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Abstract
Background  The immune response within the tumor 
microenvironment plays a key role in tumorigenesis 
and determines the clinical outcomes of head and neck 
squamous cell carcinoma (HNSCC). However, to date, a 
paucity of robust, reliable immune-related biomarkers has 
been identified that are capable of estimating prognosis in 
HNSCC patients.
Methods  High-throughput RNA sequencing was 
performed in tumors and matched adjacent tissues 
from five HNSCC patients, and the immune signatures 
expression of 730 immune-related transcripts selected 
from the nCounter PanCancer Immune Profiling Panel 
were assessed. Survival analyzes were performed 
in a training cohort, consisting of 416 HNSCC cases, 
retrieved from The Cancer Genome Atlas (TCGA) database. 
A prognostic signature was built, using elastic net-
penalized Cox regression and backward, stepwise Cox 
regression analyzes. The outcomes were validated by 
an independent cohort of 115 HNSCC patients, using 
tissue microarrays and immunohistochemistry staining. 
Cell-type identification by estimating relative subsets of 
RNA transcripts (CIBERSORT) was also used to estimate 
the relative fractions of 22 immune-cell types and their 
correlations coefficients with prognostic biomarkers.
Results  Collectively, 248 immune-related genes were 
differentially expressed in paired tumors and normal 
tissues using RNA sequencing. After process screening 
in the training TCGA cohort, four immune-related genes 
(PVR, TNFRSF12A, IL21R, and SOCS1) were significantly 
associated with overall survival (OS). Integrating these 
genes with Path_N stage, a multiplex model was built 
and suggested better performance in determining 
5 years OS (receiver operating characteristic (ROC) 
analysis, area under the curve (AUC)=0.709) than others. 
Further protein-based validation was conducted in 115 
HNSCC patients. Similarly, high expression of PVR and 
TNFRSF12A were associated with poor OS (Kaplan-
Meier p=0.017 and 0.0032), while high expression of 
IL21R and SOCS1 indicated favorable OS (Kaplan-Meier 
p<0.0001 and =0.0018). The integrated model with 
Path_N stage still demonstrated efficacy in OS evaluation 
(Kaplan-Meier p<0.0001, ROC AUC=0.893). Besides, the 
four prognostic genes were significantly correlated with 
activated CD8+ T cells, CD4+ T cells, follicular helper 
T cells and regulatory T cells, implying the possible 

involvement of these genes in the immunoregulation and 
development of HNSCC.
Conclusions  The well-established model encompassing 
both immune-related biomarkers and clinicopathological 
factor might serve as a promising tool for the prognostic 
prediction of HNSCC.

Introduction
Head and neck squamous cell carcinoma 
(HNSCC) is frequently lethal and is the 
most common malignancy, comprised a 
heterogeneous group of tumors that arise 
from the squamous epithelium of the oral 
cavity, oropharynx, larynx, and hypopharynx. 
Despite significant advances in multidisci-
plinary treatments, the 5-year overall survival 
(OS) rate of locally advanced HNSCC has 
remained approximately 50% in recent 
decades.1–3 Given the rising incidence and 
poor survival rates associated with HNSCC, 
better prognostic tools and biomarkers that 
are capable of accurately predicting the 
behaviors of tumors are urgently necessary, to 
better tailor prevention, screening, and treat-
ment approaches for HNSCC.4–6

Emerging evidence suggests that cancer 
cells can activate different immune pathways, 
resulting in immunosuppressive functions 
and determining the immune microenvi-
ronment of tumors.7 The systematic inves-
tigation of immune phenotypes within the 
HNSCC microenvironment represents a 
promising method for better understanding 
the complex antitumor response and to 
guide effective immunotherapies.8–10 Many 
ongoing trials are focused on the iden-
tification of new biomarkers, including 
PD-L1, PD-L2, and interferon (IFN)-γ, to 
serve as potential surrogates for the predic-
tion of clinical outcomes.11–13 However, to 
date, apart from human papillomavirus 
(HPV) status, few robust, highly reliable, 
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predictive or prognostic biomarkers have been identified 
for HNSCC.4 14

The genomic features of tumors and their micro-
environments represent promising candidates for use 
as predictive and prognostic biomarkers.15–17 RNA 
sequencing (RNA-seq) has been an indispensable tool 
for the investigation of gene networks associated with 
immunomodulatory mechanisms and the identification 
of candidate biomarkers.18 19 Although the molecular 
profiles of immune components and certain indicators 
can improve the accuracy of predicting tumor progres-
sion for risk stratification, the heterogeneity of HNSCC, 
which derives from the different tissue origins, suggests 
that rather than a single biomarker, a pooled gene panel 
will be necessary to accurately detect multiple tumor 
histotypes and determine prognosis.

Here, we analyzed HNSCC transcriptomic data from 
multiple patient cohorts, which resulted in the identi-
fication of four immune-related genetic signatures that 
can be used to guide the prediction of tumor progres-
sion and prognosis in patients. Then, we used tissue 
microarray (TMA) analysis, to verify protein expres-
sion levels. Gene expression-based immune cell quan-
tification was performed, and the relationship between 
different immune cell subgroups and established markers 
was assessed. Overall, these data indicated that the four 
identified biomarkers, combined with the pathological 
regional lymph node metastasis (Path_N) stage, might 
be practical indicators for predicting the heterogeneous 
clinical behaviors and prognosis of HNSCC patients.

