (D2O) has been reported to be active toward various in vitro cell lines in
combination with phytochemicals. Our objective was to describe, for the first time, the effect of D2O
on the proliferation of hepatic stellate cells (HSCs). After D2O treatment, the p53-cyclin-dependent
kinase (CDK) pathway was stimulated, leading to inhibition of the proliferation of HSCs and an
increase in the [ATP]/[ADP] ratio. We also evaluated the role of aquaporin (AQP) 11 in activated
HSCs. We found that D2O treatment decreased AQP11 expression levels. Of note, AQP11 levels
elevated by a genetic approach counteracted the D2O-mediated inhibition of proliferation. In addition,
the expression levels of AQP11 negatively correlated with those of p53. On the other hand, cells
transfected with an AQP11-targeted small interfering RNA (siRNA) showed enhanced inhibition of
proliferation. These findings suggest that the inhibition of cell proliferation by D2O in activated HSCs
could be AQP11 dependent. Our previous studies have documented that bisdemethoxycurcumin
(BDMC) induces apoptosis by regulating heme oxygenase (HO)-1 protein expression in activated
HSCs. In the current study, we tested whether cotreatment with BDMC and D2O can modulate the
AQP11-dependent inhibition of cell proliferation effectively. We observed that D2O cotreatment with
BDMC significantly decreased cell proliferation compared to treatment with D2O alone, and this
effect was accompanied by downregulation of HO-1 and an increase in p53 levels.

Keywords: hepatic stellate cell; deuterium oxide; aquaporin 11; AQP11; heme oxygenase 1;
HO-1; bisdemethoxycurcumin

1. Introduction

Liver fibrosis is a common consequence of chronic liver damage caused by viral infection,
oxidative stress, or ethanol consumption [1,2]. Hepatic stellate cells (HSCs), which are a major source
of the extracellular matrix, undergo a sequential process of transactivation causing the development
of a myofibroblastic phenotype [1–3]. This phenotype is associated with increased proliferation and
collagen synthesis during fibrogenesis [1,3–5]. The excess accumulation of extracellular matrix proteins
by activated HSCs inhibits hepatocyte proliferation and induces liver fibrosis, increasing the risk of
hepatocellular carcinoma [1,3–5]. In the past, liver fibrosis has been considered an irreversible process.
Nonetheless, on the basis of the recent paradigm shift in hepatic pathophysiology, researchers now
consider hepatic fibrosis a reversible process that takes place via a combination of growth inhibition
of activated HSCs and careful control of liver injury [6]. Although the major function of HSCs is the
storage of vitamin A, HSCs undergo activation and trans-differentiation to myofibroblasts upon liver
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damage, thereby causing liver fibrosis [7]. Thus, apoptosis of HSCs may contribute to the termination
of fibrogenesis, during the resolution of fibrosis [8].

Aquaporins (AQPs) are a family of membrane proteins that facilitate the transport of water and
small solutes [9,10]. The family is composed of 13 isoforms that are distributed widely in nature,
from bacteria to animals [9,10]. Of these, mRNA expression of AQPs 0, 1, 5, 8, 9, 11, and 12 has
been specifically detected in quiescent HSCs [11]. Of note, the AQP11 protein is clearly expressed in
activated HSCs, but the other isoforms are not [11]. Recent studies showed that AQPs are important
for cell proliferation [12]. In addition, AQPs are likely to be involved in canalicular and ductal bile
secretion, gluconeogenesis, and microbial infections, and may have other novel roles that affect liver
function [13]. D2O (heavy water) is an analogue of water in which the two hydrogen atoms have been
replaced with deuterium [14]. It has been reported that incubation of tumor cells with heavy water
leads to inhibition of cell proliferation, thus causing cell cycle arrest, and furthermore, the synergistic
effects of D2O and chemical agents have been studied before [15–18]. Our previous studies have been
conducted to identify the pharmacological action of phytochemicals that may be able to kill activated
HSCs and thereby contribute to the resolution of liver fibrosis [8,19]. In the course of screening of
natural products, we have found that bisdemethoxycurcumin (BDMC) can induce cell death in HSCs.
In the present study, our purpose was to investigate the effects of D2O in combination with BDMC,
which has been used as a potent anti-liver fibrosis agent [19], on activated HSCs. To test whether
AQP11 plays an important part in HSC proliferation, we treated HSCs with D2O. We also focused
on the role of AQP11 in activated HSCs [11,20] during the combined effects of D2O and BDMC.
The present study first examined the effect of D2O on proliferation of HSCs. Next, the function of
AQP11 in activated HSCs was assessed. Our main purpose was to determine whether the proliferation
of activated HSCs is AQP11 dependent under the combined influence of D2O and BDMC.

