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Abstract: This paper investigates the universality of the Eulerian velocity structure functions
using velocity fields obtained from the stereoscopic particle image velocimetry (SPIV) technique in
experiments and direct numerical simulations (DNS) of the Navier-Stokes equations. It shows that
the numerical and experimental velocity structure functions up to order 9 follow a log-universality
(Castaing et al. Phys. D Nonlinear Phenom. 1993); this leads to a collapse on a universal curve,
when units including a logarithmic dependence on the Reynolds number are used. This paper then
investigates the meaning and consequences of such log-universality, and shows that it is connected
with the properties of a “multifractal free energy”, based on an analogy between multifractal and
thermodynamics. It shows that in such a framework, the existence of a fluctuating dissipation scale
is associated with a phase transition describing the relaminarisation of rough velocity fields with
different Hölder exponents. Such a phase transition has been already observed using the Lagrangian
velocity structure functions, but was so far believed to be out of reach for the Eulerian data.

Keywords: turbulence; intermittency; multifractal; thermodynamics

1. Introduction

A well-known feature of any turbulent flow is the Kolmogorov-Richardson cascade by which
energy is transferred from large to small length scales until the Kolmogorov length scale below which
it is removed by viscous dissipation. This energy cascade is a non-linear and an out-of-equilibrium
universal process. Moreover, the corresponding non-dimensional energy spectrum E(k)/ε2/3η5/3

is an universal function of kη, where η = (ν3/ε)1/4 is the Kolmogorov length scale, ε the mean
energy dissipation rate per unit mass, and ν the kinematic viscosity. Every used quantity is
identified with its definition in a nomenclature available in Table 1. However, there seems to be
little dependences on the Reynolds number, boundary, isotropy or homogeneity conditions [1].
In facts, the energy spectrum is based upon a quantity, the velocity correlation that is quadratic
in velocity. Nevertheless, it is now well admitted that the universality does not carry over for statistical
quantities that involve higher order moments. For example, the velocity structure functions of order p,
given by Sp(`) = 〈‖u(x + r)− u(x)‖p〉x,‖r‖=` are not universal, at least when expressed in units of the
Komogorov scale η and velocity uK = (νε)1/4 (see below, Section 3.2 for an illustration).
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Table 1. Nomenclature.

Symbol Mathematical Definition Interpretation

u(x, t) ∈ R3 ×R→ R3 Velocity field
k ∈ R+ Wavenumber

E(k) FT
(
〈ui(x + r, t)ui(x, t)〉x,‖r‖=`,t

)
Energy spectrum

k f ∈ R∗+ Forcing wavenumber
Nx ∈ N Grid size in direction x

ν ∈ R∗+ Kinematic viscosity
ε ∈ R∗+ Mean dissipation power per unit mass

η
(

ν3

ε

) 1
4 Kolmogorov scale

uK (νε)
1
4 Kolmogorov velocity

u0 ∈ R∗+ Characteristic velocity
L0 ∈ R∗+ Characteristic length
Re u0 L0

ν Reynolds number

λ

√
〈u2〉x,t
〈∇u2〉x,t

Taylor length

urms
√
〈u2〉x,t − 〈u〉2x,t Root mean squared velocity

Rλ
λurms

ν Taylor Reynolds number
∆x ∈ R∗+ SPIV spatial resolution

p ∈ [1, 9] Power
` ∈ R∗+ Scale
L ∈ R∗+ Inertial large scale

δ`u(x, t) 〈‖u(x + r, t)− u(x, t)‖〉‖r‖=` Velocity increment at scale `

Φ(x) exp(−‖x‖2/2)/(2π)
3
2 Wavelet filter

Φ`(x) `−3Φ(x/`) Wavelet filter at scale `
Gij(x, `, t)

∫
∇jΦ` (r) ui(x + r, t)dr Wavelet transform of ∇u

δW(x, `, t) `maxij |Gij(x, `, t)|. Wavelet velocity increment

Sp(`)

{
〈(δ`u)p〉x,t In theory

〈(δW(x, `, t))p〉x,t For data analysis Velocity structure function

S̃p(`)
Sp

Sp/3
3

Relative structure function

h(x, t) ∈ R3 ×R→ [−1, 1] Local Hölder exponent
C(h) P (log(|δ`u|/u0) = h log (`/L0)) ∼ (`/L0)

C(h) Multifractal Spectrum
ηh L0Re−

1
1+h Multifractal regularization scale

κ ∈ R∗+ Intermittency parameter
τ(p) κp(3− p) Lognormal Intermittency correction
ζ(p) p

3 + τ(p) Scaling exponent
θ(`)

log(L/`)
log(Re) Rescaled length

τ(p, θ)

{
τ(p) if θ ≤ 1

1+hmax

p(θ − 1
3 ) + C(−1 + 1

θ ) if 1
1+hmax

≤ θ ≤ 1
1+hmin

General intermittency correction

τ(p, `) τ(p, θ(`)) General intermittency correction
γ(Re),β(Re) R+ → R Fitting functions