Methods
Patient samples
Fresh paired tumor and adjacent normal tissues were 
collected from five HNSCC patients, treated between 
October 2014 and January 2015, and subjected to RNA-
seq analysis. A total of 416 HNSCC cases from The Cancer 
Genome Atlas (TCGA) database (https://​tcga-​data.​nci.​
nih.​gov/​tcga/) were recruited as a training cohort, and 
corresponding genome-wide mRNA expression (stan-
dardized reads per kilobase per million mapped reads) 
and clinicopathological information (age, sex, histo-
logical type, pathological tumor (T), node (N), and 
metastasis (M) stages, HPV status, follow-up data, etc) 
were obtained. Tumor tissues from another 115 HNSCC 
patients treated between June 2007 and June 2014 were 
collected as a validation cohort, and TMA with immu-
nohistochemistry (IHC) staining was used to evaluate 
protein expression. The selected patients were patho-
logically diagnosed as primary HNSCC and underwent 
surgery at the Head and Neck Surgery Department of the 
Affiliated Tumor Hospital of Nanjing Medical University. 
Before the operation, patients did not receive any other 
treatments, such as radiotherapy or chemotherapy. The 
histopathological tumor types were defined according to 
the criteria established by the WHO. The eighth edition 
of the American Joint Committee on Cancer staging 

system was used to grade the tumor, node, metastasis 
(TNM) stage of each case, based on clinical, radiological, 
and pathological findings. Tissue samples were stored in 
liquid nitrogen or 10% formalin solution for subsequent 
RNA extractions or paraffin embedding, respectively. The 
corresponding tissue adjacent to the tumor was defined as 
adjacent normal tissue (located >3 cm from the tumor), 
which was confirmed pathologically. All participants 
provided written informed consent.

Illumina HiSeq 2500 RNA-seq
RNA-seq analysis was performed on the Illumina HiSeq 
2500 platform (Illumina, San Diego, CA), by CapitalBio 
Corporation, using paired tissue samples from the five 
HNSCC patients, as described previously.20 In brief, a 
sequencing library was generated using the NEBNext 
Ultra directed RNA library preparation kit (NEB, 
Ipswich, MA) for Illumina. The library was sequenced 
using a high-throughput, 125 bp, paired terminal pattern, 
and conducted on the Illumina HiSeq 2500 platform. 
During data analysis, base calls were performed using 
bcl2fastq2 (V.2.20.0) software. The ngsqc-toolkit (V.2.3.3) 
was employed to filter the readings, and the detached 
reader TopHat (V.2.0.13) was used to align the readings 
with the genome. The mismatch was set to 2, and the 
default parameters were used. A total of 770 immune-
related human genes were referred to as candidate genes 
from the nCounter PanCancer Immune Profiling Panel 
(NanoString, LBL-10 043-08_nCounter_PanCancer_
Immune_Profiling_Panel_Gene_List), among which 40 
were deemed internal reference genes and demonstrated 
no correlating with immune response.21 The detailed 
annotations are listed in online supplementary table S2.

Bioinformatics analysis
The software R package limma (V.3.40.6) was used to 
calculate the fold-change of transcripts and to screen for 
differentially expressed genes (DEGs)22 in the RNA-seq 
cohort. A fold-change larger than two and an adjusted 
p value less than 0.05 were set as the cut-off values for 
screening significant DEGs. Cluster analysis and heatmap 
generation were performed using the R package clus-
terProfiler (V.3.12.0) and pheatmap (V.1.0.12), respec-
tively.23 Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway analyzes for 
the dysregulated genes were performed by ClueGO25 
(V.2.5.5), within Cytoscape (V.3.7.1). A false-discovery 
rate less than 0.05 was set as the cut-off value.

For significant DEGs, the elastic net-penalized Cox 
proportional hazards (PHs) model was used to select 
genes with significant power for prognostic value in the 
TCGA cohort. Elastic net, a combination of Ridge and 
least absolute shrinkage and selection operator (LASSO) 
methods, was used to select prediction features. The 
regularization parameter, λ, was determined by 10-fold 
cross-validation, whereas the L1-L2 trade-off parameter, 
α, was set to 0.5, with equal Ridge and LASSO penal-
ties. The potential prognostic factors selected by the 
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Figure 1  Differentially expressed immune signatures in head and neck squamous cell carcinoma (HNSCC) and associated 
enriched Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. (A) Expression levels of 730 
immune-related genes in HNSCC tissues (T) and matched normal tissues (N) are shown in the heatmap. Generally, these genes 
were divided into five categories: adaptive, general, humoral, inflammation, and innate immune response genes. (B) Distribution 
of significantly dysregulated genes across the five gene categories. The major dysregulated genes were enriched in the general 
immune response category, and the number of upregulated or downregulated genes appeared to be similar across categories. 
(C) All 730 genes assessed in HNSCC are shown in the volcano plot. Red dots represent upregulated genes, and blue dots 
represent downregulated genes, which were defined as genes with p values less than 0.05 and fold-changes larger than 2. (D) 
Significantly enriched GO and KEGG pathways. Circles represent enriched GO pathways, and diamonds represent enriched 
KEGG pathways. Objects with the same colors belong to the same group, with labels in the same color found on the side. GO 
and or KEGG pathways that interact are aligned; otherwise, pathways were placed alone.

elastic net-penalized CoxPH regression were subjected 
to a multivariate CoxPH regression analysis, to adjust the 
risk scores of each selected gene for prognostic clinical 
parameters. Then, variables exhibiting significance in the 
adjusted analyzes were entered into a backward, stepwise-
elimination Cox regression model.

