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Simple Summary: Tumours are not formed only by malignant cells but contain many other cell
types, including endothelial and mural cells of blood vessels, immune cells and cancer-associated
fibroblasts. These host cells, together with extracellular matrix, form the tumour stroma. Tumour
growth and metastasis depends on interactions between cancer cells and tumour stroma. Cell
adhesion to extracellular matrix is essential for tissue growth and homeostasis and is deregulated in
many pathological conditions, including cancer. This review highlights the vital role of cell adhesion
in malignancy and describes how adhesion components regulate tumour stroma responses and
control cancer development.

Abstract: Beyond the conventional perception of solid tumours as mere masses of cancer cells, ad-
vanced cancer research focuses on the complex contributions of tumour-associated host cells that are
known as “tumour microenvironment” (TME). It has been long appreciated that the tumour stroma,
composed mainly of blood vessels, cancer-associated fibroblasts and immune cells, together with
the extracellular matrix (ECM), define the tumour architecture and influence cancer cell properties.
Besides soluble cues, that mediate the crosstalk between tumour and stroma cells, cell adhesion to
ECM arises as a crucial determinant in cancer progression. In this review, we discuss how adhesome,
the intracellular protein network formed at cell adhesions, regulate the TME and control malignancy.
The role of adhesome extends beyond the physical attachment of cells to ECM and the regulation of
cytoskeletal remodelling and acts as a signalling and mechanosensing hub, orchestrating cellular
responses that shape the tumour milieu.

Keywords: tumour microenvironment; adhesome; focal adhesion sites; endothelial cells; mural cells;
cancer-associated fibroblasts; immune cells; tumour stroma

1. Introduction

Malignant cells are the main driving force of tumour formation and growth, yet
they do not manifest the disease single-handed. It is now increasingly accepted that
noncancerous cells located in the tumour niche are involved in the hallmark capabilities of
cancer [1]. Key cellular players in the tumour stroma are vascular cells comprising blood
and lymphatic vessels (endothelial cells and mural cells), cancer-associated fibroblasts
(CAFs), and infiltrating immune cells. Additional stromal cell types of solid tumours
include mesenchymal stem cells, adipocytes and neurons [2,3]. The complex contributions
of these allegedly normal, constituent cells together with noncellular components, namely
the extracellular matrix (ECM) and soluble factors, are collectively known as the tumour
microenvironment (TME) (Figure 1).
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Figure 1. Tumour microenvironment (TME). Besides cancer cells (depicted in grey), distinct cell 

types and extracellular matrix (ECM) constitute the TME that controls cancer development and 

progression. Abbreviations: CAF, cancer-associated fibroblast; TAM, tumour-associated macro-

phages; MDSCs, myeloid-derived suppressor cells; NK cell, natural killer cell; EC, endothelial cell; 

DC, dendritic cell; TAN, tumour-associated neutrophils; ECM, extracellular matrix. 

As in normal tissue, all cells in the TME are attached and interact with ECM at specific 

sites, called cell–matrix adhesions. These structures are composed by the integrin family 

of ECM receptors and an intrigue protein network called adhesome that is directly linked 

to the cell cytoskeleton [4–6]. Adhesion sites physically attach the cell to its microenviron-

ment and maintain cell homeostasis. Depending on the protein composition and arrange-

ments within the adhesome, cell–matrix adhesions have distinct architecture, localisation 

and lifespan [7]. These dynamic characteristics enable adhesion sites to rapidly change 

cell morphology and modulate cell spreading to facilitate cell migration and invasion. 

Furthermore, cell–matrix adhesions co-ordinate cellular responses to extracellular stimuli 

through crosstalk with intracellular signal transduction pathways, hence influencing cell 

survival, proliferation and differentiation. Emerging data highlight the role of mechanical 

cues in regulating cell function. In this aspect, adhesome proteins constitute critical play-

ers in both sensing and transducing mechanical forces to cell cytoskeleton. Adhesome 

members include more than 232 adhesion-related proteins broadly divided into struc-

tural/adaptor proteins (such as talin, vinculin, ILK-PINCH-parvin, paxillin, zyxin, tensin, 

α-actinin, filamin and KANK) and signalling proteins (for example FAK, Pyk2, Src, RhoG-

TPases and myosin light chain kinase). These proteins could constitute intrinsic compo-

nents of cell–matrix adhesions or transiently associate with the adhesion network, facili-

tating the coordination of cell behaviour [8–12]. Finally, adhesome components connect 

with different actin structures (stress fibres, cortical actin, lamellipodia, filopodia) and mi-

crotubules, to stabilise cell shape and facilitate cell migration and invasion. 

Several experimental approaches, ranging from genomics, proteomics and bioinfor-

matics, to classical biochemistry, cell biology and model organisms (fly, worm, mouse), 

have started to decipher both the composition and the role of adhesome members in or-

chestrating cell function in physiology and pathology. In this review, we elaborate on the 

functional impact of adhesome proteins in cancer, focusing on host cells located into the 

tumour niche: endothelial cells (ECs), mural cells, CAFs and immune cells (summarised 

in Table 1). 

Figure 1. Tumour microenvironment (TME). Besides cancer cells (depicted in grey), distinct cell types
and extracellular matrix (ECM) constitute the TME that controls cancer development and progression.
Abbreviations: CAF, cancer-associated fibroblast; TAM, tumour-associated macrophages; MDSCs,
myeloid-derived suppressor cells; NK cell, natural killer cell; EC, endothelial cell; DC, dendritic cell;
TAN, tumour-associated neutrophils; ECM, extracellular matrix.

As in normal tissue, all cells in the TME are attached and interact with ECM at specific
sites, called cell–matrix adhesions. These structures are composed by the integrin family of
ECM receptors and an intrigue protein network called adhesome that is directly linked to
the cell cytoskeleton [4–6]. Adhesion sites physically attach the cell to its microenvironment
and maintain cell homeostasis. Depending on the protein composition and arrangements
within the adhesome, cell–matrix adhesions have distinct architecture, localisation and
lifespan [7]. These dynamic characteristics enable adhesion sites to rapidly change cell
morphology and modulate cell spreading to facilitate cell migration and invasion. Further-
more, cell–matrix adhesions co-ordinate cellular responses to extracellular stimuli through
crosstalk with intracellular signal transduction pathways, hence influencing cell survival,
proliferation and differentiation. Emerging data highlight the role of mechanical cues in
regulating cell function. In this aspect, adhesome proteins constitute critical players in
both sensing and transducing mechanical forces to cell cytoskeleton. Adhesome members
include more than 232 adhesion-related proteins broadly divided into structural/adaptor
proteins (such as talin, vinculin, ILK-PINCH-parvin, paxillin, zyxin, tensin, α-actinin,
filamin and KANK) and signalling proteins (for example FAK, Pyk2, Src, RhoGTPases
and myosin light chain kinase). These proteins could constitute intrinsic components of
cell–matrix adhesions or transiently associate with the adhesion network, facilitating the
coordination of cell behaviour [8–12]. Finally, adhesome components connect with different
actin structures (stress fibres, cortical actin, lamellipodia, filopodia) and microtubules, to
stabilise cell shape and facilitate cell migration and invasion.

Several experimental approaches, ranging from genomics, proteomics and bioinfor-
matics, to classical biochemistry, cell biology and model organisms (fly, worm, mouse),
have started to decipher both the composition and the role of adhesome members in or-
chestrating cell function in physiology and pathology. In this review, we elaborate on the
functional impact of adhesome proteins in cancer, focusing on host cells located into the
tumour niche: endothelial cells (ECs), mural cells, CAFs and immune cells (summarised
in Table 1).
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Table 1. Adhesome and cancer: in vivo studies investigating the effect of genetic deletion or pharmacological inhibition of
adhesome members in specific tumour stroma cell types.

Molecule Cell Type Murine Tumour Model Intervention Effect References
Adhesome signalling

FAK/Pyk2

ECs

Subcutaneous tumours
(B16F0 or CMT19T)

Pdgfb iCreERT2;
FAKfl/fl

anti-tumourigenic:
vessel density (↓),
no Pyk2
compensation

[13]

Orthotopic
patient-derived human
glioma (DBTRG)

Tie2 CreERT2;
FAKfl/fl

anti-tumourigenic:
vascular
normalisation, no
Pyk2
compensation

[14]

Subcutaneous tumours
(B16F0 or CMT19T) FAKhet pro-tumourigenic:

vessel density (↑) [15]

Subcutaneous tumours
(B16F10), Metastasis
models: I.V or
spontaneous metastasis
after B16F10 injection

SCL CreERT;
FAKfl/KD

metastasis (↓)
tumour growth (−) [16]

Subcutaneous tumours
(B16F0)

PDGFb iCreERT;
FAKfl/fl;
R26FAKKD/KD

(FAK kinase-dead
mice)

anti-tumourigenic:
vessel density (↓),
vascular
permeability (↓),
VE−CAD pY658
levels (↓)

[17]

Subcutaneous tumours
(B16F0)

PDGFb iCreERT;
FAKfl/fl;
R26FAKDM/DM

(FAK DM mice:
KD with a
putatively
phosphomimetic
Y397E mutation)

anti-tumourigenic:
vessel density (↓),
vascular
permeability (−),
VE−CAD pY658
levels (−)

[17]

Subcutaneous tumours
(B16F0 or CMT19T)

PDGFb iCreERT;
FAKfl/fl;
R26FAKY397F/Y397F

anti-tumourigenic:
vessel density (↓) [18]

Subcutaneous tumours
(B16F0 or CMT19T)

PDGFb iCreERT;
FAKfl/fl;
R26FAKY861F/Y8617F

no effect: tumour
growth (−), vessel
density (−)

[18]

Pericytes

Subcutaneous tumours
(B16F0 or LLC)

PDGFRβ Cre;
FAKfl/fl

pro-tumourigenic:
vessel density (↑) [19]

Subcutaneous tumours
(LLC)

PDGFRβ Cre;
FAKY397F/Y397F

no effect: tumour
growth (−), vessel
density (−)

[20]

Subcutaneous tumours
(B16F0 or LLC)

PDGFRβ Cre;
FAKY861F/Y861F

anti-tumourigenic:
vessel density (↓) [20]
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Table 1. Cont.

