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Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous

system (CNS) characterized by destruction of themyelin sheath structure. The loss

of myelin leads to damage of a neuron’s axon and cell body, which is identified as

brain lesions onmagnetic resonance image (MRI). The pathogenesis ofMS remains

largely unknown. However, immune mechanisms, especially those linked to the

aberrant lymphocyte activity, aremainly responsible for neuronal damage. Th1 and

Th17 populations of lymphocytes were primarily associated with MS pathogenesis.

These lymphocytes are essential for differentiation of encephalitogenicCD8+ T cell

and Th17 lymphocyte crossing the blood brain barrier and targeting myelin sheath

in the CNS. B-lymphocytes could also contribute to MS pathogenesis by

producing anti-myelin basic protein antibodies. In later studies, aberrant function

of Treg and Th9 cells was identified as contributing to MS. This review summarizes

the aberrant function and count of lymphocyte, and the contributions of these cell

to themechanisms ofMS. Additionally, we have outlined the novelMS therapeutics

aimed to amend the aberrant function or counts of these lymphocytes.

KEYWORDS

T lymphocytes, B lymphocytes, biomarkers, immune pathogenesis, CNS, multiple
sclerosis, therapy
Introduction

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous

system (CNS) characterized by disruption of myelin sheath integrity and damage to

axons and bodies of neurons (1). Initially, this destruction is microscopic in size, which

accumulates over the years, presenting with CNS lesions, which could appear
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disseminated temporary and spatially. Clinical manifestation of

MS has a wide range of neurological symptoms ranging from a

loss of sensation to impaired muscle function, visual loss,

cognitive dysfunction, etc. (2). The MS diagnostic criteria

reflect a pattern of CNS lesion development by incorporating

the signs of disseminated CNS damage identified with magnetic

resonance imaging (MRI) and clinical symptoms (3, 4).

Although diagnosed in all age groups, most MS patients are

between 20 and 40 years old (5–8). Among them, there is a

higher prevalence of MS in women as compared to men (8).

Pathogenesis of autoimmune disease is explained by a loss of

immune tolerance to self-proteins due to a combination of

genetic susceptibility and environmental provocation. This

could result in the generation of autoreactive T and B

cells. This review summarizes the latest advances in our

understanding of the autoreactive lymphocyte populations that

are identified as playing role in the pathogenesis of MS. The cells

recently found to be affected in MS include GM-CSF-secreting

effector T cells (9), DR2a and DR2b-derived self-peptides

specific CD4+ T cell clones (10), glutamate producing

Th17 cells (11), GM-CSF+ CXCR4+T cells (12), CD4

+CD25hiCD127lowFOXP3+ Tregs (13), MBP-specific CD8+ T

cells (14), circulating CD8+ CD20+ T memory cells (specific to

myelin) (15) and regulatory B cells (Bregs) producing IL-10 and

IL-35 (16). The autoreactive CD4+ T cells cross-reacting with

DR2a and DR2b-derived self-peptides shown as a contributing

to MS pathogenesis (10). The glutamate producing Th17 cells

could cause damage to oligodendrocytes, exposing myelin

antigens as a target to autoreactive lymphocytes (11).

GM-CSF+ CXCR4+T cells express significantly higher

amounts of VLA-4, a CXCR4 ligand, associated with an

increase in lymphocyte trafficking to the CNS (17). Studies

have shown that the MBP-specific CD8+ T cells could

exacerbate brain inflammation (18). Circulating CD8+ CD20+

T memory cells were found with up-regulation of activation

markers, pro-inflammatory cytokines, and adhesion molecules,

indicating that they could have a high pathogenic potential (19).

About 2.8 million cases of MS were diagnosed worldwide in

2020 (7). Interestingly, a greater burden of MS was reported in

countries with high socio-economic status (20). This observation

is supported by the high-risk of MS in Northern Europe and

North America, where ≥100 cases are diagnosed per 100,000

population (20, 21). A lower risk of MS is found in Africa and

Asia, where the prevalence is <30 cases per 100,000 population

(22–24). An analysis of MS frequency led to identification of

three zones of global MS prevalence: high (30-80 cases per

100,000 population), medium (5-25 cases per 100,000

population) and low (<5 cases per 100,000 population) (25).

An updated five-zone scale of MS prevalence was proposed by

Wade: very high (170–350 cases per 100,000 population), high

(70–170 cases per 100,000 population), medium (38–70 cases

per 100,000 population), low (13–38 cases per 100,000

population), and very low (0–13 cases per 100,000 population)
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(26). The very high and high prevalence zones of MS were

reported in North America and Northern Europe, while Asia

and Africa were in the lower zone (27). It appears that

populations with European ancestry (28) are at a higher risk,

due to higher MS prevalence reported in Australia and New

Zealand (27). This assumption is also supported by finding

higher MS prevalence in Russia (30-<60 cases per 100,000

population) as compared to that in China (0-<30 cases per

100,000 population) (27). Within Russia, the incidence rate of

MS is also higher in the North-West regions, where the

population is predominantly of European ancestry (29). In

China, MS prevalence remains low, although an increasing

trend was recently reported (30, 31). It also appears that

residence sites are one of the risk factors of MS, as more MS

cases were diagnosed at high latitude and high altitude

locations (31).
Risk factors of MS

The pathogenesis of MS remains largely unknown mainly

due to the limited understanding of the disease ethology.

Multiple risk factors of MS were identified representing

unrelated elements such as latitude, serum vitamin D (vitD)

levels, genetics and virus infection (32). However, neither one of

these factors was recognized as the single cause of the disease

suggesting that the pathogenesis of the disease is multifactorial.
Genetic and epigenetic risk factors

The role of the genetics in MS pathogenesis is widely

recognized and supported by a large body of evidence. This

includes a higher frequency of MS found in siblings (33–35) as

well as in individuals closely related to MS probands (36). Also

finding the link between Human leukocyte Antigen (HLA)

DRB1*1501 haplotype and MS in Northern European

populations supported this assumption (37). A separate subset

of haplotypes, the HLA-DRB1*0301, HLA-DRB1*0405 and

HLA-DRB1*1303 haplotypes, is found in MS from

Mediterranean region (38). Similarly, the association between

HLA-DRB1 was demonstrated in Russian and Chinese MS

patients (39, 40).

Epigenetic modifications, which includes histones and DNA

post-translational modification, could represent the

environment induced modification of gene expression (41).

These epigenetic modifications were also implemented to play

role in pathogenesis of MS (42). Supporting this assumption was

the study demonstrating differentially methylated region (DMR)

composed of eight hypomethylated CPGs in HLA-DRB1 in MS

(43) . Thi s data emphas i s ing the cont r ibut ion of

hypermethylation of ring finger protein 39 (rnf39) at an

independent MHC site to MS pathogenesis. In a recent study,
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the DMR hypomethylation in the HLA-DRB1*15:01 locus was

found in the blood cells of MS patients. This study demonstrated

that the hypomethylation of this MS susceptibility gene locus

can induce the high expression of HLA-DRB1, found in these

patients (44). Additionally, a significant hypermethylation of

Foxp3 promoter was reported in EAE mice (45). It was

demonstrated that expression of FOXP3 gene in EAE is

significantly reduced by methylation of conserved non-coding

sequence 2 (CNS2).
Latitude and VitD serum level as risk
factors of MS

Other extensively documented risk factors are latitude and

serum VitD levels. A latitudinal gradient with an increased south

to north prevalence of MS was documented in Northern America

and Northern Europe (46). Similar patterns of higher number of

MS cases in the northern as compared to southern regions within

the same country is also reported (47, 48). Latitudinal gradient with

lower number of cases in the south regions is found in Russia and

China (29, 31). The latitude dependent risk of MS could be

explained by the lesser sunlight exposure in the north as

compared to south regions (32). This lesser sun exposure could

also explain the commonly found lower VitD serum levels in MS

patients (49). The effect of VitD levels was explained by decreased

intensity of ultraviolet B (UVB) radiation in northern latitudes (50).