IHC analysis
IHC data for HNSCC tissues and normal oral mucosa 
tissues were downloaded from the Human Protein Atlas 

(HPA) database (​www.​proteinatlas.​org), to validate 
the DEGs. Moreover, TMAs, containing tumor tissues 
from 115 HNSCC patients, were constructed for IHC 
staining and the semi-quantitation of IHC staining. The 
TMA blocks were made using a TMA Grand Master 3D 
instrument (Histech, Budapest, Hungary) by punching 
1 mm cores from formalin-fixed and paraffin-embedded 
tissue samples of 115 HNSCC patients. Briefly, all slides 
were exposed to 3% hydrogen peroxide for 10 min 
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Table 1  Clinical and pathological characteristics of HNSCC 
patients in TCGA cohort and TMA cohort

Characteristics

TCGA
cohorts
(n=416)

Tissue array
cohorts
(n=115) P value

Age

 � ≤40 17 (4.1%) 1 (0.9%) 0.029

 � 40–60 184 (44.2%) 40 (34.8%)

 � ＞60 215 (51.7%) 74 (64.3%)

Sex

 � Male 302 (72.6%) 85 (73.9%) 0.779

 � Female 114 (27.4%) 30 (26.1%)

Tumor location

 � Oral cavity 287 (68.9%) 55 (47.8%) <0.001

 � Oropharynx 26 (6.3%) 4 (3.5%)

 � Larynx 103 (24.8%) 56 (48.7%)

Tumor grade

 � G1 54 (13.0%) 40 (34.8%) <0.001

 � G2 250 (60.1%) 61 (53.0%)

 � G3 96 (23.1%) 14 (12.2%)

 � G4 1 (0.2%) 0

 � Gx 15 (3.6%) 0

Path_T stage

 � T1 40 (9.6%) 44 (38.3%) <0.001

 � T2 120 (28.8%) 36 (31.3%)

 � T3 92 (22.1%) 15 (13.0%)

 � T4 164 (39.4%) 20 (17.4%)

Path_N stage

 � N0 158 (38.0%) 84 (73.0%) <0.001

 � N1 63 (15.1%) 15 (13.0%)

 � N2 157 (37.7%) 16 (13.9%)

 � N3 6 (1.4%) 0

 � NX 32 (7.7%) 0

TNM stage

 � I 23 (5.5%) 40 (34.8%) <0.001

 � II 69 (16.6%) 28 (24.3%)

 � III 75 (18.0%) 19 (16.5%)

 � IV 249 (59.9%) 28 (24.3%)

HNSCC, head and neck squamous cell carcinoma; TCGA, The 
Cancer Genome Atlas; TMA, tissue microarrays; TNM, tumor, 
node, metastasis.

to block endogenous peroxidase activity. Poliovirus 
receptor antibody (PVR/CD155, Sigma-Aldrich, poly-
clonal, hpa012568, 1:200, antirabbit), tumor necrosis 
factor receptor superfamily member 12A (TNFRSF12A, 
Abcam, monoclonal, #ab109365, 1:100, antirabbit), 
interleukin-21 receptor (IL-21R, Proteintech, poly-
clonal, #10533-ap,1:100, antirabbit), and suppressor of 
cytokine signaling 1 (SOCS1, CST, polyclonal, #B1254S, 
1:200, antirabbit), incubated with tumor sections in a 

humidified chamber at 4°C overnight, followed by the 
secondary antirabbit peroxidase-conjugated secondary 
antibody (EnVisionTMDetection Kit, Dako, Glostrup, 
Denmark) at 37°C for 30 min. Both negative (without 
the primary antibody) and positive controls were carried 
out in each run. Each tissue chip was scanned with a 3D 
HISTECH Panoramic (MADE in Hungary) scanner, and 
the 3D HISTECH Quant center 2.1 scanning analysis 
software was used for H-score evaluation. The software 
will automatically identify all dark brown on the tissue 
section as strong positive, brown yellow as moderate posi-
tive, light yellow as weak positive, and blue cell nuclei as 
negative. After that, a manual discrimination is made to 
modify the corresponding threshold, and a color selec-
tion scheme is saved as a unified standard for this indi-
cator. Then the system identifies and analyzes the strong 
positive, moderate positive, weak positive and negative 
signals for each tissue and finally output the positive area 
ratio and H-score. H-score=1×percentage (%) of weakly 
stained cells+2×percentage (%) of moderately stained 
cells+3×percentage (%) of strongly stained cells.

Estimation of immune-cell type fractions
Cell-type identification by estimating relative subsets of 
RNA transcripts (CIBERSORT), a deconvolution algo-
rithm reported by Newman et al, can characterize the cell 
composition of complex tissues, based on normalized 
gene expression profiles (GEPs).24 25 In this study, CIBER-
SORT (https://​cibersort.​stanford.​edu/) and leucocyte-
signature matrix 22 (LM22) were used to quantify the 
proportions of immune-cell types in the HNSCC samples 
from the TCGA data. Normalized gene expression data 
were analyzed using the CIBERSORT algorithm, running 
1000 permutations. The CIBERSORT p value reflects the 
statistical significance of the results, and a threshold less 
than 0.05 is recommended. Finally, samples with CIBER-
SORT p values less than 0.05 were included in correlation 
analyzes between genes and immune-cell types.