Molecule Cell Type Murine Tumour Model Intervention Effect References
Adhesome signalling

CAFs

Orthotopic xenografts of
pancreatic cancer
(MPanc-96 or MAD08-608)

Inhibition
(FAK/Pyk2
inhibitor:
PF-562,271)

anti-tumourigenic:
CAFs migration
and infiltration (↓)

[21]

Genetically engineered
mice of pancreatic cancer
(KPC and KPPC)

Inhibition (FAK
inhibitor: VS-4718)

tumour stasis:
intratumoural
aSMA+ and FAP+

cells (↓), FAP+ cell
proliferation (↓)

[22]

Subcutaneous tumours
(HT29)

Inhibition (FAK
inhibitor:
PF-573,228) or
HT29 expressing
FAKY397F

construct

anti-tumourigenic [23]

Syngeneic orthotopic
breast (E0771) and
pancreatic (TB32048)
tumours/MMTV-PyMT
mouse model of breast
cancer

FSP Cre+; FAKfl/fl

mice/MMTV+; FSP
Cre+; FAKfl/fl

pro-tumourigenic:
CAF−mediated
changes in
malignant
metabolism (↑)

[24]

Pancreatic cancer cell and
fibroblast syngeneic and
orthotopic cografting

FAKKD(kinase−dead)

fibroblasts,
inhibition (FAK
inhibitor:
PF562,271)

anti-tumourigenic:
tumour growth
(−), lung
metastasis (↓),
fibrosis (↓), M2
macrophage
polarisation and
migration (↓),

[25]

MMTV-PyMT mouse
model of spontaneous
breast cancer

MMTV-PyMT;
Col1a2 CreER;
FAKfl/fl

tumour
development and
growth (−), breast
cancer metastasis
(↓), exosome
amount and
functions (↓)

[26]

TAMs/monocytes

Orthotopic pancreatic
tumours (MPanc-96 or
MAD08-608)

Inhibition
(FAK/PYK2
inhibitor:
PF-562,271)

anti-tumourigenic:
TAMs (F4/80+)
migration and
infiltration (↓)

[21]

Genetically engineered
mice of pancreatic
cancer(KPC and KPPC)

Inhibition (FAK
inhibitor: VS-4718)

tumour stasis:
intratumoural
F4/80+ and
CD206+

macrophages (↓)

[22]

Syngeneic orthotopic
breast tumours (4T1 or
MDA-MB-231)

Inhibition (FAK
inhibitor:
PND-1186)

anti-tumourigenic:
metastasis (↓),
leukocyte
infiltration (↓)

[27]
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Table 1. Cont.

Molecule Cell Type Murine Tumour Model Intervention Effect References
Adhesome signalling

Orthotopic breast tumours
(4T1)

Inhibition (FAK
inhibitors:
PF-562271 and
PF-573,228)

anti-tumourigenic:
intratumoural
F4/80+

macrophages (↓)

[28]

MMTV-PyMT mouse
model of spontaneous
breast cancer

PyVmT+/−;LysMwt/cre;
FAK∆myeloid

pro−and
anti-tumorigenic:
depending on the
stage of
malignancy,
carcinoma stage:
NK cells (↓)

[29]

Subcutaneous tumours
(SCC)

Inhibition (FAK
inhibitor: BI
853,520)

anti−tumorigenic:
PD−L2 surface
expression on
TAMs (↓)

[30]

MDSCs/TANs

Genetically engineered
mice of pancreatic cancer
(KPC and KPPC)

Inhibition (FAK
inhibitor: VS-4718)

tumour stasis:
recruitment of
Gr1+ granulocytes
(↓)

[22]

Subcutaneous tumours
(SCC cells)

Inhibition (FAK
inhibitor: BI
853,520)

anti-tumorigenic:
PD−L2 surface
expression on
M−MDSCs (↓)

[30]

CD3+/CD4+/CD8+

T cells

Subcutaneous tumours
(SCC cells)

SSC FAK−/− cells,
inhibition (FAK
inhibitor: VS-4718)

anti-tumourigenic:
CD4+ and CD8+

cell recruitment (↑)
[31]

Genetically engineered
mice of pancreatic cancer
(KPC and KPPC)

Inhibition (FAK
inhibitor: VS-4718)

tumour stasis:
CD4+ and CD8+

cell recruitment (↑)
[22]

Subcutaneous tumours
(SCC cells)

Inhibition (FAK
inhibitor: BI
853,520)

anti-tumorigenic:
ICOS surface
expression in CD8+

cells (↑)

[30]

Tregs

Genetically engineered
mice of pancreatic cancer
(KPC and KPPC)

SSC FAK−/− cells,
inhibition (FAK
inhibitor: VS-4718)

anti-tumourigenic:
infiltration of
CD4+FoxP3+CD25+

Tregs in the
tumour niche (↓)

[31]

Genetically engineered
mice of pancreatic cancer
(KPC and KPPC)

Inhibition (FAK
inhibitor: VS-4718)

anti-tumorigenic:
infiltration of
CD4+FOXP3+

TREGS in the
tumour niche (↓)

[22]

Subcutaneous tumours
(SCC)

Inhibition (FAK
inhibitor: BI
853,520)

anti-tumorigenic:
Tregs (↓) [30]

Paxillin ECs Matrigel plugs implanted
subcutaneously (LLC) siRNA matrigel plugs:

angiogenesis (↑) [32]
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Table 1. Cont.

Molecule Cell Type Murine Tumour Model Intervention Effect References
Adhesome signalling

GIT/PIX/PAK

CAFs
Genetically engineered
mice of pancreatic cancer
(KPC)

PAK1−/−

anti-tumourigenic:
intratumoural
aSMA+ and
desmin+ cells (↓)

[33]

CD3+/CD4+/CD8+

T cells

Genetically engineered
mice of pancreatic cancer
(KPC)

PAK1−/−

anti-tumourigenic:
CD3+, CD4+ and
CD8+ cell
recruitment (↑)

[33]

Genetically engineered
mice of
intestinal-colorectal cancer
APC∆14/+

PAK1−/−,
inhibition (PAK
inhibitor
PF-3758,309)

anti-tumourigenic:
CD3+, CD4+ and
CD8+ cell
recruitment (↑)

[34]

Tregs Subcutaneous tumours
(B16F10 or TRAMP-C1) GIT2−/− anti-tumourigenic [35]

Adhesion organisation

Kindlin2

ECs Subcutaneous tumours
(RM1) Kindlin2+/− anti-tumourigenic:

vessel density (↓) [36]

CAFs
Subcutaneous
coengraftments (SUIT-2
and PSCs)

siRNA anti-tumourigenic [37]

Kindlin3 TAMs/monocytes Intravenous injections of
B16F10 cells

Mx1 Cre+/−

(Poly(I:C));
CX3CR1gfp/+;
kindlin3fl/fl

pro-tumorigenic:
monocyte
patrolling (↓), NK
cells (↓),

[38]

Talin ECs Subcutaneous tumours
(B16F0)

Cdh5 CreERT2;
talin1f/L325R

anti-tumourigenic:
vessel density (↓) [39]

ILK ECs

Thyroid (DRO) tumour
xenografts

Inhibition (ILK
inhibitor:
QLT0267)

anti-tumourigenic:
vessel density (↓) [40]

Orthotopic pancreatic
tumour xenografts

Inhibition (ILK
inhibitor:
QLT0254)

anti-tumourigenic:
vessel density (−) [41]

Glioblastoma (U87MG)
tumour xenografts

Inhibition (ILK
inhibitor:
QLT0267)

anti-tumourigenic:
vessel density (↓) [42]

Subcutaneous tumours
(PC3)

Inhibition (ILK
inhibitor:
KP-307-2)

anti-tumourigenic:
vessel density (↓) [43]

Actin regulatory layer

Palladin CAFs

Orthotopic xenografts of
pancreatic cancer (AsPC-1
coimplantation with
palladin KD CAFs)

siRNA anti-tumourigenic [44]

VASP CAFs

Subcutaneous tumours
(LLC coimplantation with
VASP KD MEFs)

siRNA and EVH2
VASP mutant

anti-tumourigenic:
intratumoural
aSMA+ and
desmin+ cells (↓)

[45]

Subcutaneous tumours
(HT-29 coimplantation
with VASP KD HSCs)

siRNA
anti-tumourigenic:
intratumoural
aSMA+ cells (↓)

[46]
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Table 1. Cont.

Molecule Cell Type Murine Tumour Model Intervention Effect References
Actin regulatory layer

Filamin ECs Subcutaneous tumours
(T241 or B16F0) VE-Cad Cre; flnAfl/fl anti-tumourigenic:

vessel density (↓) [47]

Rac1 ECs

Subcutaneous tumours
(B16F0)

PDGFb iCreERT;
Rac1fl/fl

no effect: tumour
growth (−), vessel
density (−)

[48]

Subcutaneous tumours
(Neuro2a cells) siRNA anti-tumourigenic:

vessel density (↓) [49]

RhoJ ECs

Subcutaneous tumours
(LLC) RhoJKO anti-tumourigenic:

vessel density (↓) [50]

Subcutaneous tumours
(B16F0 or LLC)

Cad5 CreERT2;
RhoJfl/fl

anti-tumourigenic:
vessel density (↓) [51]

↓ denotes reduction; ↑ denotes increase; - denotes no difference; Bold, the adhesome layers, as discussed in the text; Orange, adhesome
signalling; Blue, Adhesion organization; Green, actin regulatory layer; italic, mouse models that have been used in the cited studies.