In addition to regulation of VitD synthesis, UVB could ameliorate

symptoms of MS by inhibiting production of pro-inflammatory

cytokines (51).
Virus infection as risk factor of MS

The role of viral infection in pathogenesis of MS was

suggested in multiple studies (52–54). It is based on the

epidemiological evidence of higher risk of MS in individuals

infected with Epstein-Barr virus (EBV) and diagnosed with

infectious mononucleosis (52). In a recent study, Bjornevik

et al. presented strong evidence of the association between

EBV infection and MS (53). This study also identified EBV as

a potential infectious agent causing MS. The role of this virus in

MS pathogenesis is also supported by elevated anti-EBV serum

antibody titers (55) and by detection of EBV in MS lesions (56,

57). The mechanisms of EBV causing MS remains largely

unknown. It is believed that EBV could inhibit the production

of antiviral cytokines and proteins, and interfere with the antigen

processing and presentation (58). Production of the autoreactive

immune cells responsible for an aberrant self-targeting immune

response is also suggested (59). This assumption is supported by

findings of antibodies cross reacting with myelin basic protein

(MBP) and EBV latent membrane protein 1 (LMP1) (60). This

cross reactivity was explained by the homology between MBP
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and LMP1. The role of LMP1 in MS pathogenesis was supported

by the demonstration that the exposure to this virus protein

could induce myelin-reactive antibodies in vivo (61).
Gut microbiome

The gut microbiome contributes to the activation and

development of innate and adaptive immune responses (62).

The imbalance in the interaction between microbiota and

immune cells could contribute to the pathogenesis of immune-

mediated disorders, such as MS. Supporting this assumption are

multiple studies demonstrating changes in the microbiome in

MS (63–66). These changes in the microbiome were linked to

MS activity, such as the risk of relapse and detection of new

lesions (67). Alterations in the gut microbiome were

demonstrated in the different forms of MS, where the short-

chain fatty acids producing bacteria reduced in RRMS, while

bacteria associated with excessive DNA oxidation were found in

SPMS (65).

Studies have demonstrated that changes in the gut microbiome

could affect lymphocyte activation and differentiation. It was

demonstrated that MS gut microbiota could inhibit the

interaction between T-cell C-C chemokine receptor type 9

(CCR9) and its ligand chemokine (CCL25) leading to a reduction

of CCR9+ CD4+ T cell counts in circulation (68). A correlation has

been found between a high frequency of Th17 and increased

Firmicutes/Bacteroidetes ratio (69) which was evident by an

increased Streptococcus and decreased Prevotella species number.

The authors state that these patients had higher MS activity. In

another study, a reduced number of Clostridia species, producing

short-chain fatty acids was found in PPMS (70). Using EAE model

of MS, the therapeutic potency of short-chain fatty acids was

demonstrated which was linked to the development of Tregs (71).

Dysbacteriosis characterized by increased Methanobrevibacter and

Akkermansia species combined with decreased Butyricimonas

species was reported in MS (70). Supporting the role of

Methanobrevibacter in MS pathogenesis was finding the reduced

duration of relapse in patients with higher of this species (65). Also,

Akkermansia species could contribute to MS pathogenesis by

promoting inflammatory response by blood leukocytes (72).

These data suggest that MS is characterized by a change in

gut microbiome, which could contribute to a reduction of Tregs,

while promoting the development of pathogenic Th17

lymphocytes. Also, dysbacteriosis could support inflammation

and facilitate the differentiation of lymphocytes with

proinflammatory activity.
Cigarette smoking

Smoking was identified as an MS risk factor in many studies

(73–75). Manouchehrinia et al’s study confirmed smoking as a
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risk factor by demonstrating that “ever-smokers” had a 41%

higher chance of MS diagnosis as compared to “never smokers”

(75). Smoking could affect the immune system function by

inducing oxidative stress, the release of pro-inflammatory

cytokines, and increasing nitric oxide (76–78). Cigarette

smoking could contribute to MS pathogenesis by affecting the

differentiation and activation of the different lymphocyte

populations. It was demonstrated that smoke could trigger the

development of auto-aggressive T cells, cross-reactive with CNS

antigens in MS (79). Proinflammatory T cells producing IL-17

were increased in MS smokers (80). A study by Hedstrom et al.

had shown a 41% risk of having MS in subjects having HLA-

DRB1*15 without HLA-A*02 (81). Smoking could also have

epigenetic mechanisms contributing to MS pathogenesis by

affecting DNA methylation (82).

These data indicate multiple mechanisms of cigarette

smoking contributing to MS pathogenesis. It could be

suggested that smoking contributes to MS pathogenesis by the

combined effect of activation of pro-inflammatory leukocytes,

epigenetic modification, and genetic markers of predisposition

to the disease.
Sex of the patient

The sex of the patient contributes to the risk of MS, due to a

reported 3:1 female to male ratio (83). It appears that puberty,

early onset of menarche in particular contributes to the risk of

MS diagnosis (84). It remains unclear whether this is a result of

the rising level of sex hormones. However, evidence suggests that

female sex hormones could contribute to the progression of the

disease. This assumption is supported by reports showing

amelioration of MS symptoms during pregnancy (85). Also, a

reduction of disability levels during pregnancy in MS was

reported (86), although, lack of long-term effect on disability

scores was also documented in other studies (85, 87).

Although the sex of the patient appears to be a risk factor,

there is still a lack of strong evidence establishing sex hormones

as contributing to onset of MS pathogenesis. Therefore, it could

be suggested that sex could contribute to MS when combined

with other risk factors. Supporting this assumption is the study

by Irizar et al. demonstrating the association between female sex

and HLA-DRB1*15:01 haplotype (88). A combination of HLA-

DRB1*15:01, an established MS risk factor, with female sex was

also demonstrated by Chao et al. (89). The authors also found

that this haplotype is more likely to be transmitted from a

mother to a girl rather than to a boy.

Female sex hormones were shown to modulate the immune

response by promoting the development of Tregs, reducing Th1

and Th17 cells activity, as well as supporting Th2 lymphocytes

differentiation (90–92). The anti-inflammatory effect of

estrogens was also confirmed using EAE, an MS model (93, 94).
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Obesity

Childhood obesity was reported as a risk factor for MS (95,

96). It appears that having a high body mass index (BMI) in

childhood could increase the probability of MS diagnosis (96).

The odds ratio for MS diagnosis increased as BMI increased

reaching 3.76 in extremely obese individuals (65). Interestingly,

obesity was significantly associated with MS diagnosis in girls,

while it was not found in boys (95). In another study, obesity was

demonstrated as a risk factor during adolescence (97), while it

had a limited contribution in children. These differences could

be attributed to using different approaches, BMI or body

silhouettes, to assess obesity (96, 98). Still, childhood obesity is

believed to contribute to MS diagnosis, as Ascherio et al.

suggested reduction of childhood obesity could reduce MS

diagnosis by15% (99).

Chronic inflammation is commonly found in obese patients

(100). Activation of inflammatory cytokines such as IFN-g and
TNF-a was demonstrated in obese individuals (101). This

inflammation could be promoted by a disturbed gut

microbiome, which is often found in this group of patients

(102). This gut dysbiosis could shift the Treg/Th17 ratio toward

pathogenic Th17 population (103), which has been linked to

pathogenesis of MS (104). Association between obesity and low

levels of vitD, another risk factor of MS was found (46, 105, 106).

These data suggest that the higher risk of MS could be the

combined result of many risk factors, such as inflammation,

Th17 activation, and low vitD levels induced by obesity.
Pathogenesis of MS

Several hypotheses were developed to explain the

pathogenesis of MS, including the role of viral infection and

genetic predisposition, which are studied more extensively.

Although the trigger of MS remains unknown, the consensus

is that pathogenesis is based on the activation of auto-aggression

against myelin proteins, causing defects in the CNS structure.