2. Results

2.1. Activation of the p53-Cyclin-Dependent Pathway by D2O Leads to Cell Cycle Arrest

The deuterium bonds in D2O are stronger than the analogous hydrogen bonds in H2O; this
phenomenon results in physical differences such as density, viscosity, melting point, and boiling
point [21]. Treatment of HSCs with D2O inhibited their proliferation in a time- and dose-dependent
manner (Figure 1A,B). To elucidate this effect further, we analyzed the apoptotic process and measured
reactive oxygen species (ROS) levels. Neither of these processes was affected by D2O treatment
(Figure 1C,D). Although D2O inhibited cell proliferation, we did not observe any sign of cell death
(Figure 1E). Subsequently, we evaluated the cell cycle by fluorescence-activated cells sorting (FACS)
analysis. The results showed that the percentage of cells in the S phase increased at 24 h, with a
gradual decrease thereafter (Figure 1F). As p53, p21, and cyclin-dependent kinases (CDKs) are widely
employed to monitor progression of the cell cycle, the expression of these proteins was analyzed in
D2O-treated HSCs [22]. After D2O treatment, we observed upregulation of both p53 and p21 but
a reduction in CDK2 protein levels (Figure 1G). This result indicated that D2O triggered cell cycle
arrest via the p53-CDK pathway. Thus, D2O prevented DNA synthesis by activating the S checkpoint,
leading to inhibition of HSC proliferation (Figure 1H).
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Figure 1. Deuterium oxide (D2O) inhibited the proliferation of activated hepatic stellate cells (HSCs). 
HSC-T6 cells were treated with 50% D2O for 24, 48, and 72 h (A). The cells were then stained with 
0.5% crystal violet and were visualized by photography (B). The stained cells were rinsed with 
dimethyl sulfoxide (DMSO), and absorbance at 570 nm due to the crystal violet staining was 
measured. The D2O-treated HSC cells were stained with Annexin V and propidium iodide (PI), and 
flow cytometry was performed to determine the degree of apoptosis (C). The lower right quadrant 
(annexin V+/propidium iodide [PI]−) and upper right quadrant (annexin V+/PI+) represent the 
percentage of cells in early and late apoptosis, respectively. To measure intracellular reactive oxygen 
species (ROS) levels, dichlorodihydrofluorescein diacetate (DCFDA; 20 µM) was added after 
harvesting of HSCs exposed to 50% D2O (D). The morphology of stained HSCs was examined by 
microscopy (scale bar, 100 µm) (E). A flow-cytometric analysis of the cell cycle using PI was 
performed (F). The expression levels of p53, p21, and CDK2 were evaluated by western blotting (G). 
GAPDH served as a loading control. A proposed scheme illustrating the mechanism by which D2O 
arrests cells in the S phase via downregulation of aquaporin (AQP) 11 (H). ** p < 0.01 or * p < 0.05 as 
compared with the control. Data are presented as mean ± SD (n = 3). 

2.2. HSC Proliferation is AQP11 Dependent 

To gain insights into the role of AQP11 in D2O-treated HSCs, we first analyzed the expression of 
AQP11 in both HSCs and parenchymal HepG2 cells [23]. AQP11 was specifically expressed in HSC-
T6 cells (Figure 2A), and D2O treatment decreased AQP11 expression levels (Figure 2B). Next, to 
verify whether AQP11 expression regulates cell proliferation, AQP11 was overexpressed by a genetic 
approach. Of note, elevated AQP11 levels counteracted the D2O-mediated inhibition of proliferation. 
On the other hand, cells transfected with an AQP11-targeted small interfering RNA (siRNA) showed 
enhanced inhibition of proliferation (Figure 2C). In addition, the expression levels of AQP11 
negatively correlated with those of p53 (Figure 2D). 