Statistical analysis
DEGs were compared with Student’s t-test, and those with 
p values less than 0.05 and fold-changes larger than two 
were viewed as being dramatically dysregulated. Survival 
curves were compared using the Kaplan-Meier method 
and the log-rank test. One-way analysis of variance was 
used to compare immune-cell type proportions among 
the TCGA cohort. Clinicopathological features were 
compared by χ² tests or Wilcoxon tests for the TCGA and 
TMA cohorts. All tests were two-sided, and a p value of less 
than 0.05 was considered to be significant unless stated 
otherwise. Data were analyzed using R (V.3.6.1).

Results
Identification of differentially expressed immune signatures in 
HNSCC
We generated RNA-seq profiles for tumors and paired 
normal tissues from five treatment-naïve patients, 

https://cibersort.stanford.edu/
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Table 2  Selected variables according to the Cox proportional hazards regression analyzes results in TCGA data

Variables

Unadjusted covariates Age-sex-grade-stage Path_T-Path_N-adjusted covariates

HR (95% CI) P value HR (95% CI) P value

TNFRSF12A 1.006 (1.003 to 1.01)

‍ ‍

<0.001 1.009 (1.002 to 1.010)

‍ ‍

0.001

ABCB1 0.405 (0.233 to 0.705) 0.002 0.398 (0.166 to 0.963) 0.001

PVR 1.020 (1.009 to 1.031) <0.001 1.016 (1.006 to 1.02) 0.002

IL11RA 0.789 (0.673 to 0.947) 0.01 0.772 (0.583 to 0.962) 0.008

APP 1.003 (1.001 to 1.004) 0.008 1.002 (1.001 to 1.004) 0.009

IL21R 0.819 (0.706 to 0.950) 0.008 0.811 (0.652 to 0.970) 0.01

SOCS1 0.973 (0.953 to 0.994) 0.013 0.975 (0.955 to 0.997) 0.024

LIF 1.027 (1.001 to 1.055) 0.045 1.027 (1.00 to 1.014) 0.053

FADD 1.009 (1.002 to 1.017) 0.014 1.007 (1.00 to 1.014) 0.056

THBS1 1.003 (1 to 1.006) 0.038 1.002 (1.00 to 1.006) 0.07

NOS2 0.899 (0.803 to 1.007) 0.065 0.9 (0.783 to 1.018) 0.079

MAGEA4 1.003 (0.999 to 1.007) 0.076 1.003 (0.999 to 1.007) 0.093

IL22RA2 0.75 (0.554 to 1.015) 0.063 0.778 (0.472 to 1.085) 0.11

TMEFF2 1.325 (0.935 to 1.876) 0.113 1.327 (0.972 to 1.683) 0.12

C7 0.952 (0.87 to 1.042) 0.285 0.941 (0.842 to 1.041) 0.234

SPINK5 0.998 (0.995 to 1.001) 0.147 0.998 (0.996 to 1.001) 0.253

CD34 0.951 (0.877 to 1.033) 0.237 0.959 (0.878 to 1.041) 0.321

IL1R2 0.997 (0.992 to 1.002) 0.252 0.997 (0.993 to 1.002) 0.353

IL24 0.999 (0.991 to 1.007) 0.841 1.003 (0.995 to 1.012) 0.385

TTK 1.021 (0.967 to 1.076) 0.453 1.024 (0.970 to 1.080) 0.387

POU2AF1 0.978 (0.931 to 1.027) 0.372 0.976 (0.924 to 1.030) 0.391

CCL23 1.162 (0.751 to 1.796) 0.499 1.148 (0.709 to 1.589) 0.537

CRP 0.893 (0.523 to 1.524) 0.678 0.894 (0.324 to 1.466) 0.702

Twice per day 1.006 (0.983 to 1.029) 0.61 1.003 (0.979 to 1.027) 0.791

MX1 0.999 (0.994 to 1.004) 0.733 0.999 (0.995 to 1.004) 0.855

MAP4K4 0.994 (0.908 to 1.089) 0.909 0.996 (0.905 to 1.089) 0.943

MSR1 1.024 (0.966 to 1.084) 0.422 1.002 (0.943 to 1.062) 0.944

IL23A 0.996 (0.964 to 1.03) 0.853 0.999 (0.968 to 1.031) 0.977

BST2 1 (0.999 to 1.001) 0.924 0.999 (0.999 to 1.001) 0.996

TCGA, The Cancer Genome Atlas.

whose clinical and pathological characteristics are listed 
in online supplementary table S1. Previous studies 
suggested that HNSCC consists of inflammatory cancers, 
associated with the dysregulation of cytokines or chemo-
kines and the recruitment of immune cells.26 To identify 
immune-cell type expression across the different HNSCC 
samples, we performed an unsupervised analysis of 730 
immune-related genes from the RNA-seq data. Based 
on GO annotations, the 730 immune signatures were 
classified into five groups: adaptive, general, humoral, 
inflammation, and innate immune response genes 
(online supplementary table S2). Hierarchical clustering 
revealed dissimilar gene expression patterns between 
normal tissues and HNSCC tissues (figure 1A). A total of 
248 immune-related genes were identified as significant 
DEGs (p<0.05) (online supplementary table S3), among 
which 174 were upregulated and 74 were downregulated. 
Moreover, a rose diagram showed that the majority of 

these dysregulated immune-related genes were associated 
with general immune response processes, and no obvious 
enrichment trends for aberrant genes in any of the four 
groups were observed (figure 1B). The most significantly 
upregulated and downregulated genes were C-X-C motif 
chemokine ligand 5 (CXCL5) and mitogen-activated 
protein kinase 3 (MAPK3), respectively (figure 1C).