To delineate the involvement of critical adhesome components on tumour stroma, we
refrain from reviewing the role of adhesion molecules in cancer cell properties. Instead,
we present the current understanding of how adhesome components control tumour
stroma attained from cell-specific gene deletion and inhibition studies in different tumour
settings. When such knowledge is missing, we discuss findings from genetic animal studies
that provide valuable insight into stroma cell-specific roles of adhesome members under
physiological conditions (summarised in Table 2). Since there are excellent reviews on
the role of integrins on TME [52–56], we focus on the function of intracellular adhesome
components in the tumour stroma. For clarity, we classify the adhesome proteins into
three distinct categories, namely the adhesome signalling, the adhesion organisation and
the actin regulatory layer (Figure 2). This classification has limitations because it does
not take into account the dynamic crosstalk and the combined multiple roles of many
adhesome members. We believe, though, that this simplifying approach will provide a
clearer framework to emphasise the essential role of cell–matrix adhesions on the TME.

Table 2. Adhesome and physiology: in vivo studies describing the effect of deletion of adhesome members in specific cell
types that participate in tumour microenvironment. Abbreviations: HSCs, hematopoietic stem cells.

Molecule Cell Type Mouse Model Effect References
Adhesome signalling

Paxillin ECs siRNA Retinal angiogenesis (↑), vessel
sprouting (↑) [32]

FAK
ECs

Tie2 Cre; FAKfl/fl

EC migration (↓), EC
proliferation (↓), EC retraction
and death (↑), haemorrhage,
vessel growth (↓), vessel
regression (↑), embryonic
lethality (E10.5–E11.5)

[57,58]

Tie2 Cre; FAKflox/KD

Vascular permeability (↑),
VE-cadherin Y658
phosphorylation (↓),
embryonic lethality (E13.5)

[59]

End-SCL CreERT;
FAKfl/fl

No effect-Pyk2 compensation
(adult mice) [60]

Myeloid lineages→
macrophages LysM cre; FAKfl/fl

Macrophages: adhesion (↓),
migration and invasion (↓),
recruitment (↓)

[61]
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Table 2. Cont.

Molecule Cell Type Mouse Model Effect References
Adhesome signalling

Myeloid lineages→
neutrophils LysM cre; FAKfl/fl

Adhesion to fibronectin or
ICAM-1 (↓), life span (↓),
pathogen-killing capability (↓)

[62]

T cells
FAK+/− Normal T cell development [63]

CD4 Cre; FAKfl/fl Normal T cell development [64]

B cells CD19 Cre; Fak fl/fl
Progenitor B and immature B
cells (↓), homing to the BM (↓),
retention in BM (↓)

[65]

Pyk2

Macrophages Pyk2–/–
Macrophages: cell polarisation
(↓), cell contractility (↓), size of
lamellipodia (↑), migration (↓),

[66]

Neutrophils Pyk2–/– Neutrophil migration (↓),
degranulation (↓) [67]

Monocytes Pyk2–/–

Number of BM
monocyte-lineage cells (↓),
Pyk2 promotes the turnover of
monocytes at steady state

[68]

T cells

Pyk2–/– Normal T cell development [66]

Pyk2–/–

CD8 T cell activation (↓),
LFA-1-dependent CD8 T cell
adhesion and migration (↓),
CD8+ TEFF (↓)

[69]

B cells Pyk2–/–

B cell migration into the
marginal zone of spleen (↓),
humoral responses to T
dependent antigen (↓)

[70]

a-PIX

Immune cells→ T and
B cells a-PIX−/−

Mature lymphocytes (↓), T cell
proliferation (↓),
B cell proliferation (↓), B or T
motility (↑), disrupted immune
synapse

[71]

T cells a-PIX−/− Thymocytes motility (↑), T cell
positive selection (↓) [72]

Adhesion organisation

Kindlin3

Neutrophils kindlin3−/−
Neutrophil: firm adhesion (↓),
vascular arrest (↓), recruitment
(↓), bleeding, death

[73,74]

HSCs→ neutrophils Mx1 Cre (Poly(I:C));
kindlin3fl/fl

Leukocyte adhesion (↓),
bleeding, death, 5% protein
expression viable

[75]

T cells
kindlin3−/−, Mx1 Cre
(Poly(I:C)); kindlin3fl/fl,
CD4 Cre; kindlin3fl/fl

Thumocyte proliferation (↓), T
cell homing to thymus (↓),T
cell adhesion at low vascular
shear stress (↓)

[76]
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Table 2. Cont.

Molecule Cell Type Mouse Model Effect References
Adhesion organisation

Talin1

ECs

Tie2 Cre; talin1fl/fl
Haemorrhaging, vessel density
(↓), small and round ECs,
embryonic lethality (E10.5)

[77]

Cdh5 CreERT2; talin1
Haemorrhaging of intestine
vasculature, death (adult mice) [78]

Cdh5 CreERT2; talin1

Retinal angiogenesis (↓),
haemorrhaging, EC
proliferation (↓), embryonic
lethality

[39]

Cdh5 CreERT2;
talin1fl/L325R Retinal angiogenesis (↓) [39]

Neutrophils, platelets Rap1 binding deficient
talin1 knock-in

Neutrophil adhesion (↓),
leukocyte adhesion and
extravasation (↓)

[79]

HSCs→ neutrophils Mx1 Cre (Poly(I:C));
talin1fl/fl

Neutrophil slow rolling and
vascular arrest (↓), neutrophil
recruitment (↓)

[73]

Dendritic cells
CD11c Cre; talin1fl/fl DC activation (↓), T cell and B

cell priming responses (↓) [80]

CD11c Cre; talin1fl/fl DC migration and activation
(↓) [81]

NK Talin1−/− ES ->
differentiate into NK

NK LFA-1-mediated-adhesion
(↓), NK cytotoxicity (↓): only
retained for selective target
cells lacking ICAM-1

[82]

T cells
CD4 Cre; talin1fl/fl

T cell activation and
proliferation (↓), T cell–APC
interactions (transient)

[83]

CD4 Cre; talin1fl/fl T regs (↓), T cell–DCs
interactions (↓) [84]

B cells CD19 Cre; talin1−/fl

Normal B cell development
and maturation, humoral
responses to T-dependent
antigens (↓), B cells homing to
lymph nodes and BM (bone
marrow) (↓)

[85]

Vinculin HSCs→ neutrophils Mx1 Cre (Poly(I:C));
Vclfl/fl

Normal neutrophil
recruitment, neutrophil
spreading (↓)

[86]

ILK

ECs

Tie2 Cre; ILKfl/fl
Labyrinthine vascularisation
(↓), EC apoptosis (↑),
embryonic lethality (E9.5–E10)

[87]

PDGFb iCreERT; ILKfl/fl
Vessel sprouting (↓), EC
proliferation (↓), disruption of
the blood–retina barrier

[88]

vSMCs Pdgfrb Cre; ILK fl/fl
vSMCs: contraction (↑),
migration (↓), focal adhesion
assembly (↓)

[89]

T cells Lck Cre+/ILKfl/fl T cell chemotaxis (↓), T cell
survival (↓) [90]
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Table 2. Cont.

Molecule Cell Type Mouse Model Effect References
Adhesion organisation

Parvin

ECs

Tie2 Cre; α-pvfl/fl Haemorrhaging, vessel density
(↓), embryonic lethality (E13.5) [91]

Cdh5 CreERT2; α-pvfl/fl
Vessel density (↓), vessel
sprouting (↓), EC proliferation
(↓), vessel regression (↑)

[91]

Tie2 Cre; α-pvfl/fl;
β-pv−/−

Haemorrhaging, vessel
branching (↓), vessel diameter
(↑), vessel density (↓),
embryonic lethality
(E10.5–E12.5)

[92]

vSMCs a-pv−/− vSMCs: contraction (↑),
directed migration (↓) [93]

Hematopoietic cells γ-pv−/− Normal haematopoiesis [94]

FHL2 Dendritic cells FHL2−/− DC migration (↑) [95]

Tensin ECs TNS1−/− EC migration (↓), EC
proliferation (↓) [96]

Actin regulatory layer

Ena/VASP family ECs Ena/VASP triple null

Oedema, haemorrhaging,
stress fibre formation (↓),
vascular integrity (↓),
embryonic lethality (E18.5)

[97]

EVL/VASP T cells EVL−/−; VASP−/−

Normal T cell development,
activated T cell trafficking (↓),
T cell trans endothelial
migration (↓)

[98]

VASP
Polymorphonuclear
leukocytes or
neutrophils (PMNs)

VASP−/− Neutrophil/PMNs adhesion
(↓) [99]

Filamin A

T cells CD4 Cre; flnAfl/fl
Normal T cell development,
Teff flow adhesion (↓), T cell
trafficking (↓)

[100]

Myeloid lineages
→ neutrophils LysM Cre; flnAfl/fl Neutrophil adhesion (↑),

normal adhesion underflow [101]

Myeloid lineages
→ neutrophils LysM Cre; flnAfl/fl Neutrophil recruitment due to

inflammatory response (↓) [102]

Filamin B ECs flnb−/− Microvascular development
(↓) [103]

Cdc42 ECs

Tie2 Cre; Cdc42fl/fl

Haemorrhaging, vascular
integrity (↓), EC migration (↓),
EC proliferation (↓), embryonic
lethality (E9–10)

[104,105]

Cad5 CreERT2; Cdc42fl/fl

Retinal angiogenesis (↓), vessel
lumen formation (↓), EC
adhesion (↓), embryonic
lethality

[104]
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Table 2. Cont.