G R2 → R General function from Castaing [2]

Ap, K0 γ(Re) log
(

Sp

Apup
K

)
= G (p, γ(Re) log(`K0/η)) Universal parameters

H R2 → R New general function

S0p β(Re)
(

log(S̃p/S0p)
log(L0/η)

)
= H

(
p, β(Re) log(`/η)

log(L0/η)

)
Universal parameter

a, b C(h) = (h−a)2

2b Parabolic fit
β0 1/β(Rλ) ∼ β0/ log(Rλ) Parameter

τp,univ
τ(p,`)

log(`/L) for ` in Inertial range Intermittency correction from general rescaling

µ`(x)
δW(x,`)3

<δW(y,`)3>y
Spatial scale dependent measure

S(E) P [log(µ`) = E log(`/η)] ∼ elog(`/η)S(E) Large deviation function of log(µ`)
kB ∈ R∗+ Boltzmann constant
T 1/kB p Temperature
E log(µ`) Energy
N log(Re) Number of degrees of freedom
V log(`/η) Volume
P τ(p, `) Pressure
F log(S̃3p) Free energy
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The mechanism behind this universality breakage is identified in [3], where a generalization of the
Kolmogorov theory is introduced, based on the hypothesis that a turbulent flow is multifractal.
In this model, the velocity field is locally characterized by a Hölder exponent h, such that
δ`u(x) ≡ 〈‖u(x + r)− u(x)‖〉‖r‖=` ∼ `h(x); here h is a stochastic function that follows a large deviation

property [4] P (log(|δ`u|/u0) = h log (`/L0)) ∼ (`/L0)
C(h), where u0 (resp. L0) is the characteristic

integral velocity (resp. length), and C(h) is the multifractal spectrum. Velocity fields with h < 1 are
rough in the limit ` → 0. Indeed they are at least not differentiable. In real flows, any rough field
with h > −1 can be regularized at sufficiently small scale (the “viscous scale”) by viscosity. The first
computation of such dissipative scale was performed by Paladin and Vulpiani [5], who showed that it
scales with viscosity like ηh ∝ ν1/(1+h), thereby generalizing the Kolmogorov scale, which corresponds
to h = 1/3. Such a dissipative scale fluctuates in space and time (along with h), resulting in
non-universality for high order moments, at least when expressed in units of η and uK.

A few years later, Frisch and Vergassola [6] claimed that the universality of the energy spectrum
can be recovered, if the fluctuations of the dissipative length scale are taken into account by introducing
a new non-dimensionalisation procedure. The new prediction was that log

(
E(k)ε−

2
3 η−

5
3

)
/ log(Re)

should be a universal function of log(kη)/ log(Re), where Re is the Reynolds number. This claim
was examined by Gagne et al., later using data from the Modane wind tunnel experiments [7].
They further suggested that the prediction can be extended to the velocity structure functions Sp,
so that log(Sp(`)/up

K)/ log(Re) should be a universal function of log(`/η)/ log(Re), at any given p.
They found good agreement for p up to 6. The velocity measurements, in the above experiments,
were performed using hot wire anemometry, which provide access to only one component of
velocity. To our knowledge, no further attempts have been made to check the claim with more
detailed measurements.

The purpose of the present paper is to reexamine this claim. However, now using the velocity
fields obtained from the Stereoscopic Particle Image Velocimetry (SPIV) in experiments and the direct
numerical simulations (DNS) of the Navier-Stokes equations (NSE). We show that the numerical and
experimental velocity structure functions up to order 9 follow a log-universality [7]; they indeed
collapse on a universal curve, if we use units that include log(Re) dependence. We then investigate the
meaning and consequences of such a log-universality, and show that it is connected with the properties
of a “multifractal free energy”, based on an analogy between multifractal and thermodynamics (see [8]
for summary). This framework uses co-existing velocity fields with different Hölder exponents which
are regularized at variable scales. We show that in such a framework, this fluctuating dissipation
length scale is associated with a phase transition describing the relaminarisation of velocity fields.

2. Experimental and Numerical Setup

2.1. Experimental Facilities and Parameters

We use experimental velocity field described in [9]. The radial, axial and azimuthal velocity are
measured in a Von Kármán flow, using Stereoscopic Particle Image Velocimetry technique at different
resolutions ∆x. The Von Kármán flow is generated in a cylindrical tank of radius R = 10 cm through
counter-rotation of two independent impellers with curved blades. The flow was maintained in a
turbulent state at high Reynolds number by two independent impellers, rotating at various frequencies.
Figure 1 shows the sketch of the experimental setup. The five experiments are performed in conditions
so that the non-dimensional mean energy dissipation per unit mass is constant. The viscosity is
monitored using mixture of water and glycerol, so as to vary the Kolmogorov length η. Table 2
summarizes the different parameters; Rλ = λurms/ν is the Reynolds number based on the Taylor

length scale λ =

√
〈u2〉
〈∇u2〉 , the root mean squared velocity urms and the kinematic viscosity ν.