These myelin proteins form a multilamellar myelin sheath

around the axons and neuron cell bodies. The sheath is

composed of several proteins such as MBP, myelin-associated

glycoprotein (MAG) and proteolipid protein (107). Also, a

myelin oligodendrocyte glycoprotein (MOG) is located on the

surface of the myelin sheath (108) and functions as an adhesive

receptor as well as connects neighbouring myelinated

fibers (109).

Abnormalities in immune mechanisms were suggested as

protagonists in pathogenies of MS. This assumption is based on

finding of the reduced number and activity of circulating T-

regulatory (Tregs) cells, which correlated with an exacerbation of

the disease symptoms (110, 111). Tregs counts were shown to be

reduced during relapse, and restored during remission in MS
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patients (111). The role of immune mechanisms in the

pathogenesis of MS was also confirmed by histological studies,

indicating the presence of leukocyte infiltrate in the plaques

within the CNS (112, 113). One of the most substantial pieces of

evidence supporting the immune mechanisms of the disease is

the detection of antibodies and leukocyte clones specific to brain

antigens, among which the MBP appears the most immunogenic

(114, 115). However, the mechanism of the autoimmune

response activation in MS remains unclear.

There is substantial clinical and experimental data

identifying MOG as a target for auto-reactive leukocytes in

MS. This assumption is supported by detection of anti-MOG

antibodies in some MS patients (116, 117), indicating the

development of auto-reactive B cells. An increased count of

MOG-reactive T cells in blood and cerebrospinal fluid (CSF)

of MS patients was reported (117). The role of MOG in MS

pathogenesis was also confirmed in the experimental

autoimmune encephalitis (EAE) mouse model, where this

glycoprotein was shown as inducing an encephalitogenic T

cell response and antibody-mediated demyelination (118).

Augmentation of demyelination in EAE by monoclonal

antibodies directed against MOG further supports the

pathogenic role of this protein in brain demyelination

(119) . Some of the s t ronges t ev idence for MOG

contribution to MS pathogenesis comes from the clinical

study by Berger et al. with detection of anti-MOG and anti-

MBP IgM, predicting the conversion of a clinically isolated

syndrome, a fits episode of neurological symptoms prior the

disease, to MS (116).

In addition to MOG, studies have demonstrated the

presence of circulating antibodies against MBP in MS patients

(114, 115). Accumulation of T- lymphocytes specific for MBP

was also demonstrated in the CNS (120) and CSF (18).

Additionally, studies showed prolonged circulation of MBP

specific lymphocytes in the blood of MS patients (18). The

role of MBP-specific lymphocytes in the pathogenesis of MS

was demonstrated in the EAE model, where the transfer of

lymphocytes specific for this myelin protein induced symptoms

similar to those of MS (121). Phenotype studies have identified a

population of myelin-specific lymphocytes as effector cells or

memory cells (122, 123).

These auto-aggressive T lymphocytes could cross the

blood-brain barrier (BBB) and initiate myelin destruction in

the CNS. BBB is formed by tightly connected endothelial cells

located at the luminal surface of the brain blood vessels (124).

In addition to the endothelial cells, astrocytes, a neuroglia

cells, maintain the integrity of BBB (125) by locating between

the endothelial cells and neurons. Astrocytes form a

perivascular end-feet at the BBB controlling the movement

of molecules between brain and blood (126). This barrier

function of BBB was shown to be altered in many

neuroinflammatory diseases, including MS (127). It is

believed that the disruption of the BBB integrity is one of
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the critical initial steps in MS pathogenesis, which is required

for auto-reactive T cells infiltration of CNS (125). The

mechanism of T lymphocyte infiltration could be explained

by an increased expression of adhesion molecules on BBB

endothelial cells in MS (128). The role of adhesion molecules

in leucocyte trans-BBB migration was also supported by their

expression on inflammatory cells such as macrophages and

lymphocytes in MS lesions (129, 130).

Once the BBB integrity is disrupted in MS, it could lead to

CNS infiltration with activated lymphocytes, which is

facilitated by an increased expression of adhesion molecules

on endothelial cells, and inflammatory cytokines (131). CD4

+T lymphocytes play a key role in initiating and maintaining

the autoimmune response in MS (131). Studies have also

shown the essential role of CD8+ T cells in maintaining the

myelin damage and inflammation. It is generally accepted

that cytokines secreted by Th1 cells, such as IFN-g and TNF-

b, can activate macrophages to damage oligodendrocytes,

resulting in pathological myelination (132). HLA-E-

restricted CD8+ Tregs induced by IFN-g, could reduce CD4

+T lymphocyte counts and induce secretion TGF-b by local

cells (133). Studies have shown that inhibiting Th1 and/or

Th17 cells and increasing the number of circulating Tregs

could suppress the progression of MS (134). CD8+T cells

ra ther tha t CD4+ lymphocytes were found more

characteristic in MS plaques (135).
MS immune response

Autoreactive T cells in MS

MS pathogenesis is explained by leukocytes, mainly T and B

lymphocytes, infiltration of the brain and spinal cord (136). It

was suggested that the inflammation in the CNS selectively

recruits autoreactive T cells which could target the

autoantigens in brain tissue (26). It is believed that the

autologous myelin reactive T cells are initially primed to CNS

autoantigens in the periphery and then cross the BBB entering

the brain (137). Within the brain tissue, these leukocytes could

activate microglia and macrophages, promoting local

inflammation (138) (Figure 1). It appears that the lymphocyte

distribution is population specific where CD8+ T cells are mostly

found at the edge, while CD4+ T cells are located deep within the

lesions (139). Also, their role in the diseases’ stage was

demonstrated as CD8+ T cells were frequently found in acute

lesions (140). In addition to the autoreactive lymphocyte’s

migration across the BBB, the reduced regulatory T cell

function was shown to promote autoimmune response in MS

(141). The hyperactivation of Th1 cells could lead to tissue

damage and chronic inflammation (142), which is frequently

found in autoimmune diseases (143). Th17 cells are known for

secreting high levels of interleukin (IL) 17A, IL-17F, IL-21 and
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for low production of interferon g (IFN-g) (144). Cytokines, such
as transforming growth factor b (TGF-b), IL-6, IL-1b and IL-23,

are implicated in Th17 development and maintenance (145). In

another study, the high frequency of Th1, Th17 and granulocyte-

macrophage colony-stimulating factor (GM-CSF)-secreting

effector T cells have been reported in MS (146). Together,

these cells could cause the death of myelin-producing

oligodendrocytes, directly damage the myelin sheath of the

nerve fibers, and impact brain tissue integrity forming lesions

in the CNS.
CD4+ T cells

The key role of CD4+ T cells was demonstrated when

activated myelin-reactive CD4+ T cells were found in the

blood and CSF of MS patients (12). In contrast, only non-

activated myelin-reactive T cells were detected in controls. Study

of CD4+ cells contribution to MS pathogenesis identified the

HLA-DR15 allele as an antigen-presenting structure and epitope

source to autoreactive CD4+ T cells (147). The authors identified

the autoreactive CD4+ T cell clones that can cross-react with

DR2a and DR2b-derived self-peptides, as well as peptides from

foreign agents shown as potential cause of MS (147). CD4+ T
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cells could coordinate the adaptive immune response by

releasing cytokines and chemokines supporting the activation

of myelin-specific CD4+ T cells and their infiltration of the brain

(10) (Figure 2).

CD4+ T cells could differentiate into distinct Th cell

populations, identified by the repertoire of the surface

receptors and the cytokines secreted (148). To date, several Th

cell populations are recognized and characterized by secretion of

the lineage-defining cytokines (149). Among these, Th1 and

Th17 cell counts were shown to be increased at the onset of MS

(150). Secretion of IFN-g is characteristic for Th1 cells, which are
essential to mediate T-cell immune response (151). Th17 cells

are characterized by expression of retinoic acid-related orphan

receptor gamma t (RORgt) as well as a signal transducer and

activator of transcription 3 (STAT3) factor regulating the

production of pro-inflammatory cytokines IL-17, IL-6, IL-21,

IL-22, IL-23 and tumor necrosis factor a (TNF-a) (152).