GO enrichment analysis revealed that this set of immune 
signatures was involved in the inflammatory response 
and diverse immune processes, including the activation 
of the immune response, immune-cell trafficking, regu-
lation of lymphocyte proliferation, and leucocyte acti-
vation (figure 1D, online supplementary table S4). The 
Toll-like receptor, cytokine-cytokine receptor interaction, 
Janus kinase (JAK)-signal transducer and activator of tran-
scription (STAT), and nuclear factor (NF)-κB signaling 
pathways were significantly enriched in the KEGG anal-
ysis (figure  1D, online supplementary table S5). Taken 
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Figure 2  Kaplan-Meier plots and receiver operating characteristic (ROC) curves of the survival-associated genes in head and 
neck squamous cell carcinoma, using The Cancer Genome Atlas data. (A–D) Kaplan-Meier plots of the four survival-associated 
genes. Patients were divided into high-expression (red line) and low-expression (blue line) groups, based on their gene 
expression levels according to the best cut-off value for each gene. (E) Kaplan-Meier plot of the prognostic predictor, including 
the four genes PVR, TNFRSF12A, IL21R, and SOCS1 and Path_N stage. Patients were divided into high-risk (red line) and low-
risk (blue line) groups, according to the best cut-off value for the prediction of the predictor. (F) ROC curves for each parameter, 
with area under the curve (AUC) scores.

together, these dysregulated immune signatures indicated 
dynamic complexity and the heterogeneous behaviors of 
immune responses in the tumor microenvironment of 
HNSCC.

Generation of prognostic immune signatures in HNSCC
In the training cohort of 416 HNSCC cases from TCGA 
(table  1), survival data were obtained for each patient, 
and univariate and multivariate analyzes were conducted 
to assess the relationships between clinical parameters 
and survival outcomes. As shown in online supplemen-
tary table S6, Path_N stage (HR 1.299, 95% CI 1.157 to 
1.458) was a potential independent prognostic factor for 
OS (p<0.001). Because a large majority of predicted alter-
native transcripts may not be translated into proteins, the 
antibody-based profiling of the HPA database was used 
to compare analyzes of both RNA and protein levels, 
with higher reliability. One hundred and twenty-seven 
genes of which encoded proteins were absent or not 
varied in HNSCC tumors and paired normal tissues were 

eliminated (online supplementary figure S1). Of the 
remaining 121 protein-coding genes, 72 genes, with fold-
changes larger than 2, were examined using the elastic 
net-penalized CoxPH regression analysis. The elastic net-
penalized CoxPH model identified a pool of 29 genes 
that were closely associated with OS in the TCGA cohort 
(table  2). After 29 potential prognostic factors were 
subjected to multivariate CoxPH regression analyzes, 
to adjust the risk scores of each selected gene for age, 
sex, histological grade, pathological TNM stage, patho-
logical T stage, and N stage, a total of seven genes (PVR, 
TNFRSF12A, IL21R, SOCS1, ABCB1, IL11RA, and APP) 
were selected as prognostic candidates. The backward, 
stepwise-regression method further minimized this pool 
to four genes, including PVR (HR=1.020, 95% CI 1.009 to 
1.031), TNFRSF12A (HR=1.006, 95% CI 1.003 to 1.010), 
IL21R (HR=0.819, 95% CI 0.706 to 0.950), and SOCS1 
(HR=0.973, 95% CI 0.953 to 0.994), using the minimum 
akaike information criterion procedure.

https://dx.doi.org/10.1136/jitc-2019-000444
https://dx.doi.org/10.1136/jitc-2019-000444
https://dx.doi.org/10.1136/jitc-2019-000444
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Figure 3  Representative images of PVR, TNFRSF12A, 
IL21R, and SOCS1 expression in HNSCC tissues by 
immunohistochemistry (IHC) staining. The column tissue 
microarray (TMA) shows representative images of tissue 
chips, and the columns HIGH and LOW show representative 
images of IHC staining on each chip.

Furthermore, the HNSCC patient cohort was subdivided 
into high-expression and low-expression subgroups (best 
cut-off values were calculated by survminer R package 
(V.0.4.6)) according to the best expression levels of 
these four genes. Kaplan-Meier plots revealed that highly 
expressed PVR (p=0.008) and TNFRSF12A (p=0.00025) 
were associated with inferior survival, whereas patients 
with highly expressed IL21R (p=0.00036) and SOCS1 
(p=0.00017) suggested improved survival compared with 
those with low expression (figure 2A–D). Based on afore-
said results, a multiplex model encompassing the tran-
script expression level of four genes and Path_N stage 
was built and high-risk patients had worse OS rates than 
those with low-risk (median: 22.2 months vs 90.6 months; 
p<0.0001) (figure 2E). Receiver operating characteristic 
(ROC) curves showed that the four-gene expression and 
Path_N stage integrated prediction model had an area 
under the curve (AUC) value of 0.709 in evaluating 5 years 
OS, which was much higher than any individual factor or 
the four-gene combination alone (figure 2F). HPV status 
and CD8+ T cell abundance were shown to have prognostic 
value in HNSCC.27 Thus, we estimated the prognostic effi-
ciencies of HPV status assessed with p16 (HPV_p16) and 
HPV DNA detected by in situ hybridization (HPV_ISH), 
and CD8+ T cell abundance, which returned AUC values 
of 0.556, 0.549, and 0.547, respectively (online supple-
mentary figure S2A–C). The expression of four genes was 
also combined with HPV status, CD8+ T cell abundance, 
Path_T stage, Path_TNM stage, and pathological tumor 
grade, which all returned disadvantaged AUC compared 
with established multiplex model (online supplemen-
tary figure S2D–I). A further attempt about integrating 
CD8+ T cell abundance into the model was performed 
but still achieved an inferior result (AUC=0.703) (online 
supplementary figure S2J). These results indicated the 