Molecule Cell Type Mouse Model Effect References
Actin regulatory layer

T cells

Lck Cre; Cdc42fl/fl

T cell development (↓),
CD4+CD8+ double-positive
(DP) (↑), CD4+ and CD8+

single-positive (↓), T cell
migration (↓), T cell survival
(↓), CD8+ Teff (↑), CD8+ T
memory (↑)

[106]

Lck Cre; Cdc42fl/fl

T cell survival (↓), mature
CD4+ and CD8+ T cells in
thymus, spleen and lymph
nodes (↓), T cell
effector/memory (↑)

[107]

Rac1

ECs

Tie2 Cre; Rac1fl/fl
Vessel density (↓), EC adhesion
(↓), EC migration (↓),
embryonic lethality (E9.5)

[43]

Cad5 CreERT2; Rac1fl/fl
Haemorrhaging, vessel density
(↓), retinal angiogenesis (↓),
embryonic lethality

[108]

HSCs→macrophages

Mx1 Cre (Poly(I:C))
;Rac1fl/fl

Macrophages: elongated
morphology, normal migration
speed and chemotaxis

[109]

Mx1 Cre (Poly(I:C))
;Rac1fl/fl

Macrophages: trans
endothelial migration (↓) [110]

HSCs→ T cells Mx1 Cre (Poly(I:C))
;Rac1fl/fl

T cells (↓), B cells (↑), bone
marrow lymphopoiesis (↓),
CD4+CD8+ T cells (↓)

[111]

T cells
Lck Cre;Rac1fl/fl Normal T cell development [111]

CD2 Cre;Rac1fl/fl Normal T cell development [112]

B cells CD19 Cre;Rac1 fl/fl Normal B cell development [113]

Rac2

Macrophages Rac2−/−

Macrophages: normal trans
endothelial migration,
elongated morphology,
adhesion (↓)

[110]

T cells
Rac2−/−

Normal T cell development, T
lymphocyte migration (↓),
chemotaxis (↓), CD4+ and
CD8+ T lymphocytes in spleen,
CD8+ T lymphocytes in lymph
nodes (↑)

[114]

Rac2−/− Normal T cell development [112]

Rac1 and Rac1

HSCs→macrophages Mx1 Cre (Poly(I:C));
Rac1fl/fl; Rac2−/−

Trans endothelial migration
(↓), normal migration speed
and chemotaxis, stellate or
elongated morphology

[110]

HSCs→ T cells Mx1 Cre (Poly(I:C));
Rac1fl/fl; Rac2−/−

Common lymphoid progenitor
(CLP, Lin/IL-7Ra) (↓) [111]
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Table 2. Cont.

Molecule Cell Type Mouse Model Effect References
Actin regulatory layer

T cells

Lck Cre; Rac1fl/fl;
Rac2−/−

T cell proliferation (↓), T cell
survival (↓), adhesion (↓),
migration (↓), immature
CD4+CD8+ and mature CD4+

in thymus (↓), CD4+ and CD8+

in spleen (↓)

[111]

CD2 Cre; Rac1fl/fl;
Rac2−/−

T cell development (↓),
CD4+CD8+ double-positive
(DP) (↓), CD4+CD8−

single-positive (4SP) (↓),
CD4−CD8+ single-positive
(8SP) (↓)

[112]

dLck iCre; Rac1fl/fl;
Rac2−/−

T cells (↓), T cell chemotaxis
(↓), T cell adhesion (↓), homing
to secondary lymphoid organs
(↓)

[115]

B cells

CD19 Cre; Rac1 fl/fl;
Rac2−/−

Normal B cell development in
bone marrow, B cell
development in spleen (↓), B
cell proliferation (↓), B cell
survival (↓)

[113]

CD19 Cre; Rac1 fl/fl;
Rac2−/−

B cell development in bone
marrow (↓), B cell
development in spleen (↓), B
cell chemotaxis (↓)

[116]

RhoA

ECs
Tie2 Cre; RhoAfl/fl Normal retinal angiogenesis [117]

Cad5 CreERT2; RhoAfl/fl Normal retinal angiogenesis [117]

T cells Lck Cre; RhoAfl/fl

T cell proliferation (↓), T cell
survival n (↓), T cell
differentiation n (↓), mature
CD4 CD8 T cells in thymus
and spleen (↓), trans
endothelial migration (↓), Th1
inflammation responses (↓)

[118]

B cells CD19 Cre; RhoA fl/fl B cell development (↓) [119]

HSCs→ B cells Mx1 Cre (Poly(I:C));
RhoAfl/fl B cell development (↓) [119]

Rhoj ECs Pdgfb iCreERT2:Rhojfl/fl Delayed retinal angiogenesis,
EC motility (↓) [120]

RhoG, RhoC B, T cells RhoG−/−, RhoC−/− Normal T and B cell
development [121,122]

↓ reduction; ↑ increase; Bold, the adhesome layers, as discussed in the text; Orange, Adhesome signalling; Blue, Adhesion organization;
Green, Actin regulatory layer; italic, mouse models that have been used in the cited studies.
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(B) Adhesome components and the tumour stroma. The distinct cell types of the TME, with in vivo studied roles of
adhesome members are depicted on the right side of each box (layer). Abbreviations: CAF, cancer-associated fibroblast;
TAM, tumour-associated macrophage; NK, natural killer; EC, endothelial cell; DC, dendritic cell; TAN, tumour-associated
neutrophils; ECM, extracellular matrix.

2. Adhesome Function in Vasculature

Blood vessels are composed of ECs, forming the inner surface of vessels, and perivas-
cular mural cells (pericytes and smooth muscle cells) surrounding the vascular network.
Under physiological conditions, blood vessels supply tissues with nutrients and oxygen
and discharge metabolic waste products [123]. Cancer cells co-opt blood vessels and
favour angiogenesis—the development of new blood vessels from pre-existing ones—to
promote tumour growth and obtain routes for metastasis [124,125]. Owing to deregu-
lated angiogenic processes, the tumour-associated vasculature has abnormal structure and
function [126,127]. Unlike normal vessels, tumour vessels lack hierarchical organisation
and exhibit irregular branching, aberrant density, shunting, incoherent blood flow and
leakiness [128], establishing a chaotic vascular network with impaired functionality.

2.1. Endothelial Cell Adhesome

ECs are strategically positioned to influence the TME because of their ability to pro-
liferate and migrate to form new blood vessels, fuelling tumour growth. Moreover, ECs
serve as gatekeepers, enabling circulating factors and immune cells to penetrate the tumour
environment and tumour cells to enter the circulation in order to form metastasis. They
contribute to cancer development through communication with other stroma components
and cancer cells. ECs are also critical drivers of tumour ECM remodelling. Endothelial
adhesome has emerged as a crucial player of tumour progression because it controls both
cell–cell junctions and cell–ECM attachment, thus influencing cellular crosstalk, angiogene-
sis and leakage.
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2.1.1. Adhesome Signalling

The most studied adhesome signalling member both in physiology and cancer is focal
adhesion kinase (FAK). FAK is abundant in developing blood vessels suggesting that FAK
may play a role in angiogenesis [129]. Indeed, overexpression of FAK in ECs enhanced
angiogenesis during wound healing and recovery from hind limb muscle ischemia [130]
and endothelial-specific deletion of FAK led to embryonic lethality between embryonic
day (E) 10.5 and 11.5 due to defective angiogenesis [57,58]. The critical role of FAK in
tumour growth and angiogenesis was established in later studies by inducible deletion
of FAK in tumour endothelium [13,14]. Tarova et al. showed that the endothelial-specific
ablation of FAK in adult mice reduced tumour growth by inhibiting tumour angiogenesis.
Mechanistically, endothelial FAK deficiency reduced cell migration and proliferation and
enhanced apoptosis, resulting in a less dense vascular network both in tumour and in
the developing retina [13]. Similarly, Lee et al. showed that deleted FAK from adult ECs
reduces glioma growth and decreases tumour vascular dilation, tortuosity, and permeability
by stabilising brain EC junctions and astrocyte feet interactions [14]. FAK was shown
to be dispensable for VEGF-induced angiogenesis in adult mice due to compensatory
Pyk2 expression [60]. However, endothelial FAK ablation did not change Pyk2 levels in
embryonic or cancer vascular development [13,14,59,131,132]. In addition to the importance
of endothelial FAK expression in angiogenesis and tumour growth, endothelial-specific
deletion of FAK enhanced tumour sensitivity to DNA-damaging drugs by increasing
inflammatory cytokine production, indicating that endothelial FAK could be targeted in
combinatorial anticancer treatment [133].

Several studies have shown that pharmacological inhibition of FAK results in de-
creased tumour growth [134–137]. A dose-dependent effect of FAK inhibition in tumour
growth and angiogenesis, however, was demonstrated in a study using FAK-heterozygous
mice that displayed increased tumour growth [15]. These findings raised the necessity for
more careful characterisation of FAK function before clinical application. To delineate FAK
function in vivo, different mutant mice were generated targeting the FAK kinase domain,
the autophosphorylation tyrosine site Y397 (blocking Y397F or mimic Y397E phospho-
rylation), and the Src-phosphorylation site Y861 (blocking Y861F) [16–18,59,131–133,138].
Embryos that lack FAK kinase activity or FAK-Y397 phosphorylation died at E13.5–15.5,
exhibiting haemorrhages, oedema and vascular remodelling defects [59,131,132]. In agree-
ment with embryonic studies, FAK kinase activity in ECs was necessary to induce phos-
phorylation in tyrosine residue Y658 of VE-cadherin and thus destabilisation of adherens
junctions (AJ) [16,17,59]. Inhibiting FAK kinase activity in tumour endothelium decreased
vascular leakage, tumour growth and metastasis [16,17]. Interestingly, an endothelial-
specific FAK Y397E mutant, that mimics the phosphorylation of FAK Y397, was sufficient to
restore VE-cadherin Y658 phosphorylation in tumour ECs and induce tumour vascular per-
meability in FAK kinase-deficient mice [17]. Consistently, blocking FAK phosphorylation
at tyrosine Y397 in ECs inhibited tumour growth and angiogenesis [18]. The endothelial-
specific phosphorylation of FAK at tyrosine residue-861 impairs the VEGF-dependent
angiogenesis at early stages of tumour development, but this effect is not sustained in
late-stage tumours [18]. Taken together, these data demonstrate that an intricate balance of
FAK regulation is required to obtain the desired anticancer outcome.