Another subset of lymphocytes, named Th9 producing IL-9,

was shown as involved in regulation of the balance between

Th17 and Tregs (153, 154). An additional population of Th

lymphocytes was identified by Galli et al. which was

characterized by secretion of GM-CSF and expression of

CXCR4 in relapsing-remitting MS (RRMS) (146, 151).
FIGURE 2

CD4+T cells cross react with Epstein Barr Virus (EBV) and DR2
derived peptides in the periphery and myelin in the brain. Myelin
mimotopes could induce autoreactive CD4+ T cells by
presenting EBV and DR2a/DR2b derived peptides sharing
similarities with CNS self-antigens (i.e. myelin). These T cells
could recognize the target antigen on microglia, leading to
activation of CD4+ T cells. Activated T cells release cytokines
which could trigger demyelination and axon loss, CNS
inflammation and tissue injury.
FIGURE 1

Autoreactive T cells in pathogenesis of MS. In the lymph node, T
cells are primed to CNS autoantigens presented by APC, then
cross the Blood brain barrier (BBB) and enter the brain. In CNS,
they activate macrophages and microglia, which release
cytokines promoting local inflammation and tissue injury.
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Th17 cells

High Th17 cell counts and elevated IL-17 mRNA

transcription in the blood of MS patients were found

correlated with the severity of the disease (155). Large

numbers of Th17 cells were found in CSF at the early stage of

MS (156). These cells were characterized by high-level

expression of very late antigen-4 (VLA-4), a surface adhesion

molecule for CD4+T cells, directing their migration across the

BBB (156). Therefore, it was suggested that the inhibition of

VLA-4 expression can reduce the CD4+ T cells migration to

CNS and limit CNS inflammation (156). Th17 cells have

multifactorial contribution to MS pathogenesis. These cells

cou ld p roduce g lu t ama t e upon con t a c t i ng w i th

oligodendrocytes in CNS (11, 157). This high glutamate level

could cause damage to oligodendrocytes, exposing the myelin

antigens as a target to autoreactive lymphocytes (157). Th17

could contribute to chronic CNS inflammation (151). It was

shown that Th17.1 subpopulation, expressing the highest level of

IL-23 receptor and granzyme B, has a greater capacity to migrate

through the BBB (156). Upon stimulation with IL-23, these IL-

23R+ Th17 lymphocytes could produce GM-CSF, which could

change their phenotype to be more encephalitogenic and

support CNS inflammation (158). This is consistent with

findings in EAE model, where Th17 cells, maintained in the

presence of IL-23, became cytotoxic to oligodendrocytes and

neurons (156). Similarly, upregulation of GM-CSF and more

encephalitogenic phenotype of Th17 was demonstrated upon

exposure these cells to IL-1b (158), a proinflammatory cytokine

product of inflammasome (159).
Th9 cells

IL-9-producing CD4+ Th cells, Th9, are the most recently

discovered lymphocyte subset (154). These cells are

characterized by a substantial production of IL-9, as well as

IL-10 and IL-21 (160). Initially identified as a sub-lineage of Th2

cells, they require IL-4 for differentiation (161). However, unlike

Th2, TGF-bwas shown critical for Th9 differentiation (162). The
role of Th9 in the pathogenesis of MS was suggested as the IL-9

levels in CSF correlated inversely with indexes of inflammatory

activity, neurodegeneration, and progression disability (163).

These data suggest that Th9 product, IL-9, could have anti-

inflammatory effect in MS, consequently promoting remission.

Supporting this statement were findings using the EAE model. It

was demonstrated that mice with EAE receiving Th9 cell had

fewer lymphocyte infiltration in the meninges as compared to

those receiving Th1 and Th17 cells (164). Protective role of IL-9

was also shown by using IL-9R knockout mice, which had a

severe course of EAE (165). Interestingly, it appears that TGF-b
could support the differentiation of Th9 as well as non-

pathogenic Th17 (166). These, non-pathogenic Th17 were also
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shown to produce IL-9 (166). These data suggest that IL-9

produced by Th9 and non-pathogenic Th17 could be a

potential therapeutic target for treatment of MS.
GM-CSF+ CXCR4+T cells

An expanded Th cell subset was identified in CSF of RRMS

patients, which was characterized by expression of GM-CSF and

CXCR4 (146). CXCR4 could promote migration of lymphocyte

subsets with encephalitogenic capacity across BBB in MS.

Supporting the role of these cells in pathogenesis of MS was a

finding in twins expressing significantly higher amounts of VLA-

4, a CXCR4 ligand, associated with an increased lymphocyte

trafficking to the CNS (167). GM-CSF and CXCR4 expressing

cells were increased in MS as compared to other inflammatory

and non-inflammatory conditions (146). The number of these

cells was also reduced under the effective disease-modifying

therapy by using dimethyl fumarate (DMF). These data

indicate that these cells could represent a specific therapeutic

target in MS. This statement was supported by the fact that

knocking out GM-CSF substantially decreased the disease

severity, which was associated with lower lymphocyte

infiltration and inflammation in CNS (168).
Tregs

Tregs have an immune-modulating function by the release

of IL-10 and TGF-b (169). Multiple types of Tregs were shown

to contribute the maintenance of the immune homoeostasis, by

keeping autoreactive T and B cells from developing into the

auto-aggressive type (Figure 3). In MS, the aberrant activity of

effector T cells could be a result of reduced Treg function (170,

171). This assumption of insufficient Tregs function is supported

by decreased counts of resting population of this lymphocytes in

MS as compared to controls (172). Also, T cells appear resistant

to regulation by Tregs in MS. This deficiency could lead to

differentiation of pathogenic lymphocytes in MS (110,

173).Therefore, these population of T cells could be a potential

target for MS (174). Support for this is found in approved

disease-modifying drug, such as IFN-b for MS increased Treg

cell count, which could explain the mechanism of their

therapeutic efficacy (174, 175).

Since myelin-reactive T cells are found in healthy

individuals, it was suggested that MS pathogenesis could be

associated with insufficient immune regulation by Tregs (176).

Tregs could suppress the activity of Th1 and Th17 effector cells

(Teff), cytotoxic CD8+ T cells (Tc), and antigen-presenting cells

(APCs) by direct contact and secretion of suppressive cytokines

(177). By presenting myelin, APCs could trigger activation and

differentiation of pathogenic Th1 and Th17 cells, releasing pro-

inflammatory cytokines such as IFN-g, TNF-a and IL-17 (178).
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The encephalitic lymphocyte activation could be suppressed by

Tregs which inhibits the inflammatory response by reducing

pro-inflammatory cytokine release and by promoting T cell

anergy or apoptosis (177). However, the functionally defective

Tregs could contribute to the pathogenesis of MS (176). There

are two Tregs subpopulations, that express either CD4 or CD8

markers (179, 180). CD4+Tregs express the cytotoxic T-

lymphocyte-associated protein 4 (CTLA-4) which contributes

to inhibition of B and T cells proliferation and APCs function

(181–183). The CD8+Tregs are characterized by the ability to

suppress activation and proliferation of autoreactive CD4+

effector cel ls by cel l-to-cel l contact (184). Several

immunosuppressive markers such as CD25, CTLA-4, PD-1,

GITR, and transcription factors FoxP3 and Helios were found

on both CD8+ and CD4+ Tregs (185). It was shown that Helios

could stabilize the suppressive phenotype of both CD4+ Tregs

and CD8+ Tregs, by activating the STAT5 signalling pathway

(186). Interestingly, the expression of Helios in RRMS was

shown to be lower as compared to controls (186). These data

suggest that these Tregs in MS could have an unstable phenotype

and, when migrated to CNS lesions having inflammatory milieu,

they fail to continue maintaining immunoregulatory

function (187).
CD8+ T cells

Studies have shown that the MBP-specific CD8+ T cells

could exacerbate brain inflammation (18, 188). The

encephalitogenic effect of myelin-specific CD8+ T cells in MS

could involve the FasL dependent mechanisms, especially those
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promoting the formation of intracerebellar lesions (188). CD8+