outperformance of the final predictor model for distin-
guishing between favorable and unfavorable OS rates in 
HNSCC patients.

Protein-level validation of established prognostic factors
To validate the transcriptomic data for these four candi-
date immune genes, we used the results from protein 
profiles, available in the HPA, to confirm the HNSCC 
tissue enrichment of these gene products at the protein 
level. Representative images of IHC-stained HNSCC 
tissues and normal oral tissues were obtained from the 
HPA database and are shown in online supplementary 
figure S3. The fractions of samples with high, medium, 
low, or undetectable antibody staining were determined 
by gray-scale color-coding. For the significantly upregu-
lated genes, PVR, TNFRSF12A, IL21R, and SOCS1, the 
majority of HNSCC samples (75%–100%) showed high 
or medium expression, whereas all normal oral tissues 
showed undetectable or low expression. Despite the 
lack of sufficient samples and statistical analysis, obvious 
trends could be observed for the IHC staining results, 
which were largely consistent with the results of the RNA-
seq data analysis.

To further validate the predictive abilities of immune 
signatures, a total of 115 diagnosed HNSCC patients from 
the Nanjing Medical University Affiliated Cancer Hospital 
were enrolled as an independent cohort (table 1). The 
TMA, which uses patient-derived tissues, can detect 
protein biomarkers using IHC evaluation; therefore, 
the HNSCC patients were subdivided into two groups 
(HIGH and LOW), based on the expression of prog-
nostic factors, using the H-score system (figure  3A–D). 
PVR, TNFRSF12A, IL21R, and SOCS1 were chosen as 
candidates, and their prognostic values, relative to the 
OS rate, were evaluated in our validation cohort. As 
expected, high levels of specific signals were detected in 
HNSCC tissues, whereas low or no expression/staining 
was observed in the normal tissues (online supplemen-
tary figure S4). Consistent with the previously reported 
findings, the expression of PVR, TNFRSF12A, and IL21R 
were observed in the plasma membrane and cytosol, 
whereas SOCS1 staining was observed in the nucleus and 
cytosol.

Similar to the transcript-based analysis, Kaplan-Meier 
curves revealed that patients with either PVRHigh or 
TNFRSF12AHigh had significantly lower postoperative OS 
compared with PVRLow or TNFRSF12ALow patients, respec-
tively (PVRHigh vs PVRLow: p=0.017; median, 91.0 months 
vs >maximum follow-up of 115 months; TNFRSF12A-
High vs TNFRSF12ALow: p=0.0032; median, 66.0 months 
vs >maximum follow-up of 115 months) (figure  4A,B). 
Conversely, patients with either IL21RHigh or SOCS1High 
had superior OS rates compared with patients with 
IL21RLow or SOCS1Low, respectively (IL21RHigh vs 
IL21RLow: p<0.0001; median, >maximum follow-up of 
115 months vs 61.0 months; SOCS1High vs SOCS1Low: 
p=0.0018; median, >maximum follow-up of 115 months 
vs 64.0 months) (figure  4C,D). The results confirmed 

https://dx.doi.org/10.1136/jitc-2019-000444
https://dx.doi.org/10.1136/jitc-2019-000444
https://dx.doi.org/10.1136/jitc-2019-000444
https://dx.doi.org/10.1136/jitc-2019-000444
https://dx.doi.org/10.1136/jitc-2019-000444
https://dx.doi.org/10.1136/jitc-2019-000444
https://dx.doi.org/10.1136/jitc-2019-000444
https://dx.doi.org/10.1136/jitc-2019-000444
https://dx.doi.org/10.1136/jitc-2019-000444
https://dx.doi.org/10.1136/jitc-2019-000444
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Figure 4  Immunohistochemistry (IHC) validation of prognostic factors in head and neck squamous cell carcinoma. (A–D) 
Kaplan-Meier plots of each gene, with red lines representing the high-expression groups, whereas the blue lines represent 
the low-expression group (using median cut-off values). (E) Kaplan-Meier plots for the prognostic predictor, built with the four 
molecules PVR, TNFRSF12A, IL21R, and SOCS1 and the Path_N stage (using median cut-off values). (F) Receiver operating 
characteristic (ROC) curves for each parameter, with area under the curve (AUC) scores.

that PVR and TNFRSF12A were unfavorable prognostic 
factors, whereas IL21R and SOCS1 predicted favorable 
prognosis in HNSCC patients. Consistent with the anal-
ysis of the TCGA cohort, the multiplex model encom-
passing these four genes and Path_N stage was built and 
high-risk patients had worse OS rates than those with low-
risk (median, 30.0 months vs >maximum follow-up of 115 
months; p<0.0001) (figure 4E). ROC analysis showed that 
the AUC value of the four-gene expression plus Path_N 
stage was 0.893 in evaluating 5 years OS, which was much 
higher than any individual factor or the four-gene combi-
nation alone (figure  4F). Taken together, our results 
demonstrated that the multiplex model seemed a robust 
and valuable indicator for predicting the prognosis of 
HNSCC patients.