2.1.2. Adhesion Organisation

Despite the indispensable role of many adhesome members in cell adhesion organ-
isation and their effect in cancer cell motility and survival, genetic evidence for their
function in tumour-associated ECs is mainly unexplored. Indirect evidence exists for the
involvement of kindlin2 and integrin linked kinase (ILK) in tumour angiogenesis [36,139].
Prostate tumours growing in kindlin2 heterozygous mice were smaller and developed
significantly less tumour blood vessels compared to control littermates [36]. Consistently,
the heterozygous expression of kindlin2 reduced VEGF responses in a Matrigel angiogen-
esis assay in vivo [36]. Moreover, kindlin2 partial reduction caused defective basement
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membrane and pericyte coverage, resulting in impaired vascular maturation and increased
vessel leakage [36]. Later studies further showed that kindlin2 regulates endothelial barrier
function [140]. These data raise the possibility that kindlin2 could affect the formation of
metastasis.

ILK is an essential mediator of integrin signalling, regulating cytoskeletal organisation
and dynamics [141] and cancer cell survival. In thyroid tumour xenografts, pharmacolog-
ical inhibition of ILK triggered apoptosis in both tumour cells and ECs, thus inhibiting
tumour volume and angiogenesis [40]. The same pharmacological approach was used to
suppress ILK expression in glioblastoma cells resulting in smaller tumours and reduced
vessel density [42,142]. In an orthotopic model of human prostate cancer, siRNA-mediated
depletion of ILK reduced tumour growth and angiogenesis by inhibiting HIF1a and VEGF
expression [139]. In a paracrine action, ILK knockdown in melanoma cells decreased
angiogenesis by lowering the proinflammatory cytokine IL-6 [143]. Pharmacological inhi-
bition of ILK also resulted in decreased VEGF-induced EC invasion into Matrigel plugs
in vivo [139]. Collectively, these data indicate that ILK could affect tumour growth by
regulating angiogenesis. In pancreatic cancer xenografts, however, pharmacological ILK
inhibition reduced tumour growth without affecting tumour angiogenesis [41]. Direct
evidence for the significance of ILK expression in tumour-associated ECs is still missing.
Accumulating in vitro data indicates a significant function of ILK in ECs. ILK regulates EC
migration and responses to angiogenic factors VEGF and EGF and is necessary for integrin
α5β1-mediated adhesion and capillary tube formation in vitro [139,144,145]. Furthermore,
ECs derived from embryonic stem cells lacking ILK expression could not form vessel-like
structures due to perturbed organisation of microtubules and cortical actin filaments and
defective caveolin-1 localisation [144]. In vivo studies further support the vital role of
ILK in endothelial physiology. Endothelial-specific deletion of ILK in mice results in em-
bryonic lethality due to defective placenta vascularisation [87]. Inducible EC deletion in
postnatal mice decreased sprouting of the retinal vasculature, reduced EC proliferation
and disrupted the blood–retina barrier causing increased vascular leakage [88]. Therefore,
deciphering whether and how the endothelial expression of ILK affects tumour growth
and angiogenesis could support ILK as a target for anticancer therapies.

Besides ILK, talin is a key adhesome organiser because it controls the cell–ECM
attachment by activating integrins and directly binding to the actin cytoskeleton. In
addition, talin’s unique mechano-sensitive structure serves as a scaffold for the recruitment
of numerous adhesome molecules. Endothelial-deletion of talin1 results in embryonic
lethality due to vascular defects, while inducible ablation of talin1 in adult endothelium
causes severe haemorrhaging in the intestinal vasculature followed by death [77,78]. Recent
studies also showed that integrin activation by talin1 plays an important role in tumour
angiogenesis. Endothelial-specific expression of an integrin activation talin mutant (talin1
L325R) decreased subcutaneous melanoma tumour growth and angiogenesis [39]. In line
with the role of talin in endothelial junctions, vinculin, a close interactor of talin, is required
for the remodelling of AJs [146]. As a response to different barrier-disruptive or barrier-
enhancing agonists, vinculin localisation at AJ affects the actomyosin dynamics and thus
the intracellular forces that are essential for the integrity of EC barrier [147]. These findings
make vinculin and talin key candidates for regulating tumour vascular permeability and
metastasis, a notion that remains to be investigated.

2.1.3. Actin Regulatory Layer

Cytoskeletal dynamics are crucial for cell shape maintenance and cell membrane
extensions during cell migration and invasion. Many adhesome components are involved
in linking the adhesion protein network to actin and tubulin cytoskeleton. How these
proteins influence tumour stroma is mostly unexplored. Rho-GTPases family are the widely
accepted master controllers of actin dynamics. The best-characterised members are Cdc42,
which affects filopodia formation, Rac which guides lamellipodia development, and RhoA,
which promotes stress fibres [148,149]. Although extensively studied in cancer cell migra-
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tion, invasion and metastasis, the stroma cell-specific roles of Rho-GTPases family are less
understood [150]. D’Amico and colleagues demonstrated that deleting Rac1 specifically
from tumour ECs did not alter tumour growth and angiogenesis in wild-type mice but sig-
nificantly decreased tumour vascular formation and inhibited tumour development in mice
lacking integrin β3 expression [48], indicating a context-dependent role of Rac1 in tumour
ECs. Another study showed that silencing Rac1 expression in the whole tumour xenograft,
reduced tumour growth and angiogenesis and inhibited VEGF-induced neovascularisation
of Matrigel plugs in vivo [49]. During development, endothelial deletion of Rac1 resulted
in embryonic lethality caused by defects in heart development, early vasculogenesis and
lymphatic-blood vessel separation [43,151]. In developing retina vasculature, endothelial
deletion of Rac1 decreased vessel branching and EC invasion necessary to form the deeper
plexus [108]. Taken together, these findings indicate an intricate involvement of Rac1 in
tumour development, driven by EC-specific expression.

Another member of the Cdc42 subfamily, RhoJ, is essential for pathological angio-
genesis [152,153]. RhoJ has distinct vascular expression pattern which is regulated by the
endothelial transcription factor ERG and is required for EC migration, proliferation, and
tube formation [154,155]. Although mice with constitutive deletion of RhoJ are viable,
comprehensive examination revealed reduced vessel branching during embryogenesis
and a delay in retinal vascular development due to impaired EC migration [120]. The
effect of RhoJ deficiency was stronger in tumour settings, where it drastically decreased
tumour angiogenesis and growth [50]. These findings were confirmed by endothelial-
specific targeting of RhoJ, which suppressed blood vessel formation and disrupted tumour
vascular integrity and function [51]. These differences in developmental and pathological
angiogenesis could be caused by compensatory mechanisms acting in different contexts.
Similar compensation could exist between various members of the RhoA family since
endothelial deletion of RhoA did not affect developmental angiogenesis [117].

Besides the Rho-GTPases family, other actin-binding proteins could have an EC-related
impact in cancer progression. Endothelial-specific deletion of filamin A decreased tumour
angiogenesis and fibrosarcoma development [47]. Similarly, depletion of filamin B in
HUVECs prevented EC migration and VEGF-induced tube formation in vitro [156] while
constitutive deletion of filamin B in vivo caused nonlethal defects in microvascular pat-
terning [103]. Collectively, these findings imply an important role of filamins in regulating
tumour growth and angiogenesis.

2.1.4. Emerging Adhesome Players in Tumour Endothelium

Evidence from genetic studies have demonstrated a vital role of other adhesome
components in endothelial biology, making them intriguing targets to be further explored
in tumour settings. For example, parvin family proteins, α- parvin and β-parvin, form a tri-
partite complex called IPP, with ILK and particularly interesting new cysteine-histidine-rich
protein (PINCH) proteins. Endothelial-specific deletion of α-parvin reduced angiogenic
sprouting and impaired vessel stability during late embryonic developmental stages [91].
Similar defects were observed in postnatal retina vascular formation [91]. Moreover, mice
with endothelial deletion of both α- and β-parvins die earlier than single α-parvin deficient
mice, indicating a partial compensatory function between parvin proteins [92]. Detailed
examination of the embryonic vasculature revealed an abnormal vascular network with
reduced branching, dilated vessels, balloon-type endothelial clusters and discontinuous
basement membrane leading to extensive haemorrhaging. Parvin deficient vessels had
defects in endothelial cell–cell junctions, apical-basal polarity and pericyte–vessel cover-
age [92]. All these defects could manifest in tumour vasculature but further studies are
required to establish the role of parvins in tumour ECs.

Moreover, the putative role of tensins, a family of intracellular adhesion proteins
that links integrins to actin filaments in cancer, stems from in vivo studies. Specifically,
tensin1 deficiency in mice, although viable, has been shown to reduce angiogenesis both
in vivo Matrigel assay and in ex vivo aortic ring assay [96,157]. This effect is mediated by
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decreased EC proliferation, migration and tube formation caused by downregulation of
RhoA activity [96]. Thus, one can postulate that tensins could affect tumour angiogenesis.
Another adhesome member that is closely linked to actin is zyxin [158]. Zyxin could affect
tumour haemorrhaging and growth because it has been shown to regulate the exocytosis
of endothelial Weibel–Palade body (WPB) and the secretion of von Willebrand factor
(vWF) [159]. Interestingly, zyxin is upregulated upon shear stress and translocates from
cell–matrix adhesions to the nucleus where it affects gene expression [160], indicating
alternative ways to influence tumour development. Besides zyxin, another structural
component of adhesion sites that can translocate to the nucleus and affect transcription
is the family of four and a half LIM domain protein (FHL). In vitro studies propose that
FHL2 has an antiangiogenic role because it can bind and inhibit HIF1a transactivation and
VEGF transcription [161,162] and impairs EC migration and survival [163,164]. However,
angiogenesis in the ischemia hind limp model and during recovery from corneal injury is
not elevated but decreased in FHL2 knockout mice [165,166]. More studies are needed to
decipher the involvement of FHL family proteins in tumour vascular development and
cancer progression.