T cells are the primary lymphocytes found in the CNS brain

lesions of MS patients and mice with EAE (18). Supporting the

role of CD8+ T cells in MS pathogenesis, was a finding that the

adoptive transfer of CD8+ enriched MOG-specific T cells could

induce EAE in mice (189). In another study, an increased

number of circulating CD8+ CD20+ T memory cells, specific

to myelin antigens was found in MS as compared to control

subjects. The expression of CD20 on these T cells correlated with

up-regulation of activation markers, pro-inflammatory

cytokines and adhesion molecules, indicating that they could

have high pathogenic potential. This assumption was supported

by experiments with an adoptive transfer of CD20+ T cells in

EAE mice, which caused the deterioration of the brain tissue

integrity and aggravation of the disease severity (190). The

proportion of memory and CD20+CD8+ T cells, specific for

myelin antigens, was significantly reduced following anti-CD20

treatment, indicating that the depletion of CD20+ T cells has

therapeutic potential in MS (190).
B cells

Originally, MS was believed to be a primarily T-cell

mediated disease with an imbalance of pro- and anti-

inflammatory cells in CNS inflammation. However, more

evidence suggests that B cells are also involved in the

pathogenesis of disease. Though not completely clear, but

both, antibody-dependent and independent mechanisms, are

now proposed as mechanisms of B-cell mediated CNS injury

in MS (188). Aberrant stimulation of B cells and plasma cells are
FIGURE 3

Role of Tregs in pathogenesis of MS. Tregs control of the immune homeostasis focused on preventing differentiation, proliferation and survival
of autoreactive myelin targeting CD8+, Th17 and B cells. This control depends on the direct contact as well as the release of IL-10 and TGF-b
by Tregs. It is believed that in MS, decreased activity and lower counts could reduce the regulatory capacity of Tregs. This could promote
survival, proliferation and differentiation of myelin reactive CD8, Th17 and B cells.
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suggested in MS (191). These cells could also inflict damage by

producing autoantibodies against specific myelin antigens. They

could produce autoantibodies affecting the course of MS (192).

In the EAE model, B cells were shown to interact with CD4+ T

cells and initiate an adaptive immune response to myelin

antigens. Reduced inflammation and alleviated clinical scores

were shown in rats with EAE after inhibiting B cell immunity

(193, 194). These data suggest that B cells could be used as

therapeutic targets for MS.

The direct evidence of the role of B cells in immunity comes

from histology analysis of the CNS. Lymphatic follicle-like

aggregates containing B cells were shown in meninges of MS

patients, similar to the secondary lymphatic tissue developed at

sites of chronic inflammation (195). The role of these aggregates

in MS pathogenesis is supported by finding their association

with more severe neuropathology and clinical disease. These

data identified the CNS location of auto-reactive B cells in MS,

which is the important for our understanding of the disease

pathogenesis as well as it provides the site for the potential

therapeutic targeting. Significant B cell infiltration is often found

along the small blood vessels at the site of myelin destruction,

suggesting the continuous production of mature B cells in CNS

causing local humoral immune response (196). This sustained

proliferation of B cells producing anti-myelin antibodies could

cause damage to the cerebral cortex and exacerbate the

progression of MS. Recently, B-cell depletion with anti-CD20

monoclonal antibodies was demonstrated as highly effective for

treatment of all forms of MS (197–200). The depletion of B cells

suppressed the inflammation and reduced the MS relapses,

suggesting that B cells play a central role in the pathogenesis

of MS.

Additionally, B cells could produce cytokines contributing to

MS pathogenesis. By producing IL-6, B cells could bias towards

differentiation of pathogenic Th cells capable of triggering EAE

(201, 202). This IL-6 derived pathogenic Th lymphocytes were

linked to expression of Fc fragment of IgM receptor (FCMR)

gene in Th17.1 population (203). The surface receptor FCMR

was identified as unique regulator of inflammatory autoimmune

responses and an attractive target for therapeutic intervention.

Inhibition of FCMR activity in vivo at an early or late stages of

EAE could prevent the disease progression (204). Additionally, B

cells could produce GM-CSF, a cytokine linked to the

pathogenesis of MS (145, 205).

The role of regulatory Bregs in pathogenesis of MS is

extensively explored in the last two decades. Bregs can mediate

immune tolerance and inhibit inflammation by producing IL-10

and IL-35 (206). IL-10 is anti-inflammatory cytokine which can

suppress the development of Th1 and enhance polarization of

Th2 lymphocytes (207, 208). Similar to IL-10, IL-35 has strong

anti-inflammatory activity by inhibiting differentiation of

pathogenic Th1 and Th17 as well as promoting development

of Bregs and Tregs (209, 210). In addition to IL-10 and IL-35,

Bregs could secrete TGF-b, thus, suppressing Th1 proliferation
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while promoting Treg cells differentiation (211). The role of

Bregs in pathogenesis of MS was demonstrated in a study, where

the reduction of the naïve/memory Bregs was found during a

relapse (212). Further, Kim et al. demonstrated reduced counts

of immature and highly regulatory Bregs in MS (213). These data

support the notion that Bregs could be a novel target for MS

therapy. The study has shown that treatment with alemtuzumab,

an anti-CD52 monoclonal antibody, increased these lymphocyte

counts, which correlated with the efficacy of MS therapy (214).

Similar results were presented by Zhang et al. confirming the

efficacy of alemtuzumab treatment which was linked to

reconstitution of these lymphocyte subset population (215).

Studies suggest that EBV could be one of the triggers of MS

(215). EBV infection also has a connection to B cells as it could

establish latent infection in memory B cells (216). Infection of

naïve and mature B cells with EBV could happen via CD21,

CD35 and HLA-DR, which contribute to the viral load and the

expansion of B cells (217). EBV produces latent member protein

1 (LMP1), which can promote the survival and immortalization

of B cells (56). These LMP1 expressing B cells are often found in

the brain of MS (56). Therefore, it was suggested that the

increased prevalence and the association between EBV and MS

could be a consequence of chronic B cell activation in these

patients (218).

In conclusion, it appears that B cells are involved in the MS

pathogenesis through (I) presenting antigenic peptides to T cells

and driving the self-proliferation of brain homing T cells

(possibly through memory B cells) (219), (II) producing

regulatory cytokines and chemokines and contributing to

differentiation of lymphocyte subpopulations and (III) serving

as a site for EBV infection.
Cytokines

Cytokines are small molecules with pleiotropic function

enabling cell communication in health and in pathology.

Cytokines could define the resolution of the pathological process

by contributing to the recovery and development of the immune

response. However, in some cases, they can support the destruction

of the host tissue, promoting the aberrant immune response. The

role of cytokines in pathogenesis of MS was demonstrated in

multiple studies identifying molecules contributing to the

development of inflammation, auto-aggressive T lymphocytes and

nervous tissue damage (220–224). Cytokines could contribute to the

pathogenesis of chronic inflammation in MS as well as

orchestrating leukocytes trans-BBB migration.

The current paradigm of MS pathogenesis is explained by

activation of Th1 and Th17 lymphocytes (225). Activation of

these lymphocyte populations is managed by a specific set of

cytokines. The Th1 cells differentiation is regulated by IFN-g, IL-
2 and TNF-a (150, 226). Also, activated Th1 can secrete IFN-g
and TNF-a, which maintain the inflammatory milieu and
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provide positive feedback to support differentiation of naïve T

cells to Th1 (227). These Th1 lymphocytes assist differentiation

of cytotoxic T lymphocytes (CTLs), playing a central role in

myelin disintegration (228). There are vast numbers of data

supporting the role of IFN-g and TNF-a in pathogenesis of MS.