Correlation between prognostic factors and tumor-infiltrating 
immune cells
Because immune cells are important components of the 
tumor microenvironment and are intensively correlated 
with outcomes and immune-therapy responses, we used 
the CIBERSORT algorithm to estimate the abundances 
of 22 different immune-cell types in the TCGA HNSCC 

cohort. Similar to findings for other tumors, macro-
phages (M0, M1, and M2), CD4 resting-memory T cells, 
and resting natural killer (NK) cells account for larger 
proportions of the infiltrating immune cells in HNSCC 
tumors than other cell types (figure 5A). Pearson correla-
tion analysis revealed a correlation between prognostic 
factors and immune-cell types (online supplementary 
figure S5). These four prognostic factors were primarily 
correlated with activated CD8+ T cells, CD4+ T cells, 
follicular helper T cells, and regulatory T cells (Tregs) 
(figure 5B). Kaplan-Meier plots revealed that these four 
immune-cell types were significantly associated with 
patient outcomes, and patients with high levels of these 
four immune-cell types (best cut-off values were calcu-
lated by survminer R package (V.0.4.6)) had a signifi-
cantly better prognosis than other HNSCC patients 
(figure  5C–F). Consistently, PVR and TNFRSF12A were 
negatively correlated with activated CD8+ T cells, CD4+ 
T cells, follicular helper T cells, and Tregs, whereas 
IL21R and SOCS1 were positively correlated with all 
four immune-cell types. Taken together, these correla-
tions between prognostic factors and immune-cell types 

https://dx.doi.org/10.1136/jitc-2019-000444
https://dx.doi.org/10.1136/jitc-2019-000444
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Figure 5  Correlations between the four genes and immune-cell types and the Kaplan-Meier plots of the related immune cells. 
(A) Proportions of 22 immune-cell types, calculated by cell-type identification by estimating relative subsets of RNA transcripts, 
in head and neck squamous cell carcinoma patients from the The Cancer Genome Atlas database. (B) Correlation analysis 
between the four prognostic-associated immune genes and four immune-cell types, by Pearson’s correlation analysis. The 
correlation coefficients are shown in each cell, and the asterisks present significance (*p<0.05; **p<0.01;***p<0.001). (C–F) 
Kaplan-Meier plots of CD8+ T cells, activated CD4+ memory T cells, follicular helper T cells, and regulatory T cells, with red lines 
representing high-expression groups and blue lines representing low-expression groups (using best cut-off values).

suggested the significant involvement of these genes in 
the immune response during HNSCC.

Discussion
HNSCC is characterized by high proliferation, regional 
lymph node metastasis, and poor prognosis, with approx-
imately 550,000 new cases diagnosed yearly worldwide.1 
The current study used high-throughput, second-
generation sequencing data from HNSCC and paired 
normal tissues to perform differential expression anal-
ysis of immune-relevant genes and then identified their 

prognostic values using the TCGA database. Emerging 
data suggest that whole-genome transcriptomics with 
insights on immune-related genes can help determining 
the prognosis of cancer patient or responses to indi-
vidual immunotherapies.28 We are aware of published 
immune signatures associated with IFN-γ signaling and 
activated T-cell biology, which can be used to predict 
clinical responses to Programmed cell death protein 1 
(PD-1) checkpoint blockade treatment in melanoma 
and HNSCC cohorts.29 30 Importantly, we identified 
three significantly dysregulated genes, including STAT1, 
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CXCL11, and PRF1, in our GEPs that were also included 
in the 28-gene IFN-γ-related inflammation signature 
reported in this study,29 and STAT1 was validated as 
being significantly associated with the response to active 
pembrolizumab therapy in HNSCC patients, regardless 
of viral status. However, IFN-γ-based GEPs are insufficient 
to provide accurate and comprehensive estimates of the 
relative abundance of immune genes. Here, we explored 
730 genes covering both the adaptive and innate immune 
responses and validated the results by using HNSCC 
samples and the TCGA cohort. Our results showed that 
the most upregulated and downregulated immune genes 
in HNSCC were CXCL5 and MAPK3, respectively. CXCL5 
is a strong granulocyte chemokine that recognizes and 
binds to C-X-C motif chemokine receptor 2 (CXCR2), 
and MAPK3/extracellular signal-related kinase 1 (ERK1) 
is an important serine/threonine kinase, involved in the 
MAPK pathway, and both play immunoregulatory roles 
in tumor immunity and angiogenesis.31–33 Interestingly, 
we noticed that B7-H3/CD276, an immune checkpoint 
in T cells, was aberrantly dysregulated in HNSCC speci-
mens and might represent a potential therapeutic target, 
as the inhibition of B7-H3 has been shown to increase 
antitumor immune responses by decreasing immuno-
suppressive cells and promoting cytotoxic T-cell activa-
tion in HNSCC animal models.34 Enrichment analysis 
also showed that DEGs are primarily involved in immune 
response activation, T-cell activation, and the JAK/STAT 
and NF-κB pathways, indicating that performing immune 
profiles of HNSCC may reveal prognostic biomarkers and 
play important roles in antitumor immunity.