Another adhesion component that can influence tumour growth by affecting both
vessel formation and permeability, is paxillin. Paxillin interacts with many kinases, includ-
ing FAK, Src, Erk, Akt, PKA, and tyrosine phosphatases [167,168] and depending on its
phosphorylation status can induce the assembly or the disassembly of adhesion sites [169].
Moreover, paxillin can regulate cell migration and invasion by controlling the spatiotempo-
ral dynamics of Rho-GTPase family proteins Rho, Rac and Cdc42 through the recruitment
of several GEFs and GAPs and interactions with the GIT/PIX/PAK complex [170,171].
Consistent with this, paxillin knockdown using siRNA enhanced EC migration and in-
vasion in vitro and increased retina vascular sprouting in vivo by reducing neuropilin2
expression [32]. Interestingly, tumour soluble factors decreased endothelial expression of
both paxillin and neuropilin2 and increased angiogenesis in a Matrigel assay in vivo [32],
indicating an antiangiogenic role for paxillin in tumour setting. Additional to modulating
angiogenesis, paxillin could affect cancer development by its established role in regulat-
ing endothelial barrier function [172–174]. The phosphorylation of paxillin in tyrosine-31
and -118 sites leads to destabilisation of VE-cadherin and enhanced pulmonary vascular
permeability in LPS-mediated lung injury [173]. Nevertheless, in the presence of barrier
enhancing factors such as sphingosine-1-phosphate (S1P) and hepatocyte growth factor
(HGF), paxillin reinforces endothelial barrier through the formation of lamellipodia [174].
Therefore, it would be informative to investigate the effect of endothelial deletion of paxillin
in tumour vascular permeability and metastasis.

Indications for a role of Cdc42 subfamily in tumour stroma stems from developmental
studies showing that endothelial deletion of Cdc42 results in embryonic lethality with
impaired vascular function [104,105]. Specifically, endothelial loss of cdc42 reduced EC
migration and survival by decreasing the surface availability of VEGFR2, and thus angio-
genic responses [105]. A more detailed examination revealed that endothelial deletion of
cdc42 disrupted lumen formation during embryonic angiogenesis and reduced vascular
sprouting and filopodia formation in the developing retina. These defects were caused
by a disorganised actin cytoskeleton, loss of cell adhesion and endothelial polarity [104].
Besides the Rho family GTPases, other actin regulators could influence tumour vascular
function. Specifically, VASP is upregulated during capillary morphogenesis in vitro [175]
and it regulates the tethering of actin filaments during the formation of endothelial cell–
matrix and cell–cell contacts [176]. Several studies, also, have demonstrated an essential
role of VASP in maintaining endothelial barrier function in response to several stimuli that
also affect tumour vasculature, including nitric oxide (NO) and hypoxia [177–179]. Due
to functional compensation between the Ena, VASP and Ena/VASP-like proteins, single
knockout mice have no major defect. The triple knockout mouse, though, is lethal and
displays impaired endothelial cell junctions, leading to oedema and vascular leakage [97],
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indicating an important and yet undiscovered function in tumour vascular permeability
and metastasis.

2.2. Mural Adhesome

Mural cells, comprising vascular smooth muscle cells (vSMCs) and mesenchymal-like
cells called pericytes, are critical constituents of the TME [180]. In the TME, both vSMCs and
pericytes are loosely associated, enabling vessel leakage [127,181]. Emerging data suggest a
critical role of pericyte adhesion in regulating tumour growth and metastasis. In particular,
deletion of integrin αvβ3 specifically from mural cells increased tumour development and
metastasis by paracrine survival and tumour promoting signals without causing major
defects in the tumour vasculature [182]. Another study showed that metastatic cells exploit
integrins, ILK and YAP to dislodge pericytes, spread on capillaries, and form colonies in
distant organs [183]. Despite these findings, very little is known about how adhesome
components intrinsically influence mural function in cancer.

2.2.1. Adhesome Signalling

Recent studies using genetic deletion approaches have addressed the role of mural
FAK in tumour angiogenesis and cancer development. In particular, mural FAK deficiency
enhanced tumour growth and angiogenesis in syngeneic subcutaneous mouse models and
spontaneously arising RIP-Tag2 pancreatic tumours [19]. In both models, FAK deficiency
weakened the association of pericytes with tumour blood vessels and increased tumour
angiogenesis. Mechanistically, the loss of pericyte FAK enhanced the expression of the
proangiogenic and tumorigenic cytokine Cyr61, via a Gas6/Axl axis, driving tumour
progression. These results were corroborated by human melanoma studies, where a
high correlation was shown between tumour size and loss of pericyte-FAK [19]. As in
ECs, pericyte FAK phosphorylation appears to have distinct roles in tumour growth and
angiogenesis. Whereas phosphorylation of mural FAK at Y397 does not seem to affect
angiogenesis and tumour growth, the phosphorylation at Y861 is important for blocking
vessel regression and enhancing tumour survival [20].

2.2.2. Adhesion Organisation

The impact of adhesome structural components in mural function during cancer
development has not been studied. Nevertheless, evidence from mural specific genetic
ablation of key adhesome members advocates a critical role in tumour vascular function.
A direct paradigm constitutes the mural ablation of ILK, which results in the defective
formation of the vessel wall and embryonic lethality. Mechanistically, ILK deficiency en-
hances phosphorylation of myosin light chain (MLC) through the activation of Rho/ROCK
signalling pathway and enhances vSMC contraction both in vitro and in vivo [89]. The
same Rho/ROCK signalling pathway is also activated in the absence of α-parvin. Dele-
tion of α-parvin in mice is embryonic lethal with defects in vascular remodelling and
reduced vSMC/pericyte spreading on blood vessels due to hypercontractility [93]. El-
evated contractility was also observed in pericytes overexpressing talin in vitro. This
contractile phenotype was shown to be dependent on calpain-mediated signalling, as
calpain pharmacological inhibition and expression of a talin mutant that is resistant in
calpain cleavage reversed this effect [184]. In contrast, zyxin-null vSMCs display reduced
responses to contractile agonists and exhibit enhanced proliferation, migration and inva-
sion and are resistant to stress-induced apoptosis [185]. More investigation is needed to
address the functional role of these key adhesome members in tumour pericyte function
and cancer development.

3. Adhesome Function in CAFs

Fibroblasts are spindle-shaped cells of mesenchymal origin and have a pivotal role
in tissue repair through a reversible transition to activated fibroblasts (also termed as
myofibroblasts) [186]. CAFs represent one of the most dominant components of the
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tumour stroma in several malignancies including breast [187], liver [188], gastrointesti-
nal [189], and pancreatic [190] cancer. In contrast to normal fibroblasts, the majority of
CAFs remain in an “activated” state characterised by enhanced contractility, prolifera-
tion and ECM deposition [191,192]. Advances in single-cell scale approaches revealed
that CAFs are a heterogeneous population with functional diversity deriving from mul-
tiple origins [193,194]. Currently, unique markers for CAFs have not been defined, and
therefore CAFs are mainly recognised by the expression of myofibroblast proteins, such
as a-smooth muscle actin (aSMA), fibroblast activation protein (FAP), fibroblast-specific
protein 1 (FSP1), and vimentin [195]. Several studies have revealed that CAFs have either
a pro- or an antitumorigenic potential within the TME, implying a dual role of CAFs in
cancer progression [196].

3.1. Adhesome Signalling

Several studies show that CAFs display altered adhesion-mediated signalling that
favours their activation and their protumorigenic capacity. For example, microarray gene-
profiling in cultured CAFs and matched normal fibroblasts from nonsmall cell lung car-
cinoma (NSCLC) patients, together with data of differentially expressed stromal/CAF
genes from various solid tumours revealed significant enrichment in focal adhesion path-
ways [197], with integrins and FAK posing central nodes [197,198]. Moreover, primary
CAFs from NSCLC patients displayed elevated expression of integrin β1 and FAK-Y397
phosphorylation, driving proliferative responses to matrix rigidity and differential ac-
cumulation in squamous cell carcinoma vs. adenocarcinoma, in vivo [199]. Similarly,
patient-derived oral squamous cell carcinoma (OSCC) CAFs overexpress FAK and siRNA
mediated FAK depletion in CAFs reduced monocyte chemoattractant protein 1 (MCP1) pro-
duction and decreased cancer cell invasion in vitro [200]. Recently, it was reported that FAK
kinase activity regulates the TGFβR2 recycling and hepatic stellate cell (HSC) activation to
tumour-promoting CAFs in vitro and in mice [23]. In other studies, chemical inhibition of
FAK resulted in tumour stasis by reducing stroma proliferation and limiting the presence
of FAP+ and aSMA+ CAFs [21,22]. Moreover, FAK activity in CAFs was recently found to
drive tumour metastasis and augment an immunosuppressive TME [25,26]. Taken together,
these studies provide evidence for a role of FAK in mediating the tumour-promoting
actions of CAFs in vivo. Strikingly, a recent study has further addressed the direct involve-
ment of FAK in CAF properties and discovered a tumour suppressive role for CAF-FAK
by regulating cancer cell metabolism [24]. Specifically, conditional deletion of FAK from
FSP1-expressing CAFs increased tumour growth in both orthotopic and spontaneous breast
cancer mouse models. The enhanced tumour development in FSP-Cre+;FAKfl/fl knockout
mice was caused by altered CAF chemokine production and paracrine signalling, which
increased malignant cell glycolysis. These findings were corroborated by clinical observa-
tions that low FAK stromal expression is positively correlated with poor overall survival in
human breast and pancreatic patients [24].