Figure 1. Deuterium oxide (D2O) inhibited the proliferation of activated hepatic stellate cells (HSCs).
HSC-T6 cells were treated with 50% D2O for 24, 48, and 72 h (A). The cells were then stained with 0.5%
crystal violet and were visualized by photography (B). The stained cells were rinsed with dimethyl sulfoxide
(DMSO), and absorbance at 570 nm due to the crystal violet staining was measured. The D2O-treated
HSC cells were stained with Annexin V and propidium iodide (PI), and flow cytometry was performed to
determine the degree of apoptosis (C). The lower right quadrant (annexin V+/propidium iodide [PI]−)
and upper right quadrant (annexin V+/PI+) represent the percentage of cells in early and late apoptosis,
respectively. To measure intracellular reactive oxygen species (ROS) levels, dichlorodihydrofluorescein
diacetate (DCFDA; 20 µM) was added after harvesting of HSCs exposed to 50% D2O (D). The morphology
of stained HSCs was examined by microscopy (scale bar, 100 µm) (E). A flow-cytometric analysis of the cell
cycle using PI was performed (F). The expression levels of p53, p21, and CDK2 were evaluated by western
blotting (G). GAPDH served as a loading control. A proposed scheme illustrating the mechanism by which
D2O arrests cells in the S phase via downregulation of aquaporin (AQP) 11 (H). ** p < 0.01 or * p < 0.05 as
compared with the control. Data are presented as mean± SD (n = 3).

2.2. HSC Proliferation Is AQP11 Dependent

To gain insights into the role of AQP11 in D2O-treated HSCs, we first analyzed the expression
of AQP11 in both HSCs and parenchymal HepG2 cells [23]. AQP11 was specifically expressed
in HSC-T6 cells (Figure 2A), and D2O treatment decreased AQP11 expression levels (Figure 2B).
Next, to verify whether AQP11 expression regulates cell proliferation, AQP11 was overexpressed by
a genetic approach. Of note, elevated AQP11 levels counteracted the D2O-mediated inhibition of
proliferation. On the other hand, cells transfected with an AQP11-targeted small interfering RNA
(siRNA) showed enhanced inhibition of proliferation (Figure 2C). In addition, the expression levels of
AQP11 negatively correlated with those of p53 (Figure 2D).
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Figure 2. Downregulation of aquaporin (AQP) 11 by deuterium oxide (D2O) had an antiproliferative 
effect on activated hepatic stellate cells (HSCs). AQP11 is expressed in HSC-T6 cells, but not HepG2 
cells, as assessed by western blotting (A). Intracellular levels of AQP11 were measured by western 
blotting of lysates from HSC-T6 cells treated with 50% D2O for 24, 48, or 72 h (B). HSC-T6 cells were 
transfected with a plasmid containing the AQP11 cDNA or an AQP11-targeted siRNA and then 
incubated with 50% D2O, after which the cells were dyed with crystal violet, and absorbance at 570 
nm was quantified to assess cell proliferation (C). The expression of AQP11 and p53 was assessed by 
western blotting. GAPDH served as a loading control (D). Data are representative of three 
independent experiments and are expressed as mean ± SD, * p < 0.05. 

2.3. Inhibition of HO-1 Activity Increases the Antifibrotic Effect of D2O 

To validate the participation of heme oxygenase (HO)-1 in our experimental setting, we 
regulated the expression or activity of HO-1 by treating cells with either hemin or SnPP (tin 
protoporphyrin), respectively. As a result, we observed a reduction in proliferation of HO-1–deficient 
cells, as compared to a control (Figure 3). Our previous study has shown that BDMC, a natural 
derivative of curcumin, induces apoptosis selectively in activated HSCs [19]. In the present study, we 
cotreated cells with D2O and a low concentration of BDMC. D2O cotreatment with BDMC 
significantly decreased cell proliferation compared to treatment with D2O alone (Figure 3A), and this 
effect was accompanied by downregulation of HO-1 and an increase in p53 levels (Figure 3B). 