These data demonstrated that IFN-g is expressed in MS lesions

(222, 223, 226, 229). Also, it appears that the overexpression of

IFN-g in the CNS could contribute to demyelination by

opposing the remyelination (230). Similar to IFN-g, increased
serum and CSF levels of TNF-a in MS patients correlated with

the disease severity and progression (231–233). Additionally, the

exacerbation of the disease symptoms was shown to correlate

with an increased serum level of this cytokine (234).

Demyelination appears to depend on TNF-a expression as it

correlates with the loss of myelin in grey matter at the time of

diagnosis and postmortem (235).

Th17 lymphocytes differentiation is tightly regulated and

requires TGF-b and IL-6 (236). Cytokines IL-21 and IL-23

support the proliferation and stabilization of Th17 lymphocyte

population (145). In the absence of TGF-b, a cocktail of IL-6, IL-
23 and IL-1b could control differentiation of Th17 (166). It was

demonstrated that the exposure of Th17 lymphocytes to IL-23

results in conversion of non-pathogenic to pathogenic

phenotype (145, 166). Increased serum level of IL-6, IL-23 and

IL-1b was demonstrated in MS (145, 223, 237). Interestingly,

reduced in serum, while increased in CFS was the level of TGF-b,
a key regulator of Th17 differentiation (238, 239). This elevated

TGF-b in CSF correlated with the disease relapse (240).

Studies have shown the Th17 lymphocyte plasticity, where

they could shift to Th1 cells (238, 241). This was confirmed by

finding Th17 phenotype lymphocyte population producing IL-

17 as well as IFN-g, a cytokine characteristic for Th1 cells (242).
Similarly, Th17/Th1 phenotype of Th17 lymphocytes was

reported by Cosmi et al. in patients with juvenile idiopathic

arthritis (242). This ability of Th17 to convert to pathogenic Th1

lymphocytes was demonstrated using EAE model of MS (243). It

appears that, depending on the cytokine microenvironment

(243), Th17 could obtain the pathogenic features of Th1

lymphocytes, producing IFN-g (244). The leading role in this

switch is played by IL-12, IL-23 and IFN-g (243).
Cytokines could also contribute to migration of autoreactive

T and B cells across the BBB. Supporting this, TNF-a was shown

to affect the distribution of tight junction and adherents junction

molecules, holding the endothelial cells together and reducing

BBB permeability (244). Also, a combination of TNF-a and IFN-

g could alter the architecture of the junction proteins.

Additionally, these cytokines could increase the expression of

adhesion molecules such as intercellular adhesion molecule 1

(ICAM), vascular cell adhesion molecule 1 (VCAM-1) and

selectins, which are required for leukocytes trans-endothelial

migration (245, 246). Similarly, IL-6 was shown to increase the

VCAM-1 expression and leukocyte recruitment to the spinal

cord. Cytokines, associated with Th17 lymphocyte activation
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also contribute to lymphocyte migration across the BBB. It was

demonstrated that endothelial cells express IL-17R and IL-22R,

promoting disruption of BBB integrity in MS patients (247). It

appears that IL-17 promotes lymphocyte migration by increased

expression of chemokine (C-C motif) ligand 2 (CCL2), IL-6 and

chemokine (C-X-C motif) ligand 8 (CXCL8) by endothelial cells

of BBB. Increased serum level of these chemokines was also

found in MS patients (222).

These data suggest that cytokines play a role in pathogenesis of

MSby: I. directingdifferentiationofT lymphocytes towards the auto-

reactive Th1 and Th17 phenotype and II. disrupting the integrity of

BBB and facilitating migration of these reactive leukocytes.

Therefore, cytokines as well as autoreactive lymphocytes could be

therapeutic targets for treatment of MS (Figure 4).
MS treatment targeting lymphocytes

MS remains life-lasting disease where its management is

aimed to facilitate the recovery after the relapse, delay the disease

progression and alleviation of symptoms (222, 248). Here, we

summarize the treatments strategies with a focus on T-cell

targeting. A schematic representation of the FDA approval for

MS therapeutics is summarized in Figure 5.
Disease-modifying treatments (DMTs)

DMTs such as IFN-b and glatiramer acetate, were amongst

the first agents commonly prescribed to MS patients (248). Their

therapeutic effects were explained by decreasing pro-

inflammatory cytokine production, reducing formation of MRI

lesions, inhibiting immune cell activation, and lowering matrix

metalloproteinase activity (249–251). Three major IFN-b
products were approved as the first line MS treatment based

on the phase III clinical trial results (252). It was demonstrated

that the mechanism of IFN-b therapeutic effect is based on the

enhancement of the forkhead box P3 (FoxP3) expression in

CD4+ and CD25+ Treg cells (253) and downregulation of HLA

expression on antigen presenting cells (254). The side-effects,

such as flu-like symptoms, elevated level of hepatic enzymes and

injection-site reaction, are mild and could be managed by

symptomatic treatment (255). Glatiramer acetate is an

alternative to IFN-b, with similar therapeutic effects; however,

it has aberrant effects such as dyspnea, palpitation, chest

tightness and flushing (256, 257).
Targeting sphingosine-1-phosphate
(S1P) receptor

With our advances in the understanding the lymphocyte role

in the pathogenesis of MS, the novel approaches were developed
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to correct the aberrant immune response and leukocyte

infiltration in CNS. The research now focused on the

identification of immune-modulating agents and monoclonal

antibodies, with the ability to restrain lymphocyte diapedesis

into the CNS through the BBB. Addressing this pressing need,

the therapeutic potentials of S1P inhibitors in MS were explored.

S1P is a sphingolipid that regulates lymphocyte migration and

enhances T cell survival (258–260). Fingolimod was the first oral

S1P1 modulator approved by the FDA in 2010 for the treatment
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of MS (248, 251). It is an anti-inflammatory drug with the

mechanism of action based on degrading the sphingosine-1-

phosphate (S1P) receptor on lymphocytes (250, 251), which is

required for their migration to the CNS (248). Phase III clinical

trial data indicate higher efficacy of fingolimod in reduction of

the relapse rate as compared to IFN-b (261). This drug has

multiple side effects including gastroenteritis, back pain,

lymphopenia, macular edema and, possibly, bradycardia and

atrioventricular blockage. Therefore, it is recommended only for
FIGURE 5

A timeline of FDA approval for MS therapeutics. The increasing color gradient in the circles indicates potential for higher toxicity, while the
increasing size of the circles indicates higher efficacy.
FIGURE 4

Role of cytokines in activation of T and B lymphocytes in MS. Activation of Th1 and Th2 lymphocytes was demonstrated in MS. Th1 lymphocyte
differentiation is regulated by IFN-g. Once Th1 cells are activated they produce more IFN-g stimulating differentiation and proliferation of CD8
cells. CD8 cells also release IFN-g, which together with Il-12 supports CD8 and Th1 proliferation. Activated myelin primed activated CD8
lymphocytes could damage myelin sheets. Activated by IL-18 and IL-33, Th2 lymphocytes secrete IL-4 and IL-10 which support proliferation
and differentiation of B cells. Myelin antigen primed B cells could terminally differentiate to plasma cells producing anti-BMP antibodies targeting
myelin sheets. Th17 lymphocytes proliferation and differentiation is supported by IL-6, IL-21, IL-23 and TGF-b. These activated Th17
lymphocytes could also target axon myelin sheets and contribute to the local inflammation.
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treatment of patients with no prior infection history. Siponimod

(also known as BAF312) and ozanimod are also S1P1

modulating agents that displayed therapeutic effects by

selectively inhibiting S1P in phase II clinical trials (262, 263).