To identify the most intriguing biomarkers associated 
with clinical outcomes, we used the TCGA database to 
screen for substantial DEGs in HNSCC tumor tissue, 
resulting in a total of 72 candidate genes for survival anal-
ysis. Of these, 29 genes were identified as being closely 
related to the OS rate among HNSCC patients, by elastic 
network-penalized CoxPH analysis. A prediction model 
involving four genes (PVR, TNFRSF12A, IL21R, and 
SOCS1) and the Path_N stage was constructed, using a 
multivariate CoxPH regression, and the prognostic effi-
cacy of this signature was further verified by IHC analysis 
in an independent cohort. We also analyzed established 
prognostic factors, including HPV status and the abun-
dance of CD8+ T cells, for prognostic efficiency. Our 
prediction model significantly stratified both the TCGA 
cohort (AUC=0.709) and our independent cohort 
(AUC=0.893) according to OS and was superior to other 
prognostic signatures.

Our analysis is also likely to provide biological and 
therapeutic information.35 Notably, PVR (CD155), a 
member of the nectin immunoglobulin family, is highly 
expressed in many malignant tumors and contributes 
to tumor immunosuppression. In recent years, PVR-
targeted therapeutic monoclonal antibodies have been 
applied in ongoing clinical trials for patients with solid 
tumors.36 TNFRSF12A (Fn14), a subgroup of the TNF 
receptor family, acts by binding to its ligand, TNF-related 

weak inducer of apoptosis (TWEAK), and contributes to 
carcinogenesis by activating the NF-κB pathway. Blocking 
the TWEAK/FN14 pathway, using Fn14 antibodies, may 
provide therapeutic benefits for tumor-associated inflam-
mation.37 IL21R and SOCS1 are both involved in the 
regulation of the JAK/STAT signaling pathway and can 
activate antitumor immunity, mediated by promoting 
the proliferation and differentiation of T and B cells, 
enhancing the cytolysis of NK cells, and inhibiting inflam-
mation and tumorigenesis.38 39 These genes are character-
ized by increased expression, which is associated with the 
immune response and highlights the diverse biological 
processes that may provide avenues for further research 
in HNSCC. The expression levels of PVR and TNFRSF12A 
were related to the poor prognosis of HNSCC patients, 
whereas IL21R and SOCS1 predicted a better prognosis. 
Although profound insights into the mechanisms and 
biological processes associated with these genes remain to 
be explored, these characteristics make them biomarker 
candidates, suggesting that our prediction model, which 
includes these four genes combined with the Path_N 
stage, may be a promising prognostic biomarker in 
HNSCC. Moreover, the combined evaluation of transcript 
and protein levels may improve the prognostic robustness 
of molecular biomarkers.

Tumor-infiltrating lymphocytes determine the progres-
sion and aggressiveness of tumors and are a source of 
important prognostic information for patients.40 CIBER-
SORT is an algorithm that allows for the highly sensitive 
and specific discrimination of 22 human immune-cell 
phenotypes, using a machine-learning approach called 
support vector regression. To further elucidate the rela-
tionships between immune-related genes and the tumor 
microenvironment, we used CIBERSORT to quantify 
the proportions of HNSCC immune cells in TCGA and 
correlated immune-cell expression with the expression 
of the four identified prognostic genes. We found that 
M2 macrophages and resting-state CD4+ memory T cells 
were dominant, indicating an immunosuppressive state 
in HNSCC. Given the complex interplay between tumor 
genomics and antitumor immune responses, prediction 
algorithms that incorporate multiple biomarkers and 
information regarding immune infiltrates are likely to be 
necessary for accurate patient stratification. Consistent 
with the prognostic abilities of the four identified genes, 
correlation analyzes between the four genes and the 22 
immune-cell types showed that the poor prognostic genes 
PVR and TNFRSF12A were negatively correlated with 
activated CD4+ T cells, CD8+ T cells, follicular helper T 
cells, and Tregs, whereas IL21R and SOCS1 were posi-
tively correlated with the above four cell types, suggesting 
that these four genes can partially reflect the state of 
the immune microenvironment in HNSCC. As noted in 
previous studies, the high level of Treg infiltration was 
positively associated with prognosis in HNSCC, which may 
support our results.6 10 41 However, the molecular mecha-
nism underlying Treg enrichment and their function in 
HNSCC remain to be elucidated. Therefore, developing 
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meaningful signatures that can determine the immune 
status of a patient is appealing. These signatures could be 
powerful prognostic biomarkers and, if correctly applied, 
facilitate patient stratification when determining immu-
notherapeutic outcomes.

Conclusions
Here, we performed RNA-seq analysis of immune-related 
genes in HNSCC, resulting in an independently validated 
prediction model, which includes four genes combined 
with the Path_N stage, and identified immune-cell types 
with significant prognostic associations for further study. 
Importantly, this prognostic signature performed well in 
both the HNSCC TCGA cohort and in patients from our 
clinical center. Prognostic factors associated with HNSCC 
could reflect immune disorders within the tumor micro-
environment and independently distinguish patients with 
high risks of reduced survival. Thus, our novel predictive 
biomarkers, which include genetic characteristics, may 
not only provide novel insights into the underlying mech-
anisms and biological behaviors associated with HNSCC 
but may also benefit clinical decision-making for patients 
in the future.
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