All velocity measurements are performed in a vertical plane that contains the rotation axis.
The case (A) corresponds to measurements over the whole plane contained in between the two
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impellers, and extending from one side to the other side of the cylinder. Its resolution is 5 to 10 times
coarser than similar measurements performed by zooming on a region centered around the symmetry
point of the experiment (on the rotation axis, half way in between the two impellers), over a square
window of size 4 cm× 3 cm. Since the flow is not homogeneous, statistics in this central region may
differ from statistics computed over the whole tank. This explains the strong difference of Rλ between
(A) and (B,C). The little differences between (B) and (C) are explained by the different experimental
resolutions used.

D = 185 mm

(a) (b) (c) (d)

20 mm

12 mm

70 mm
204 mm

13 mm

Figure 1. Von Kármán swirling flow generator. (a) normal view, bottom (b) and top (c) impellers
rotating -both seen from the center of the cylinder, and (d) sketch with the relevant measures. A device
not shown here maintains the temperature constant during the experiment. Both impellers are
counter-rotating.

Table 2. Parameters for the 5 experiments realized (A, B, C, D andE). F is the rotation frequency of the
discs, Re refers to the Reynolds number based on the diameter of the tank, Rλ is the Reynolds based on
the Taylor micro-scale. η gives the estimated Kolmogorov length according to the experiment and ∆x
refers to the spatial resolution of SPIV measurements. The second last column gives the number of
frames over which are calculated the statistics. Except for (E), the Reynolds are much larger than those
available with DNS. Table adapted from [10].

Case Frequency (Hz) Glycerol Part Re Rλ η (mm) ∆x Frames Symbol

A 5 0% 3× 105 1, 9× 103 0.02 2.4 3× 104 ◦
B 5 0% 3× 105 2, 7× 103 0.02 0.48 3× 104 �
C 5 0% 3× 105 2, 5× 103 0.02 0.24 2× 104 ♦
D 1 0% 4× 104 9, 2× 102 0.08 0.48 1× 104 M
E 1.2 59% 6× 103 2, 1× 102 0.37 0.24 3× 104 ?

2.2. Direct Numerical Simulation

The direct numerical simulations (DNS), based on pseudo-spectral methods, are performed in
order to compare with our experimental data. The DNS runs with Rλ = 25, Rλ = 80, Rλ = 90 and
Rλ = 138 are performed using the NSE solver VIKSHOBHA [10], whereas the run with Rλ = 53 is
carried out using another independent pseudo-spectral NSE solver. The velocity field u is computed
on a 2π triply-periodic box.

Turbulent flow in a statistically steady state is obtained by using the Taylor-Green type external
forcing in the NSE at wavenumber k f = 1 and amplitude f0 = 0.12, the value of viscosity is varied in
order to obtain different values of Rλ (see Ref. [10] for more details).

3. Theoretical Background

3.1. Velocity Increments vs. Wavelet Transform (WT) of Velocity Gradients

The classical theories of Kolmogorov [11,12] are based on the scaling properties of the velocity
increment, defined as δ`u(x, t) = 〈‖u(x + r, t) − u(x, t)‖〉‖r‖=` where ` = ‖r‖ is the distance over
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which the increment is taken. As pointed out by [8], a more natural tool to characterize the local scaling
properties of the velocity field is the wavelet transform of the tensor ∂jui, defined as:

Gij(x, `, t) =
∫
∇jΦ` (r) ui(x + r, t)dr (1)

where Φ`(x) = `−3Φ(x/`) is a smooth function, non-negative with unit integral. In what follows,
we choose a Gaussian function Φ(x) = exp(−‖x‖2/2)/(2π)

3
2 such that

∫
Φ(r)dr = 1. We then

compute the wavelet velocity increments as

δW(x, `, t) = `max
ij
|Gij(x, `, t)| (2)

This formulation is especially well suited for the analysis of the experimental velocity field, as it
naturally allows to average out the noise. It has been verified that the wavelet-based approach yields
the same values for the scaling exponents as those computed from the velocity increments [10].

3.2. K41 and K62 Universality

In the first theory of Kolmogorov [11], the turbulence properties depend only on two parameters:
the mean energy dissipation per unit mass ε and the viscosity ν . The only velocity and length unit
that one can build using these quantities are the Kolmogorov length η = (ν3/ε)1/4 and velocity
uK = (εν)1/4. The structure functions are then self-similar in the inertial range η � `� L0, where L0

is the integral scale, and follow the universal scaling:

Sp(`) ≡ 〈(δ`u)p〉 ∼ up
K

(
`

η

)p/3
(3)

which can also be recast into:

S̃p(`) ≡
Sp(`)

(S3(`))
p/3 = Cp (4)

where Cp is a (non universal) constant.
This scaling is typical of a global scale symmetry solution, and was criticized by Landau,

who considered it incompatible with observed large fluctuations of the local energy dissipation.
Kolmogorov then built a second theory (K62), in which fluctuations of energy dissipation were
assumed to follow a log-normal statistics, and taken into account via an intermittency exponent κ and
a new length scale L, thereby breaking the global scale invariance. The resulting velocity structure
functions then follow the new scaling:

Sp(`) ∼ (ε`)p/3
(
`

L

)κp(3−p)
(5)

which implies a new kind of universality involving the relative structure functions S̃p as:

S̃p(`) ≡
Sp(`)

(S3(`))
p/3 ∼ Ap

(
`

L

)τ(p)
(6)

where τ(p) = κp(3− p) and Ap is a constant. Such a formulation already predicts an interesting
universality, if L = L0, as we should have:(

L0

η

)τ(p)
S̃p(`) ∼ Ap

(
`

η

)τ(p)
(7)
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Therefore, we should be able to collapse all structure functions, at different Reynolds number by
plotting ( L0

η )τ(p)S̃p as a function of `
η , given that L0/η ∼ Re3/4. There is however no clear prediction

about the value of L and we show in the data analysis (Section 4) that L differs from L0.

The relation (7) shows that log
((

L0
η

)τ(p)
S̃p

)
is a linear function of log( `η ). In principle,

such universal scaling is not valid outside the inertial range, i.e., for example when ` < η. To be more
general than previously thought, it can however be shown using the multifractal formalism as first
shown by [6].

3.3. Multifractal and Fluctuating Dissipation Length

For the multifractal (MFR) model, it is assumed that the turbulence is locally self-similar, so that
there exists a scalar field h(x, `, t), such that

h (x, t, `) =
log (δ`u(x, t)/u0)

log(`/L)
(8)

for a range of scales in a suitable “inertial range” ηh � ` � L, where L is a large inertial scale, ηh
a cut-off length scale, and u0 a characteristic large-scale velocity. This scale ηh is a generalization
of the Kolmogorov scale, and is defined as the scale where the local Reynolds number `|δ`u|/ν is
equal to 1. Writing δ`u = u0(`/L)h leads to the expression of ηh as a function of the global Reynolds
number Re = u0L/ν as ηh ∼ LRe−1/(1+h). This scale thus appears as a fluctuating cut-off which
depends on the scaling exponent and therefore on x. This is the generalization of the Kolmogorov
scale η ∼ LRe−3/4 ≡ η 1

3
, and was first proposed in [5]. Below ηh, the velocity field becomes laminar,

and δ`u ∝ `. When the velocity field is turbulent, h ≡ log(δ`u/u0)/ log(`/L) varies stochastically
as a function of space and time. Also, if the turbulence is statistically homogeneous, stationary and
isotropic, h only depends on `, the scale magnitude. Therefore, formally, h can be regarded as a
continuous stochastic process labeled by log(`/L). By Kramer’s theorem [13], one sees that as in the
limit `→ 0, log(L/`)→ ∞, we have:

P [log(δ`u/u0) = h log(`/L)] ∼ elog(`/L)C(h) =

(
`

L

)C(h)
(9)

where C(h) is the rate function of h, also called multifractal spectrum. Formally, C(h) can be
interpreted as the co-dimension of the set where the local Hölder exponent at scale ` is equal to
h. Using Gärtner-Elis theorem [13], one can connect C and the velocity structure functions as:

Sp(`) = 〈(δ`u)p〉 =
hmax∫

hmin

up
0

(
`

L

)ph+C(h)
dh (10)

To proceed further and make connection with previous section, we set ε = u3
0/L so that Sp(`) can

now be written:

Sp(`) = (ε`)p/3
hmax∫

hmin

( `
L

)p(h−1/3)+C(h)
dh ∼ (ε`)p/3

( `
L

)τ(p)
(11)

This shows that τ(p) is the Legendre transform of the rate function C(h + 1/3), i.e.,
τ(p) = minh(p(h− 1/3) + C(h)), and equivalently, that C(h) is the Legendre transform of τ(p).
Because of this, it is necessarily convex. The set of points where C(h) ≤ 3, represents the set of
admissible or observable h, is therefore necessarily an interval, bounded by −1 ≤ hmin and hmax ≤ 1.

As noted by [6], the scaling exponent ζ(p) = p/3+ τ(p) defined via Equation (11) is only constant
in a range of scale where ` > ηh for any h ∈ [hmin, hmax]. For small enough `, this condition is not met
anymore, since as soon as ` < ηh, all velocity fields corresponding to h are “regularized”, and do not
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contribute anymore to intermittency since they scale like `. This results in a slow dependence of ζ(p)
with respect to the scale, which is obtained via the corrected formula:

Sp(`) = (ε`)p/3
∫

ηh≤`

( `
L

)p(h−1/3)+C(h)
dh ∼ (ε`)p/3

( `
L

)τ(p,`)
(12)

To understand the nature of the correction, we can compute the value of h such that ` = ηh.
This gives: h(`) = −1 + log(Re)/ log(L/ηh). With θ = log(L/`)/ log(Re), Equation (12) can be
rewritten as:

S̃p(`) ≡
Sp(`)

(S3(`))
p/3 =

hmax∫
−1+1/θ

( `
L

)p(h−1/3)+C(h)
dh ∼ exp (−θτ(p, θ) log(Re)) (13)

where τ(p, θ) = τ(p) when θ ≤ 1/(1 + hmax) and τ(p, θ) = p(θ − 1/3) + C(−1 + 1/θ) when
1/(1 + hmax) ≤ θ ≤ 1/(1 + hmin). As discussed by [6], this implies a new form of universality that
extends beyond the inertial range, into the so-called extended dissipative range, as;

log(S̃p)

log(Re)
= −τ(p, θ)θ, θ = log(L/`)/ log(Re) (14)

If the scale L is constant and equal to L0, the integral scale, then we have Re = (L0/η)4/3 and
the multifractal universality implies that log(S̃p)/ log(L0/η) is a function of log(`/η)/ log(L0/η).
When the function is linear, we thus recover the K62 universality. The multifractal universality is thus
a generalization of the K62 universality.

This form of universality is however not easy to test, as the scale L is not known a priori, and
may still depend on Re. In what follows, we demonstrate a new form of universality that allows more
freedom upon L and encompass both K62 and multifractal universality.

3.4. General Universality

Using the hypothesis that turbulence maximizes some energy transfer in the scale space,
Castaing [2] suggested a new form of universality for the structure functions, that reads:

γ(Re) log

(
Sp(`)

Apup
K

)
= G (p, γ(Re) log(`K0/η)) (15)

where Ap and K0 are universal constants and β and G are general functions, G being linear in the
inertial range, G(p, x) ∼ τ(p)x. The validity of this universal scaling was checked by Gagne and
Castaing [7] on data obtained from the velocity fields measured in a jet using hot wire anemometry.
They found good collapse of the structure functions at different Taylor Reynolds Rλ, provided γ(Re)
is constant at low Reynolds numbers and follows a law of the type: γ(Re) ∼ γ0/ log(Rλ/R∗), where
R∗ is a constant, whenever Rλ > 400. Since we have Rλ ∼ Re1/2 and (L0/η) ∼ Re3/4, we can rewrite
Equation (15) as:

β(Re)

(
log(S̃p(`)/S0p)

log(L0/η)

)
= H

(
p, β(Re)

log(`/η)

log(L0/η)

)
(16)

where S0p are some constants and β and H are general functions. Compared to the K62 or MFR
universality Formulas (7) or (14), we see that Formula (16) is a generalization of these two universality
with L = L0. It allows however more flexibility than K62 or MFR universality through the function
β(Re), which is a new fitting function. We test these predictions in Section 4 and provide a physical
interpretation of (16) in Section 5.
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4. Check of Universality Using Data Analysis

The various universality are tested using the velocity structure functions based on the wavelet
velocity increments Equation (2), in order to minimize the noise in the experimental data. We define:

Sp(`) = 〈|δW(x, `, t)|p〉x,t (17)

We then apply this formula to both experimental data (Table 2) and numerical data (Table 3), to
get wavelet velocity structure functions at various scales and Reynolds numbers.

Table 3. Parameters for the DNS. Rλ is the Reynolds based on the Taylor micro-scale. η is
the Kolmogorov length. The third column gives resolution of the simulation through kmaxη,
where kmax = Nx/3 is the maximum wavenumber. The fourth column gives the grid size; notice that
the dimensionless length of the box is 2π. Here, `min is the smallest scale available for the calculations
of the wavelets. k f is the forcing wavenumber. The Sample columns gives the number of points
(frames × grid size) over which the statistics are computed.

Rλ η kmaxη Nx× Ny×Nz `min/η Samples Symbol

25 0.079 3.35 1283 0.635 5000 ?
53 0.034 8.5 7683 0.31 105,000 M
80 0.020 1.68 2563 1.22 270,000 �
90 0.017 5.7 10243 0.36 10,000 ♦
138 0.009 1.55 5123 1.37 12,000 ◦

4.1. Check of K41 Universality

The K41 universality (3) can be checked by plotting:

log

(
Sp

up
K

)
= F

(
log
(
`

η

))
(18)

This is shown in Figure 2 for both experimental and numerical data. Obviously, the data do not
collapse on a universal curve, meaning that K41 universality does not hold. This is well known, and is
connected to intermittency effects [14].