3.2. Adhesion Organisation

Besides FAK, recent studies revealed that kindlin2 is necessary for bladder CAF
activation and pancreatic stellate cell (PSC) proliferation, migration and cytokine pro-
duction [37,201]. Kindlin2 siRNA-mediated ablation in isolated human PSCs decreased
pancreatic cancer cell proliferation and migration in vitro and growth of tumour/CAFs co-
implantation in athymic mice [37]. Similarly, kindlin2 silencing suppressed CAF-mediated
cancer cell survival, migration and epithelial to mesenchymal transition [201]. Altered
adhesion properties are crucial not only for the differentiation of fibroblasts into CAFs
and their migratory capacity but also for the production and organisation of ECM, that
governs tumour rigidity and response to treatment [202]. Besides the role of integrins,
emerging data indicate an involvement of other adhesome components in CAF-mediated
ECM remodelling. For example, CAFs exhibit an increased number of adhesion sites and
higher turnover rates of large vinculin-containing adhesions that enhance contractility



Cancers 2021, 13, 525 20 of 38

and traction force generation necessary for aligning fibronectin (FN) fibres and creating
migratory tracks for cancer cells [203]. A separate study implicated talin1 and kindlin2
for the activation of β1 integrins and the cooperation with the DDR2 collagen receptor to
enable CAF-mediated collagen matrix assembly and linear organisation [204].

3.3. Actin Regulatory Layer

Given the essential role of actomyosin cytoskeleton in eliciting CAF contraction, actin-
related proteins have emerged as critical effectors of CAF function. Microarray analysis in
CAFs isolated from patients with distinct breast cancer molecular types revealed that CAFs
from Her2-positive tumours had significant upregulation of integrin and actin-related
pathways including Rho GTPases and kinases [205]. A separate study showed that block-
ing the mechanical activity of CAFs by inhibiting ROCK kinase decreases vascularisation
in a 3D assay, indicating an additional way by which adhesome components regulate
CAF-tumour promoting function [206]. Furthermore, a key role for VASP in HSC activation
into myofibroblasts and CAF-related tumour progression has been shown in vitro and
in vivo experiments. Specifically, siRNA knockdown of VASP in mouse embryonic fibrob-
lasts failed to induce tumour progression and an αSMA-enriched microenvironment in a
subcutaneous mouse tumour/CAF coengraftment model [45]. Another study, showed that
VASP expression is increased in HSCs associated with liver metastasis both in experimental
mice and cancer patient samples and this is required for TGFβ signalling, differentiation of
normal HSCs to myofibroblasts and CAF paracrine function [46].

In addition to VASP, several studies have established that increased expression of a
long palladin isoform is mostly restricted in the tumour stroma, and elevated palladin
levels in CAFs are associated with poor prognosis and unfavourable chemotherapeutic
efficacy of pancreatic and renal cancer [207–210]. It has been shown that palladin has a
prominent role in mechanosensing, and adhesion dynamics of pancreatic CAFs [211,212].
Furthermore, palladin can control the activity of Cdc42 and increase the formation of
adhesive membrane protrusions, called invadopodia, that can remodel ECM and promote
tumour development in vivo [44,213]. Taken together, these data suggest that palladin is a
key regulator of CAF tumour-supportive properties.

4. Adhesome Function in Immune Cells

Tumour-infiltrating immune cells (TICs) contribute to many if not most hallmarks of
cancer [1]. The “proinflammatory” and cytotoxic activities of immune cells lead to cancer
cell destruction, while distinct leukocyte subsets acquire inhibitory functions that benefit
tumour growth and immune evasion. The abundance and constitution of TICs vary con-
siderably depending on the tumour type [3]. The spatial organisation of immune infiltrates
within the TME is now increasingly recognised as a dynamic nexus of chemokine-driven
cell motility rather than simple segregation into peritumoral, stromal and intratumoral lo-
cation [214]. Here, we classify TICs into two main categories according to their recruitment
in innate (macrophages, natural killer cells, monocytes, myeloid-derived suppressor cells,
neutrophils, dendritic cells or DCs), or adaptive (T and B lymphocytes) immune responses
to review the role of adhesome components in immune TME composition and function.

4.1. Innate Immune Cell Adhesome

Inside the TME, tumour-associated macrophages (TAMs) are the most prevalent im-
mune constituent. They serve as a mix of tissue-resident and monocyte-derived cells that
are involved in every step of malignant progression, from the primary tumour formation to
metastatic colonisation [215,216]. In a general term, two fundamental phenotypes of TAMs
have been documented, termed as the M1 (“classically” activated, proinflammatory, tumou-
ricidal) and the M2 (“alternatively” activated, anti-inflammatory, tumour-promotive) type,
but accumulating evidence has also described plasticity between TAM states and multiple
distinct phenotypes combining features of both M1 and M2 polarisation [217]. Besides TAM,
other leukocyte populations including recruited monocytes, tumour-associated neutrophils



Cancers 2021, 13, 525 21 of 38

(TANs), myeloid-derived suppressor cells (MDSCs), dendritic cells and natural killer (NK)
cells are critical components of innate tumour responses. Current research has now begun
to scratch the surface of adhesome-mediated regulation within the immune TME.

4.1.1. Adhesome Signalling

Early in vitro studies showed that FAK and the related Pyk2 signalling are vital
for macrophage responses [218,219], including differentiation [220], cytokine produc-
tion [221,222], migration [66,223], and phagocytosis [224,225]. Besides FAK and Pyk2,
paxillin phosphorylation has been implicated in cytokine-induced neutrophil activation
and macrophage phagocytosis, in vitro [226–228]. However, the impact of paxillin sig-
nalling on individual innate immune subsets in vivo and the regulation of TME within
different tumour types remains to be explored.

Genetic ablation of FAK and Pyk2 in myeloid lineages demonstrated their essential
role in macrophage recruitment during inflammation [61,229]. Likewise, genetic studies in
neutrophils revealed that FAK and Pyk2 regulate neutrophil chemotaxis, degranulation
and host-killing responses [62,67]. Pyk2 kinase activity has also been involved in regulating
chemokine-driven DC motility in vitro [230,231] and a recent study attempted to delineate
how Pyk2 activity defines the ratio of monocyte subsets at steady state [68]. Taken together,
these studies suggest that FAK/Pyk2 signalling could play an important role in tumour
innate responses.

Indeed, inhibiting FAK kinase activity in murine models of breast and pancreatic
cancer reduced tumour growth and limited CD45+ immune cells [27] and TAM infiltra-
tion [21,22,28], indicating a tumour-promoting FAK function. Accordingly, high levels of
FAK phosphorylation within tumour tissue have been correlated with elevated granulocyte
recruitment in human pancreatic cancer and FAK inhibition decreased tumour penetration
of both monocytic MDSCs and polymorphonuclear/granulocytic MDSCs [22]. However,
these studies were mainly focused on cancer cell-mediated effects of FAK inhibition, and a
more detailed examination is needed to dissect the effects of FAK inhibition on individual
innate immune subsets within different tumour types. A recent study showed that mechan-
ical stretch preconditioning of macrophages activates FAK and induces M1 polarisation.
Intratumoural injection of mechanical stretched macrophages decreased tumour growth
in vivo [232], suggesting an antitumour role for FAK in macrophages. In agreement with
a multifaceted action of FAK in the tumour stroma, myeloid cell-specific deletion of FAK
in LysM-Cre mice with spontaneously developed mammary carcinomas was associated
with both pro- and antitumorigenic functions depending on the stage of malignancy [29].
In particular, FAK depletion in myeloid cells retards early tumour progression, but it
accelerates outgrowth after primary tumour formation by reducing tumour-infiltrating NK
cell abundance [29].

NK cells are innate lymphocytes with antitumour cytolytic activity [233]. Previous
in vitro studies showed that Pyk2 kinase activity along with paxillin activation contributes
to NK cytotoxic efficiency [234–237] and inhibition of Pyk2 activity decreased NK trans-
endothelial migration [69], indicating that Pyk2 and paxillin signalling could potentially
mediate NK cell extravasation and tumour infiltration limiting tumour progression. Al-
though the increased density of intratumoral NK cells has been associated with a beneficial
prognosis [238–240], immune cell recruitment in the tumour niche does not necessarily
coincide with functionality. Tumours discover ways to evade the cytotoxic function of NK
cells and impel them to enter an anergic state [241]. Therefore, further in vivo studies are
required to determine the functional significance of adhesome signalling in NK-mediated
tumour responses.

4.1.2. Adhesion Organisation

Additionally to the role of adhesion scaffolding proteins, including talin, vinculin and
α-actinin on phagosome structure [226,242], and function [243,244], adhesion organisation
is critical for podosome assembly and innate immune cell migration [245–247]. Apart
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from the facilitation of cell migration, podosomes in DCs have been proposed to partici-
pate in antigen representation [248]. In agreement with this concept, genetic deletion of
talin1 in DCs revealed that talin1 plays a vital role in DC antigen sampling, DC activation
and priming of adaptive immunity [80] but not in DC migration and arrival to lymph
nodes in vivo [249]. However, genetic deletion of talin1 in skin resident DCs, decreased T
cell-mediated DC activation and chemotaxis to lymph nodes upon inflammatory stimuli,
hindering skin antimicrobial and immune responses [81]. Although these studies highlight
an important function of talin in DCs, the role of DC talin expression in cancer remains
elusive. Talin could also affect the innate TME by regulating the function of NK cells
and TANs. Talin-depleted NK cells had impaired αLβ2 integrin-mediated adhesion and
cytotoxicity [82], whereas talin deficiency in myeloid lineages impaired integrin activation,
neutrophil tethering and rolling along the vessel wall and extravasation into inflammatory
sites [50,120,156]. Methylation of talin by Ezh2, also decreased adhesion of innate leuko-
cytes, extravasation and organ infiltration in response to inflammatory stimuli [250,251].
Interestingly, a recent study showed that Ezh2 inhibition in mice increased the number of
immunosuppressive CD11b+Gr1+ cells within subcutaneous tumours [252]. In-depth re-
search is yet needed to unravel whether changes in leukocyte differentiation and infiltration
within tumours are associated with post-translational modifications in adhesome members.