Figure 2. Downregulation of aquaporin (AQP) 11 by deuterium oxide (D2O) had an antiproliferative
effect on activated hepatic stellate cells (HSCs). AQP11 is expressed in HSC-T6 cells, but not HepG2 cells,
as assessed by western blotting (A). Intracellular levels of AQP11 were measured by western blotting
of lysates from HSC-T6 cells treated with 50% D2O for 24, 48, or 72 h (B). HSC-T6 cells were transfected
with a plasmid containing the AQP11 cDNA or an AQP11-targeted siRNA and then incubated with
50% D2O, after which the cells were dyed with crystal violet, and absorbance at 570 nm was quantified
to assess cell proliferation (C). The expression of AQP11 and p53 was assessed by western blotting.
GAPDH served as a loading control (D). Data are representative of three independent experiments and
are expressed as mean ± SD, * p < 0.05.

2.3. Inhibition of HO-1 Activity Increases the Antifibrotic Effect of D2O

To validate the participation of heme oxygenase (HO)-1 in our experimental setting, we regulated
the expression or activity of HO-1 by treating cells with either hemin or SnPP (tin protoporphyrin),
respectively. As a result, we observed a reduction in proliferation of HO-1–deficient cells, as compared
to a control (Figure 3). Our previous study has shown that BDMC, a natural derivative of curcumin,
induces apoptosis selectively in activated HSCs [19]. In the present study, we cotreated cells with
D2O and a low concentration of BDMC. D2O cotreatment with BDMC significantly decreased cell
proliferation compared to treatment with D2O alone (Figure 3A), and this effect was accompanied by
downregulation of HO-1 and an increase in p53 levels (Figure 3B).
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Figure 3. Cotreatment of HSC-T6 cells with deuterium oxide (D2O) and bisdemethoxycurcumin 
(BDMC) decreased the expression of heme oxygenase (HO)-1. HSC-T6 cells were incubated with or 
without 50% D2O for 24 h. In addition, the D2O-treated cells were exposed to 1 µM BDMC, 0.1 µM 
SnPP (tin protoporphyrin), or 0.3 µM hemin (A). The effects of cotreatment of HSC-T6 cells with D2O 
and BDMC on their proliferation and expression of HO-1, p53, and AQP11 (B). The expression of HO-
1, p53, and aquaporin (AQP) 11 was assessed by western blotting. GAPDH served as the loading 
control. Data are representative of three independent experiments and are expressed as mean ± SD, * 
p < 0.05. 

2.4. Excess Accumulation of ATP Diminishes Cell Proliferation 

The balance between the synthesis and turnover of ATP may be affected in cells treated with 
D2O. D2O increased the ratio [ATP]/[ADP] in a time- and dose-dependent manner (Figure 4A). To 
test whether the changes in ATP levels were accompanied with augmentation of mitochondrial 
dysfunction [24], the [ATP]/[ADP] ratio was measured by JC-1 staining. Nonetheless, there were no 
noticeable changes in mitochondrial membrane potential following D2O treatment (Figure 4B,C). 

 
Figure 4. The [ATP]/[ADP] ratio increased after treatment of HSC-T6 cells with deuterium oxide (D2O) 
for 24, 48, or 72 h. ATP and ADP levels were measured and expressed as the [ATP]/[ADP] ratio (A). 
Mitochondrial membrane potential was measured with the JC-1 dye (B,C). ** p < 0.01 or * p < 0.05 as 
compared with the control. Data are presented as mean ± SD (n = 3). 