10
0

10
1

10
2

10
0

10
1

10
2

10
3

(a)

10
0

10
2

10
0

10
1

10
2

10
3

(b)

Figure 2. Test of K41 universality Equation (4). (a) Numerical data (b) Experimental data. The structure
functions have been shifted by arbitrary factors for clarity and are coded by color: p = 1: blue symbols;
p = 2: orange symbols; p = 3: yellow symbols; p = 4: magenta symbols; p = 5: green symbols;
p = 6: light blue symbols; p = 7: red symbols; p = 8: blue symbols; p = 9: orange symbols. For K41
universality to hold, all the function should be constant, for a given p.
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4.2. Check of K62 Universality

The K62 universality (7) can be checked by plotting:

log

[(
L0

η

)τ(p)
S̃p

]
= F

(
log
(
`

η

))
(19)

The collapse depends directly on τ(p), the intermittency exponents. Obtaining the best collapse
of all curves is in fact a way to fit the best scaling exponents τ(p). We thus implement a minimization
algorithm that provides the values of τ(p) that minimized the distance between the curve and the line
of slope τ(p). The values of τ(p) are reported in Table 4. The best collapse is shown on Figure 3a for
the DNS, and Figure 3b for the experiment. The collapse is better for experiments than for the DNS.
However, in both cases, there are significant differences in between points at different Rλ, at larger
scales, showing that universality is not yet reached.

10
0

10
1

10
2

10
0

10
5

(a) (b)

Figure 3. Test of K62 universality Equation (7). (a) Numerical data (b) Experimental data. The structure
functions are shifted by arbitrary factors for clarity and are coded by color: p = 1: blue symbols; p = 2:
orange symbols; p = 3: yellow symbols; p = 4: magenta symbols; p = 5: green symbols; p = 6: light
blue symbols; p = 7: red symbols; p = 8: blue symbols; p = 9: orange symbols. The dashed lines are
power laws with exponents τ(p) = ζ(p)− ζ(3)p/3, with ζ(p) shown in Figure 4a.

Table 4. Scaling exponents τ(p) and ζ(p) found by the collapse method based on K62 universality for
experimental data (subscript EXP) or numerical data (subscript DNS). The subscript SAW refers to the
values obtained by [9]. The exponents τEXP(p)(red square) and τDNS (blue circle) have been computed
through a least square algorithm.

Exponent\Order p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 p = 9

ζSAW/ζSAW(3) 0.36 0.69 1 1.29 1.55 1.78 1.98 2.17 2.33
ζDNS 0.31 0.58 0.80 0.98 1.12 1.23 1.26 1.25 1.23
ζEXP 0.32 0.58 0.80 0.98 1.12 1.23 1.32 1.39 1.44
τDNS 0.04 0.05 0 −0.09 −0.21 −0.37 −0.61 −0.88 −1.17
τEXP 0.05 0.05 0 −0.09 −0.21 −0.36 −0.54 −0.74 −0.96

4.3. Check of General Universality

We can now check the most general universality, by plotting:

β(Re)

(
log(S̃p/S0p)

log(L0/η)

)
= H

(
p, β(Re)

log(`/η)

log(L0/η)

)
(20)
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In this case, best collapse is obtained by fitting two families of parameters: S0p, β(Re) that are
obtained through a procedure of minimization. We take the DNS at Rλ = 138 as the reference case,
and find for both DNS and experiments, the values of β(Re) and S0p that best collapse the curves.
The corresponding collapses are provided in Figure 5. The collapses are good for any value of Re,
except for the DNS at the lowest Reynolds number, which does not collapse in the far dissipative range.

10
0

10
2

10
-2

10
0

10
2

(a)

`0.8

0 2 4 6 8 10

0

0.5

1

1.5

2

2.5

3

(b)

Figure 4. (a) Determination of ζ(3) by best collapse using both DNS (open symbols) and experiments
(filled symbols). The black dashed line is `0.8. (b) Scaling exponents ζ(p) of the wavelet structure
functions of δW as a function of the order, from Table 4, for DNS (blue circle) and experiments (red
square) . The red dotted line is the function minh(hp + C(h)) with C(h) given by C(h) = (h− a)2/2b,
with a = 0.35 and b = 0.045. The black stars correspond to ζSAW(p)/ζSAW(3) (see Table 4), while the
black squares correspond to ζEXP(p)/ζEXP(3).

-0.5 0 0.5 1 1.5

-0.1
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0.1

0.2
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0.4

(a)

-0.5 0 0.5 1 1.5

0

0.5

1

1.5

(b)

Figure 5. Test of general universality Equation (20) using both DNS (open symbols) and experiments
(filled symbols). The functions are coded by color. (a) p = 1: blue symbols; p = 2: orange symbols;
p = 4: magenta symbols; p = 5: green symbols; (b) p = 6: light blue symbols; p = 7: red symbols;
p = 8: blue symbols; p = 9: orange symbols. The functions have been shifted by arbitrary factors for
clarity. The dashed lines are power laws with exponents τ(p) = ζ(p)− ζ(3)p/3, with ζ(p) shown in
Figure 4a.

4.4. Function β(Re)

Motivated by earlier findings by [7], we plot in Figure 6 the value 1/β as a function of Rλ.
Our results are compatible with 1/β ∼ β0/ log(Rλ), with β0 ∼ 4/3 over the whole range of

Reynolds number. For comparison, we provide also on Figure 6 the values found by Gagne and
Castaing [7] in jet of liquid Helium, shifted by an arbitrary factor to make our values coincide with
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them at large Reynolds number. This shift is motivated by the fact that β(Re) is determined up to
a constant, depending upon the amplitude of the structure functions used as reference. At large
Reynolds, our values are compatible with theirs. At low Reynolds, however, we do not observe the
saturation of 1/β that is observed in the jet experiment of [7]. An interpretation of the meaning of
β(Re) is provided in Section 5.