Ponesimod, a selective S1P1 modulator, was tested in double-

blind, placebo-controlled trial demonstrating a significant

reduction of T1 brain lesions and delayed relapses (264). Later,

a phase III clinical trial showed a higher efficacy of ponesimod as

compared to teriflunomide on MS activity (265). Ponesimod was

well tolerated without safety concerns for MS patients.
Monoclonal antibody-based therapeutics

A group of monoclonal antibody-based therapeutics were

shown to be effective in treatment of MS. One of them is

natalizumab, a humanized monoclonal antibody, demonstrated

efficacy in Phase III trial by reducing annualized relapse rate,

preventing lesion accumulation and decreasing progression of

disability (266). The mechanism of therapeutic potency could be

explained by prevention of lymphocyte adhesion to VCAM on

endothelial cells and a4-integrin receptor on lymphocytes (267).

This could block the migration of lymphocytes across the BBB

and entering the CNS. Natalizumab also demonstrated better

relapse reduction rates and longer-lasting effects as compared to

IFN-b (268, 269). It should be noted that natalizumab has

limitations such as induction of progressive multifocal

leukoencephalopathy, high infusion-related adverse responses

and ‘rebounding’ of the diseased-state upon treatment cessation

(248, 270, 271).

Since B-cells play a central role in MS pathogenesis, the

therapeutic efficacy of monoclonal antibodies targeting this

lymphocyte population, such as rituximab, ocrelizumab and

ofatumumab, was also assessed in clinical trials. The objective

of targeting B-cells is to prevent their diapedesis across the BBB,

decrease interaction with T cells as well as restrict pro-

inflammatory cytokine production (272). Rituximab and

ocrelizumab are widely used monoclonal antibodies, which

target B-cell surface antigen CD20 (207, 230). Ocrelizumab

selectively depletes B-cells, while preserving the ability for B-

cell reconstitution (248). Ofatumumab also inhibits B cell

activation and has a similar efficacy as that of ocrelizumab to

control this lymphocytes (248, 251). The effectiveness of

rituximab and ocrelizumab was demonstrated in phase II trials

where decreased number of MRI lesions was found in MS

patients (251, 273). Also, the therapeutic potency of

ocrelizumab was demonstrated in a phase III trial where ~50%

reduction in annual relapse rate was documented in MS (232).

Studies have shown that rituximab could be used in patients

su ff e r ing s imul taneous ly wi th other auto immune

disorders (274).

Another monoclonal antibody-based therapeutic targeting T

and B lymphocytes is alemtuzumab, which binds to CD52 (275).
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Expression of CD52 was shown on activated T lymphocytes,

Tregs and B cells (276–278). It is believed that alemtuzumab

depletes CD52 expressing lymphocytes by antibody-dependent

cell-mediated cytolysis (ADCC) and complement-dependent

cytolysis (CDC) (275). It should be noted that the lymphocyte

population gradually becomes reconstituted where B cell counts

reach the baseline within 6 months, while T cell counts reach a

normal range within 12 months (279, 280). In clinical trials,

alemtuzumab has demonstrated higher efficacy in reducing

relapses as compared with IFNb-1a and decreasing confirmed

disability worsening (CDW) (281, 282).
Immune-modulating agents

Additionally, multiple immune-modulating agents are

recommended for treatment of MS such as anti-inflammatory

agents (283–285), diapedesis inhibitors (286), inhibitors of

myelin degradation (249, 253), inhibitors of pro-inflammatory

cytokines production (287, 288). Each of these therapeutics,

however, have limitations or side effects. It was demonstrated

that laquinimod could cause cardiovascular complications (289).

Also, mitoxantrone was linked to the development of acute

leukemia and hematologic side-effects (268, 290). Hepatotoxicity

and teratogenic effects are shown as complications for

teriflunomide therapy (248, 290), while hepatotoxicity and

progressive multifocal leukoencephalopathy were described in

patients treated with DMF (291).
Myelin-reactive T cell vaccination (TCV)

A novel approach focused on targeting the autologous

myelin-reactive T-cells vaccine (292) and administration of

autologous, myelin-reactive thymic and Tr1 Tregs was tested

in MS (293). Early TCV trials reported decreased counts of the

pathogenic, MBP-specific T-cells, which was combined with low

toxicity (294). However, failure to meet the primary and

secondary study endpoints was reported in phase II clinical

study using TCV in MS (295). In 2002, an open label study

pointed at a need for multiple TCV doses to prevent relapse post

first vaccination. Encouraging results were reported in 2004

during a TCV trial using MBP and MOG activated T-cells in

20 patients, having low therapeutic efficacy of the standard

treatment options (294). In this study, the therapeutic effect

was determined by the reduction of lesions count, relapse rate

and neurological disability. Similar results were reported in

phase I/II clinical trial with TCV in 19 subjects where reduced

frequency of the relapse without side-effects was reported (296).

Some studying conducted in the last decade also confirmed

safety and good tolerability of TCV. In 2012, Karussis et al.

investigated the TCV vaccination efficacy in a blinded clinical

trial where RPMS patients received multiple injections of
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attenuated T-cells reactive to 9 different myelin peptides (175).

This study demonstrated TCV safety without serious adverse

events. In 2016, Seledtsova et al. conducted a study by

immunizing 39 patients with PPMS using multiple autologous

polyclonal TCV (297). None of the vaccine-treated patients

experienced any significant side effect during the entire follow-

up period. The results suggest that polyclonal TCV is safe to use,

able to induce measurable, long-lasting, anti-inflammatory

immune effects in patients with advanced MS. Although TCV

has demonstrated safety and limited side effects, still this

information is coming from studying using small, selected

groups of patients. Only single phase I/II clinical trial was

conducted so far, while there was no phase III clinical trial

completed. Therefore, the therapeutic efficacy of TCV remains

under the investigation.
Targeting Tregs

One of the novel approaches is based on targeting the

lymphocyte populations shown as contributing to MS

pathogenesis. One of these lymphocyte population is Tregs,

known to control the expansion of auto-aggressive

lymphocytes (298). Supporting the potential of these cells are

therapeutic target was the effective relapse prevention, even

when Tregs were administered post the onset of EAE (299). In

another study, nitric oxide-induced CD4+CD25+FoxP3- Tregs

were shown to suppress the migration of immune cells through

BBB, decreased proliferation of Th17 and lowered secretion of

IL-17 in EAE mice model (300). Recently, adoptive cell transfer

therapy using engineered Tregs, expressing MOG specific-TCR,

was used for treatment of EAE mice (301). Authors reported a

positive outcome at both, the initial and the peak stages, in EAE.

In another recent study, a phase I trial using CD4

+CD25highCD127-FoxP3+ Tregs reported no adverse effects

such as relapse of MS, enlarging T2 lesions or visual impairment

progression, upon intrathecal administration (110). These

reports support the potential of Tregs based cell-therapy in

MS, though, further validation in large size cohorts MS

patients is required.

There were several reports of the therapeutic potency of

engineering antigen-specific Tregs such as a chimeric antigen

receptor T cells or CAR-T cells, in MS. Fransson et al. used CD4

+ T cells, expressing MOG-targeting CAR and FoxP3, to start

treating EAE mice at the height of the clinical symptoms (302).

Authors have reported an effective suppression of EAE

symptoms which was coupled with reduced IL-12 and IFN-g
production. Also, repeated attempts to induce EAE failed to

produce symptoms in treated mice, indicating development of a

prolonged protection by Tregs (302). In another study, human

Tregs were transduced with MBP-specific TCR and used for

treatment of EAE (303). The transduced cells ameliorated EAE

symptoms and upregulated the expression of several Tregs
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markers such as FoxP3, latency-associated peptide and Helios

(303). The limiting factor of Treg treatment is that the

engineering target-specific Tregs is challenging as there is little

known about MS-specific autoantigens (304). Also, individual

epitope variation could lead to changes in the target antigens,

further compounding the engineering process (305).
Mechanism of action of drugs used
for MS treatments

Our understanding of the therapeutic mechanisms of drugs

used for MS treatments remains largely unknown.
Mechanisms of DMT drugs

It was suggested that IFN-b could increase the production of

anti-inflammatory cytokines, inhibit the secretion of pro-

inflammatory IL-17 as well as reduce the migration of

leukocytes across BBB (306). Following IFN-b administration,

increased expression of Th2 (IL-10 and IL-4) and reduced Th1

(IFN-g and TNF-a) cytokines in CD4+ T cells of MS patients

were reported (307). Also, direct interaction between IFN-b and

CD4+ T cells may result in regulation of IL-17 expression via

type I IFN receptor-mediated activation of (STAT)-1 signaling

pathway and suppression of STAT3 activity (308) Further, IFN-

b could suppress IL-17 secretion by T cells via IFN-a/b receptor

signaling (309). Additionally, IFN-b was shown to reduce the

level of ICAM-1, which is essential for T cells binding to

endothelial cells and crossing BBB (310).