Figure 3. Cotreatment of HSC-T6 cells with deuterium oxide (D2O) and bisdemethoxycurcumin
(BDMC) decreased the expression of heme oxygenase (HO)-1. HSC-T6 cells were incubated with or
without 50% D2O for 24 h. In addition, the D2O-treated cells were exposed to 1 µM BDMC, 0.1 µM
SnPP (tin protoporphyrin), or 0.3 µM hemin (A). The effects of cotreatment of HSC-T6 cells with D2O
and BDMC on their proliferation and expression of HO-1, p53, and AQP11 (B). The expression of HO-1,
p53, and aquaporin (AQP) 11 was assessed by western blotting. GAPDH served as the loading control.
Data are representative of three independent experiments and are expressed as mean ± SD, * p < 0.05.

2.4. Excess Accumulation of ATP Diminishes Cell Proliferation

The balance between the synthesis and turnover of ATP may be affected in cells treated with
D2O. D2O increased the ratio [ATP]/[ADP] in a time- and dose-dependent manner (Figure 4A).
To test whether the changes in ATP levels were accompanied with augmentation of mitochondrial
dysfunction [24], the [ATP]/[ADP] ratio was measured by JC-1 staining. Nonetheless, there were no
noticeable changes in mitochondrial membrane potential following D2O treatment (Figure 4B,C).
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Figure 4. The [ATP]/[ADP] ratio increased after treatment of HSC-T6 cells with deuterium oxide (D2O)
for 24, 48, or 72 h. ATP and ADP levels were measured and expressed as the [ATP]/[ADP] ratio (A).
Mitochondrial membrane potential was measured with the JC-1 dye (B,C). ** p < 0.01 or * p < 0.05 as
compared with the control. Data are presented as mean ± SD (n = 3).
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3. Discussion

Recently, it was suggested that AQPs are involved in the regulation of cell proliferation [25], but the
exact mechanism of action of AQP11 is unclear. AQP3 is a typical aquaglyceroporin that is capable of
transporting water, glycerol, and urea, and therefore plays a major role in fluid homeostasis in normal
tissues [26]. A recent paper revealed that an AQP3 knockdown reduces cellular glycerol content and
mitochondrial ATP formation in A549 and H1299 cells [26]. In line with the previous reports, we focused
on the function of AQP11 in activated HSCs. We hypothesized that AQP11-facilitated glycerol transport
is an important determinant of HSC proliferation through a mechanism in which cellular glycerol is
the key regulator of cellular ATP levels. To determine whether AQP11 plays an important part in HSC
proliferation, we treated HSCs with D2O. As a result, D2O inhibited HSC proliferation through activation
of the p53-CDK pathway (Figure 1) and decreased the AQP11 amount in HSCs. Furthermore, we observed
upregulation of the [ATP]/[ADP] ratio (Figure 4). Moreover, the antifibrotic effect of D2O was found to
be AQP11 dependent (Figure 2). AQP11 was specifically expressed in HSC-T6 cells (not in HepG2 cells;
Figure 2A). Via a genetic approach, we overexpressed AQP11 and confirmed that the elevated AQP11 levels
counteracted the D2O-mediated inhibition of proliferation; on the other hand, cells transfected with the
AQP11-targeted siRNA manifested greater inhibition of proliferation during D2O treatment (Figure 2C).
Furthermore, the expression levels of AQP11 negatively correlated with those of p53, which can regulate
cell proliferation (Figure 2D). These results suggest that the inhibition of cell proliferation by D2O in
activated HSCs could be AQP11 dependent.

Given that HSC proliferation is heme oxygenase (HO) dependent [19], we next examined the
expression of HO-1 in activated HSCs treated with D2O. It is generally accepted that upregulation
of HO-1 is cytoprotective in activated HSCs [19]. Thus, inhibition of HO-1 expression may attenuate
HSC proliferation. This finding paradoxically indicates that the protective activity of HO-1 seems
to be a double-edged sword because inhibition of HSC proliferation attenuates rat liver fibrosis [27].
Our previous studies have documented that BDMC induces apoptosis by regulating HO-1 protein
expression in activated HSCs [19]. In the present study, we tested whether cotreatment with
BDMC and D2O can modulate the AQP11-dependent inhibition of cell proliferation effectively [28].
Our data revealed that BDMC coadministered with D2O markedly decreased cell proliferation by
downregulating some cellular proteins including HO-1 and AQP11 and by inducing p53 (Figure 3).