10
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4
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(a)
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(b)

Figure 6. (a) Variation of 1/β(Re) versus log(Rλ) in experiments (red square) and DNS (blue circle)
when using the DNS at Rλ = 138 as the reference case. Black stars correspond to the values found
by Gagne and Castaing in [7] shifted by an arbitrary factor to coincide the values at large Reynolds.
The black dashed line is (4/3) log(Rλ/5). (b) Multifractal spectrum C(h) for the experiments. The
spectrum is obtained by taking inverse Legendre transform of the scaling exponents ζ(p) shown in
Figure 4. The dotted line is a parabolic fit C(h) = (h− a)2/2b with a = 0.35 and b = 0.045.

4.5. Scaling Exponents

Our Collapse method enables us to obtain the scaling exponents of the structure functions ζ(p)
by the following two methods:

(i) Using the K62 universality, we get τ(p), and then ζ(p) = ζ(3)p/3 + τ(p). These estimates
still depend on the value of ζ(3), which is not provided by the K62 universality plot. To obtain
them, we use a minimization procedure on both experimental log(S3/u3

K) from the one hand,
and the numerical log(S3/u3

K) on the other hand (see Figure 4a), to compute ζ(3) as the value
that minimizes the distance between the curve and a straight line of slope ζ(3). The values so
obtained are reported in Table 4, and are used to compute ζ(p) from τ(p). In Table 4, two different
methods are used to process the experimental data. The subscript SAW refers to the values obtained
by [9] on the same set of experimental data, using velocity increments and Extended Self-Similarity
technique [15]. The quantities with subscript EXP are computed through a least square algorithm upon

τ(p), minimizing the scatter of the rescaled structure functions log
[(

L0
η

)τ(p)
S̃p

]
with respect to the

line (`/η)τ(p). DNS data have been processed the same way as EXP.
(ii) Using the general universality, we may also get τp,univ by a linear regression on the collapse

curve. Please note that since the data are collapsed, this provides a very good estimates of this quantity,
with the lowest possible noise. In practice, we observe no significant differences with the two estimates;
therefore, we only report the values obtained by following the first method.

The corresponding values are plotted in Figure 4 and summarized in Table 4. Please note that for
both DNS and experiments, the value of ζ(3) is different from 1, which is apparently incompatible with
the famous Kolmogorov 4/5th law that predicts ζ(3) = 1. This is because we use absolute values of
wavelet increments, while the Kolmogorov 4/5th law uses signed values. We have checked that using
unsigned values, we obtain a scaling that is closer to 1, but with larger noise. Note also that when we
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consider the relative value ζ(p)/ζ(3), we obtain values that are close to the values obtained [9] on the
same set of experimental data, using velocity increments and Extended Self-Similarity technique [15].

4.6. Multifractal Spectrum

From the values of ζ(p), one can get the multifractal spectrum C(h) by performing the inverse
Legendre transform:

C(h) = min
p

[ph + ζ(p)] (21)

Practically, this allows to use the following formula:

C
(d ζ(p)

d p

∣∣∣
p∗

)
= ζ(p∗)− p∗

d ζ(p)
d p

∣∣∣
p∗

(22)

To estimate C, we thus first perform a polynomial interpolation of order 4 on ζ(p), then derivate
the polynomial to estimate d ζ(p)

d p , thus get C through Equation (22). The result is provided in Figure 6b
for both the DNS and the experiment.

The curve looks like a portion of parabola, corresponding to a log-normal statistics for the wavelet
velocity increments. Specifically, fitting by the shape:

C(h) =
(h− a)2

2b
(23)

we get a = 0.35 and b = 0.045. This parabola also provides a good fit of the scaling exponents, as
shown in Figure 4 by performing Legendre transform of C(h) given by Equation (23).

5. Thermodynamics and Turbulence

5.1. Thermodynamical Analogy

Multifractal obeys a well-known thermodynamical analogy [8,16,17] that will be useful to interpret
and extend the general universality unraveled in the previous section. Indeed, considering the quantity:

µ` =
|δW`|3
〈|δW`|3〉

(24)

By definition µ` is positive definite and 〈µ`〉 = 1 for any `. It therefore can be interprated as a
scale dependent measure. It then also follows a large-deviation property as:

P [log(µ`) = E log(`/η)] ∼ elog(`/η)S(E) (25)

where S(E) is the large deviation function of log(µ`) and has the meaning of an energy while log(`/η)

has the meaning of a volume, and log(µ`)/ log(`/η) is an energy density. With the definition of µ`,
it is easy to see that S is connected to C, the large deviation function of |δW`|. In fact, since in the
inertial range where 〈|δW`|3〉 ∼ `ζ(3), we have S(E) = C(3h− ζ(3)). By definition, we also have:

S̃3p =
S3p

Sp
3

= 〈ep log(µ`)〉 (26)

so that S̃3p is the partition function associated with the variable log(µ`), at the pseudo-inverse
temperature p = 1/kBT. Taking the logarithm of the partition function S̃3p, we then get the free
energy F as:

F = log(S̃3p) (27)

By the Gärtner-Elis theorem, F is the Legendre transform of S: F = minE(pE− S(E)). The free
energy a priori depends on the temperature T = 1/kB p, on the volume V = log(`/η) and on the
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number of degrees of freedom of the system N. If we identify N = (1/β(Re)) log(L0/η), we see that
the general universality means:

F(T, V, N) = NF(T,
V
N

, 1) (28)

i.e., can be interpreted as extensivity of the free energy.
The thermodynamic analogy is thus meaningful and is summarized in Table 5. It can be used to

derive interesting prospects.

Table 5. Summary of the analogy between the multifractal formalism of turbulence and
thermodynamics.

Thermodynamics Turbulence

Temperature kBT 1/p

Energy E log(µ`)

Number of d.f. N log(Re) = log(L0/η)/β0

Volume V log(`/η)

Pressure P τ(p, `)

Free energy F log(S̃3p)

5.2. Multifractal Pressure and Phase Transition

Given our free energy, F = log(S̃3p), we can also compute the quantity conjugate to the volume,
i.e., the multifractal pressure as: P = ∂F/∂V. In the inertial range, where S̃p ∼ `τ(p), we thus get
P = τ(p), which only depends on the temperature. Outside the inertial range, P has the meaning of a
local scaling exponent that also depends upon the scale, i.e., on the volume V and on N (Reynolds
number). Using our universal functions derived in Figure 5, we can then compute empirically the
multifractal pressure P and see how it varies as a function of T, V and N. It is provided in Figure 7
for Rλ = 25 and Rλ = 53, and in Figure 8 for Rλ = 90 and Rλ = 138. We see that at low Reynolds
number, the pressure decreases monotonically from the dissipative range, reaches a lowest points and
then increases towards the largest scale. There is no clear flat plateau that would correspond to an
“inertial” range. In contrast, at higher Reynolds number, a plateau appears for p = 1 to p = 4 when
going towards the largest scale, the value of the plateau corresponding to τDNS. The plateau transforms
into an inflection point for p ≥ 5 making the derivative ∂P/∂V change sign. This is reminiscent of a
phase transition occurring in the inertial range, with coexistence of two phases: one “laminar” and
one “turbulent”. We interpret such a phase transition as the result of the coexistence of region of flows
with different Hölder exponents, with areas where the flow has been regularized due to the action of
viscosity, because of the random character of the dissipative scale (see below).
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Figure 7. Multifractal equation of state of turbulence. Multifractal pressure as a function of the volume
for Rλ = 25 (line) , Rλ = 53 (dashed-dotted line). The functions are coded by color. (a) p = 1: blue
symbols; p = 2: orange symbols; p = 4: magenta symbols; p = 5: green symbols; (b) p = 6: light
blue symbols; p = 7: red symbols; p = 8: blue symbols; p = 9: orange symbols. The colored dotted
line (resp. dashed dotted line) are values corresponding to P(p, V) = τEXP(p) (resp. τDNS(p)), that are
reported in Table 4.
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Figure 8. Same as Figure 7 for Rλ = 90 (line), Rλ = 138 (dotted line). Note the inflexion point
appearing in the curves.

6. Conclusions

We show that a deep analogy exists between multifractal and classical thermodynamics. In this
framework, one can derive from the usual velocity structure function an effective free energy that
respects the classical extensivity properties, provided one uses several degrees of freedom (given by
N = 1/β(Re)) that scales like log(Rλ). This number is much smaller than the classical N ∼ Re9/4

that is associated with the number of nodes needed to discretize the Navier-Stokes equation down
to the Kolmogorov scale. It would be interesting to see whether this number is also associated
with the dimension of a suitable “attractor of turbulence”. Using the analogy, we also find the
“multifractal” equation of state of turbulence, by computing the multifractal “free energy” F and
“pressure” P = ∂F/∂V. We find that for large enough Rλ and p (the temperature), the system
obeys a phase transition, with coexistence of phase like in the vapor-liquid transition. We interpret
this phase transition as the result of the coexistence of region of flows with different Hölder
exponents, with areas where the flow is relaminarized due to the action of viscosity, because of
the random character of the dissipative scale. We note that this kind of phenomenon has already
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been observed in the context of Lagrangian velocity increments, using the local scaling exponent
ζ(p, ∆t) = d(log(Sp(∆t)))/d(log(∆t)) [18]. The phase transition is then associated with the existence
of a fluctuating dissipative time scale. It is further shown that in a multifractal without fluctuating
dissipative time scale, the local exponent decreases monotonically from dissipative scale to large scale,
implying a disappearance of the phase transition [19].
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