The mechanism of Glatiramer acetate, another DMT drug,

the therapeutic effect could also target the Th17 cell population

by inhibiting the production of IL-17, IFN-g and IL-6, cytokines

required for differentiation of this subset of lymphocytes (311).

Glatiramer acetate could promote the development of anti-

inflammatory T cells, T-helper 2, and regulatory T cells (312,

313). It was suggested that these Th2 cells could be accumulated

in the CNS, producing anti-inflammatory cytokines and

reducing the encephalitic effect of pathogenic T cells (313).

Glatiramer acetate has been shown to activate Foxp3 which

promotes the development of CD4+CD25+ Tregs (311).
Drugs targeting S1P and S5P receptors

The therapeutic effect of phosphorylated fingolimod is based

on its ability to bind to the S1P receptor (subtypes 1,3,4 and 5)

on astrocytes, oligodendrocytes, neurons, microglia, and BBB

(314). This interaction induces irreversible internalization and

degradation of the receptor, which results in lymphocyte

sequestration to the secondary lymphoid organs (315). This

results in the reduction of peripheral blood lymphocyte count,
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especially of T cells with naive and memory phenotypes (315).

The therapeutic effect of siponimod is similar to that of

phosphorylated fingolimod (316). The main differences are

that siponimod activity does not require phosphorylation and

it mainly targets the SIP receptor subtype 5 (317). Siponimod has

neuroprotective activity by increasing oligodendrocyte

precursors maturation, limiting astrogliosis, and promoting

remyelination (316). Another drug, ozanimod, has similar

mechanisms as phosphorylated fingolimod and siponimod by

targeting S1P receptor (318).Ozanimod can bind to both, S1P-1

and SIP-5 subtype receptors, reducing peripheral T cell counts

and their migration across the BBB (318).
Monocolonal antibody based
therapeutics

Natalizumab administration decreases leukocyte migration

into the CNS (319) by blocking the interaction between VCAM-

1 on endothelial cells and a4b1-integrin on lymphocytes

(320).Another monoclonal antibody-based drug, rituximab,

could induce the apoptotic death of B and T cells, especially

those with pro-inflammatory CD3+CD20+ phenotype (321).

Rituximab could also interact with a core epitope on the

extracellular CD20 loop (321) inducing apoptosis via ADCC

and complement-dependent cytotoxicity mechanisms (322).

Natalizumab’s and rituximab’s ability to decrease B cell counts

could also contribute to their therapeutic effect on MS (323). As

compared to rituximab, ocrelizumab appears to have lower

ability to produce an immune response combined with higher

therapeutic efficacy (199, 324) This monoclonal antibody-based

drug produces a lower level of neutralizing autoantibodies

combined with more ADCC complement-dependent

cytotoxicity, as compared to rituximab (324).On the downside,

ocrelizumab administration could have higher infusion-related

reactions (324). Reduction of B cells and CD20+ T combined

with increased counts of Tregs was demonstrated when

ofatumumab is used for the treatment of MS (325).

Additionally, ofatumumab was shown to limit CD4+ T cells

secretion of IFN-g, TNFa, and GM-CSF, as well as a decrease in

Th17.1 cell counts (325).
Immune-modulating agents

The active metabolite of DMF, monomethyl fumarate (MMF)

(326), was shown to decrease peripheral blood mononuclear cell

counts by inducing apoptosis. The reduced Th1 (IFN-g and TNF-
a) and increased Th2 (IL-4 and IL-5) cytokines production were

reported in MS patients treated with DMF (327). MMF could

disrupt the expression of genes responsible for the production of

adhesion molecules by interfering with the expression of the

nuclear factor kappa B transcription factor (328). Additionally,
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MMF could protect glial cells against oxidative stress leading to

significantly reduced axonal damage in MS (327). Intrathecal

methotrexate (ITMTX) is hypothesized to reduce astroglial

proliferation and scarring (329).

Laquinimod administration impedes Th17 proinflammatory

response and reduces the production of pro-inflammatory IL-12

and TNF-a, while promoting secretion of anti-inflammatory IL-

4 and IL-10 cytokines (330). These effects were explained by the

ability of laquinimod to inhibit NF-kB pathway (331). The

migration of macrophages, CD4+, and CD8+ T cells into the

CNS was shown to be reduced by laquinimod, by

downregulation of the VLA-4 mediated lymphocytes

adhesiveness (332). Additionally, decreased axonal damage,

synaptic loss, and inflammatory demyelination have been

reported in laquinimod’ treated MS (333). Increased serum

level of the brain-derived neuroprotective factor was also

demonstrated in MS receiving laquinimod, which could

contribute to the drug’s neuroprotective efficacy (334).

It was suggested that mitoxantrone could induce apoptosis

in B cells, reduce the secretion of pro-inflammatory cytokines,

and suppress T cells (335, 336).The mechanism of the

therapeutic effect of teriflunomide could include the inhibition

of the dihydro-orotate dehydrogenase enzyme required for de

novo pyrimidine synthesis in lymphocytes (337). This reduced

intracellular level of pyrimidine could have a cytostatic effect on

B and T cells, consequently reducing their counts in circulation

(337). Cladribine is also suggested to affect the B and T cells, as

the absolute lymphocyte counts decreased rapidly upon

treatment (288). The phosphorylated cladribine was shown to

disrupt DNA synthesis by inhibiting enzymes involved in the cell

cycle, which was proposed as a mechanism of B and T cell

depletion (338)
TCV treatment

TCV therapeutic efficacy is based on the activation of anti-

idiotypic and anti-ergotypic immune mechanisms, by

administration of attenuated, self-activated, myelin-reactive T

cells (339). This could lead to a direct depletion of pathogenic

Th1 cells, as well as activate CD4+ Th2 cells that produce anti-

inflammatory cytokines IL-4 and IL-10. Elevated levels of

FoxP3+ Tregs, gdT and NK cells were reported when using

TCV (340–343).
Conclusion

Disruption of myelin sheath integrity causes the neuron

damage commonly found in CNS tissues from MS. Damage of

the laminated structure of myelin sheath covering neuron axon

and cells body is believed to be primarily done by Th1 and Th17

lymphocytes. These lymphocytes could produce inflammatory
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cytokines as well activate pathogenic CTL and Th17 damaging

myelin. The reduced activity and counts of Th9 and Tregs was

also demonstrated in MS. This data suggests the limited control

over lymphocytes differentiation could lead to activation of

pathogenic Th1 and Th17 cells. In addition to T lymphocytes,

B cells producing anti-myelin proteins antibodies were shown in

CNS of MS. These B cells could produce pro-inflammatory

cytokines sustaining pathogenic inflammatory milieu in CNS.

Also, B cells could facilitate antigen presentation required to

activate pathogenic Th1 and Th17 lymphocytes.

These data support the notion of targeting T and B

lymphocytes for treatment of MS. Monoclonal antibodies

inhibiting lymphocyte migration to CNS were shown effective

in MS. Also, anti-CD20 antibodies demonstrated therapeutic

efficacy which was explained by reduction of B lymphocyte

counts in MS. CAR-T approach targeting Tregs has shown the

therapeutic potency in EAE model of MS. Additionally, TCV

reducing the myelin-reactive T-cell counts was demonstrated as

having therapeutic efficacy in MS.
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