Additionally, we observed an increase in the [ATP]/[ADP] ratio in HSCs treated with D2O,
although mitochondrial membrane potential and membrane integrity remained almost unchanged.
One important cellular function of H2O is participation in the conversion of ATP to ADP by hydrolysis.
This fact suggests that the decreased rate of ATP hydrolysis may not produce enough protons in a
living cell, and this phenomenon may partially be responsible for the inhibition of proliferation [29].
In support of this finding, D2O has been reported to decrease ATPase activity and ATP-hydrolytic
activity in maize root segments in vivo [30,31]. Our experiments revealed that D2O increased the
[ATP]/[ADP] ratio in a time- and dose-dependent manner (Figure 4) but did not affect mitochondrial
membrane potential. These findings suggest that D2O shifted the balance in activated HSCs toward
antiproliferative effects. Furthermore, it has been reported that upregulation of HO-1 enhances renal
mitochondrial transporter carriers [32]. Thus, elevated [ATP]/[ATP] may partially be mediated by
HO-1 activity. Therefore, a further study will be required to discover a direct relation between the
[ATP]/[ATP] ratio and HO-1 in the cell treated with D2O.

Therefore, in this study, we focused on the role of AQP11 by investigating its expression in
activated HSCs during D2O treatment. In addition, because D2O has been reported to be active
toward various cell lines in vitro in combination with phytochemicals, we evaluated, for the first time,
the effect of D2O with a phytochemical on proliferation of HSCs. Our results suggest that D2O may
contribute to the inhibition of proliferation by downregulating AQP11 in activated HSCs.
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4. Materials and Methods

4.1. Cell and Tissue Cultures

The immortalized rat hepatic stellate cell line HSC-T6 was provided by Prof. S.H. Sung (Seoul
National University, Seoul, Korea). The immortalized HSC-T6 cells retain virtually all the features of
activated HSCs. The human liver carcinoma cell line (HepG2) was supplied by the Korean Cell Line
Bank (Seoul, Korea). HSCs and HepG2 cells were cultured in Dulbecco’s modified Eagle’s medium
(DMEM) supplemented with 10% of fetal bovine serum (FBS) and 1% of a penicillin and streptomycin
solution (Pen Strep) in a humidified atmosphere containing 5% of CO2 at 37 ◦C, according to a protocol
supplied by the Korean Cell Line Bank.

4.2. Reagents and Chemicals

D2O and BDMC were purchased from the Sigma-Aldrich Corporation (St. Louis, MO, USA).

4.3. Cell Proliferation

This parameter was measured by an established crystal violet assay. HSC-T6 cells were seeded
in a dish with a 60 mm diameter at a density of 2 × 104 cells/cm2 and grown at 37 ◦C overnight.
The water in the culture medium was replaced with 50% D2O, and the incubation was continued
for 24, 48, and 72 h. The cells were washed twice with phosphate-buffered saline (PBS), fixed with
methanol for 15 min, and stained with 0.5% crystal violet for 15 min at room temperature. Stained cells
were then dissolved in 1 mL of dimethyl sulfoxide (DMSO), and absorbance was measured at 570 nm.

4.4. An Apoptosis Assay

Cells were incubated for various periods with 50% D2O. The cells were detached with
ethylenediaminetetraacetic acid (EDTA)-free trypsin and washed twice with cooled PBS. Then, the cells
were resuspended in 400 µL of 1× loading buffer containing 5 µL annexin V and 5 µL propidium
iodide (PI; Becton-Dickinson, San Diego, CA, USA) for 15 min on ice in the dark. The assays of
apoptosis were performed on a FACS Calibur analyzer (Becton-Dickinson, San Diego, CA, USA).

4.5. Western Blotting and Antibodies

Cells were lysed with radioimmunoprecipitation (RIPA) assay buffer consisting of 1× PBS, 1%
(v/v) Nonidet P-40 (NP-40), 0.5% (w/v) sodium deoxycholate, 0.1% (w/v) sodium dodecyl sulfate (SDS),
0.1 mg/mL phenylmethylsulfonyl fluoride (PMSF), 30 µL/mL aprotinin, and 1 mM sodium orthovanadate
(Na2VO3). The cell lysates were centrifuged, and the resulting supernatants were collected. Proteins were
separated by SDS-PAGE on 8–15% gels and then transferred to a polyvinylidene difluoride (PVDF)
membrane. Each membrane was blocked in Tris-buffered saline containing 0.1% of Tween 20 (TBST) and
5% nonfat dry milk for 1 h at room temperature, and then incubated overnight with primary antibodies in
TBST containing 1% nonfat dry milk at 4 ◦C. Anti-cyclin-dependent kinase 2 (CDK2), anti-p53, anti-p21,
anti-AQP11, anti-heme oxygenase (HO)-1, and anti-glyceraldehyde phosphate dehydrogenase (GAPDH)
antibodies were purchased from Santa Cruz Biotechnology (Dallas, TX, USA). The membranes were washed
with TBST and incubated with a horseradish peroxidase–conjugated secondary antibody: either a goat
anti-rabbit IgG or goat anti-mouse IgG antibody for 2 h. Signals were detected using a chemiluminescence
system (GE Healthcare, Piscataway, NJ, USA).

4.6. The Intracellular ATP/ADP Ratio

ATP and ADP concentrations were measured by means of ATP Bioluminescence Assay Kit
HS II (Roche Applied Science, Monza, Italy) and the ADP Colorimetric/Fluorometric Assay Kit
(Sigma-Aldrich). Cells were harvested, counted, and lysed with the above-mentioned lysis buffer.
Aliquots (50 µL) from each diluted sample or standard were transferred to 96-well plates, after which
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50 µL of a luciferase reagent was added. After mixing, the emitted light was measured and integrated
over 10 s on an automated microplate luminometer (Bio-Tek, San Diego, CA, USA).

4.7. Analysis of the Cell Cycle

Hepatic stellate cells T6 (3 × 105 cells/well) were dispensed into 6-well plates and treated with
D2O for 24, 48, and 72 h. The cells were harvested and fixed in 70% ethanol and then stored at −20 ◦C
for 24 h. The cells were washed twice with PBS and resuspended in 100 µL of RNase A at 37 ◦C,
followed by staining with 50 µg/mL PI for 10 min at room temperature in the dark. The stained cells
were quantified on a flow cytometer: FACS Calibur analyzer (Becton-Dickinson, San Diego, CA, USA).
DNA content in the G0 (or G1) phase, S phase, and at the G2–M transition was analyzed in the BD
Calibur software (version 1.0.264.21; BD Biosciences, San Jose, CA, USA). The cell cycle consists of
four distinct phases: The G1 phase, S phase (synthesis), G2 phase (collectively known as interphase),
and M phase (mitosis or meiosis). The M phase is itself composed of two tightly coupled processes:
karyokinesis, during which the cell’s chromosomes divide, and cytokinesis, where the cell’s cytoplasm
divides forming two daughter cells. Activation of each phase is dependent on the proper progression
and completion of the previous one. Cells that have temporarily or reversibly stopped dividing are
said to have entered a state of quiescence called the G0 phase.

4.8. Intracellular ROS Levels

The intracellular production of ROS was analyzed with a fluorescent probe: DCFDA. Cells were
incubated with 50% D2O for 24, 48, and 72 h prior to harvesting. After all the HSC-T6 cells were
collected by centrifugation, the supernatant was removed. Each pellet was resuspended in PBS, and 20
µM DCFDA was added. Fluorescence was measured by flow cytometry.

4.9. Statistical Analysis

All the experiments were conducted at least in triplicate, and data were expressed as mean± standard
deviation. Statistical significance was determined by the t test or one-way analysis of variance (ANOVA)
with Tukey’s test at indicated p values in the SPSS 18.0 software (SPSS Inc., Chicago, IL, USA).
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