Additional adhesome components have been implicated to innate immune cell func-
tion. FHL2-deficient mice displayed increased DC migration in response to chemokine
signalling, hinting at a suppressive role of FHL2 in immune responses [95]. Similarly,
conditional depletion of filamin A from myeloid lineages increased neutrophil adhesion
and spreading under basal conditions without though affecting immune cell distribution
in different organs, adhesion underflow or the generation of reactive oxygen species [101].
However, in an in vivo peritonitis model, filamin A deletion impaired neutrophil chemo-
taxis, revealing a role of filamin A in inflammatory responses and potentially in cancer [102].
Further studies are required to reveal the function of these proteins in cancer immunity.

Moreover, overexpression of ILK attenuated leukocyte adhesion on ECs [253] and
in vitro deletion of ILK in immortalised macrophages decreased their survival [254]. Other
proteins of the adhesion network including vinculin and γ-parvin, although they dis-
rupt leukocyte adhesion in vitro [226,243,255], are dispensable for leukocyte function
in vivo [86,94]. Interestingly, mutations of the kindlin3 gene have been linked to leukocyte
adhesion deficiency syndrome [256], and kindlin3-null mice display impaired integrin
activation as well as neutrophil adhesion and arrest on the vascular wall [73,74]. Minimal
kindlin3 expression (5% of normal levels) is sufficient for physiological neutrophil function
but inadequate for integrin activation and neutrophil responses in injury or inflamma-
tion [75]. Collectively, these studies indicate an intricate function of adhesion components
and highlight the need for a thorough examination in a cancer setting. Indeed, inducible
deletion of kindlin3 from myeloid lineages in a murine melanoma tumour model impaired
the ability of nonclassical monocytes to patrol and scavenge tumour cells. Furthermore, it
decreased NK cell and DC recruitment and proliferation, thus promoting the development
of metastatic lesions in vivo [38].

4.1.3. Actin Regulatory Layer

Several studies have addressed the role of Rho GTPase family in innate cell adhe-
sion and migration. Specifically, the Rho-GTPases members, RhoA, Rac and Cdc42 have
been implicated in podosome assembly with diverse effects in migration [69,257,258].
Although ablation of Rac1 or Rac2 from myeloid lineages does not affect macrophage
migration [109,110], the Rho/Pyk2/cofilin axis regulates chemokine-induced DC motil-
ity [231]. Rac activation by Pyk2 has also been reported to affect NK cell transendothelial
migration [69] and the production of reactive oxygen species in neutrophils [259]. Other
cytoskeletal regulators, including Wiskott–Aldrich syndrome protein (WASP) and VASP,
were found to be required for actin reorganisation during macrophage phagocytosis [260].
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Recent data also have interrelated VASP with NK cell-mediated killing [261] and the regu-
lation of polymorphonuclear neutrophil adhesion in response to cytokine stimulation [99].

Collectively, these findings reveal that albeit compensatory mechanisms, actin regula-
tors influence innate immune functions in a cell type-specific manner and could have an
impact on cancer. However, which actin-related proteins are essential and how they shape
innate immunity during cancer remains to be investigated.

4.2. Adaptive Immune Cell Adhesome

Antitumour adaptive immunity relies mainly on the functional diversity of T cell
subsets and the crosstalk between T cells, antigen presenting cells (APCs) and other
stromal/immune populations [262]. Upon antigen recognition by T cell receptors (TCR)
through major histocompatibility complex (MHC) molecules, costimulation and cytokine
signals, naïve T cells are conventionally activated and become effector T cells (TEFF cells).
Among TEFF cells, CD8+ cytotoxic T lymphocytes (CTLs) play a crucial role in tumour
surveillance and kill cancer cells through granule exocytosis (granzymes and perforin
secretion) and ligand/death receptor-mediated apoptosis [263]. Concomitantly, CD4+ T
cells shape tumour immune responses at the tumour site and in lymphoid organs either
by supporting cancer cell elimination (T helper cells or Th, follicular helper T cells and
CD4+ CTLs) or by promoting an immunosuppressing TME and tumour growth (mainly
CD4+ regulatory T cells or Treg cells) [264]. Although the abundance of intratumoural T
cells, especially CD8+ cells, provides a positive prognostic and predictive value for cancer
patients [265], T-cell-mediated tumour clearance is often restricted. Intrinsic (transcrip-
tional, epigenetic, metabolic factors) and extrinsic (interaction with immunosuppressive
cells and soluble factors within the TME) parameters renders T cells dysfunctional (anergic,
exhausted or senescent), leading to cancer immune evasion [266,267].

Additionally to T cells, B cells are crucial players of cancer adaptive immunity. Both
tumour-promoting and antitumorigenic actions have been attributed to B cells [268]. B
cells produce tumour reactive antibodies that facilitate tumour killing by NK and CD4+

CD8+ T cells and phagocytosis by macrophages. On the other hand, B regulating cells and
the production of autoantibodies can suppress Th1 and CD8+ cytotoxic effects, leading to
tumour development. Future studies will define the context-dependent B cell function and
explore the use of B cell-based therapies for cancer treatment [269].

4.2.1. Adhesome Signalling

Numerous studies have implicated FAK and Pyk2 in downstream TCR signalling [270],
suggesting a central role in T-cell function. Pharmacological inhibition of Pyk2 and RNAi-
mediated knockdown in T cells decreased CTL migration [271], cytokine production
and CD4+ effector responses in vitro [272,273]. Deletion of Pyk2 in vivo did not affect
T cell development but impaired T cell activation and generation of short term CD8+

TEFF [274]. Moreover, downregulation of Pyk2 and paxillin disrupted microadhesion
structures around TCR microclusters at immunological synapses and impaired T-cell
activation [275]. Similarly, overexpression of FAK in the Jurkat T cell line increased integrin
β1 mediated migration, whereas mutation in FAK Y397 phosphorylation site decreased T
cell migration [276]. Pharmacological inhibition of FAK in T cells impaired their adhesion,
proliferation and activation [64]. In contrast to the in vitro studies, genetic deletion of FAK
from CD4+ T cells did not affect T cell development, proliferation or activation, possibly
due to residual remaining FAK levels [64]. Consistent with this, FAK heterozygous mice
also do not develop any T cell defects [63].

Regarding B cell immunity, FAK and Pyk2 phosphorylation affects progenitor B cell
adhesion and spreading [277–279] and specific deletion of FAK was shown to regulate B
cell homing and retention in bone marrow as well as B cell survival and proliferation [65].
Likewise, Pyk2 deficiency impaired B cell migration into the marginal zone of the spleen
and humoral responses to thymic antigen responses [70]. However, the involvement of
FAK/Pyk2 in tumour adaptive responses is not well-established. An immunomodulatory
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function of FAK in tumour stroma has been suggested using FAK inhibitors in vivo. Ad-
ministration of FAK inhibitors or FAK-specific depletion in cancer cells caused tumour
regression with increased CD4+ and CD8+ T cell infiltration and decreased Tregs in vivo.
Specifically, CD8+ T cell function was correlated with the efficacy of FAK inhibition [30,31].
The inhibitory role of FAK appeared to be cancer-cell specific and was attributed to its
kinase activity within the nucleus and the transcriptional regulation of cytokines pro-
duction [31,280]. Similar changes in intratumoural CTLs were observed in pancreatic
tumour-bearing mice treated with FAK inhibitor [22]. This inverse correlation between
FAK activity and CD8+ infiltration was also reflected in lesions of pancreatic cancer pa-
tients [22]. Of note, FAK inhibition combined with chemotherapy or immunotherapy
(adoptive T cell transfer or immune checkpoint inhibitors) brought beneficial results in
tumour response and survival of treatment-resistant animals [22,30,281]. Although these
studies highlight the role of FAK in T cell-mediated cancer immunity and can pave the way
for more effective combination therapies against cancer, more comprehensive examination
is required to distinguish the importance of FAK function in immune vs. cancer cells.

In addition to FAK and Pyk2, inhibition of paxillin phosphorylation decreased the
tumour-targeting function of CD8+ T cells, in vitro, and paxillin knockdown reduced the
adhesion and spreading of tissue-resident memory T cells (TRM) isolated from human lung
tumours [282]. TRM cells emerge as a prominent, non-recirculating subset of CD8+ T lym-
phocytes that reside into tissues to rapidly re-encounter with pathogens and cancer [283].
The exact role of TRM cells in antitumoural responses is now beginning to be appreci-
ated [284] and further investigation is needed to understand how adhesome molecules are
involved in immunological memory.

Increasing evidence suggests that the GIT/PAK/PIX signalling pathway influences
tumour-resident lymphocytes. Mice deficient in αPIX present defective immune responses,
with reduced T and B cell proliferation, increased motility and disrupted immune synapse
formation and positive selection [71,72]. In a tumour setting, mouse Tregs lacking GIT2
were unable to induce tumour development when compared with wild-type Tregs in
an adoptive T cell transfer mouse model [35]. Further in vitro experiments showed that
GIT2 knockdown in human Tregs inhibits TEFF proliferation and decreases the surface
levels of CD86 costimulatory molecule on B cells. PAK1/2 is also activated in Tregs in
a CTLA4/PKCη-dependent manner [35]. Transcriptomics analysis of various CD4+ T
cell subsets from patient tumours, normal surrounding tissue and peripheral blood re-
vealed that tumour-localising Tregs have unique signatures of upregulated genes including
pak2 [285]. Additionally, mice lacking PAK1 had increased number of spleen T and B
cells in contrast to wild type mice developing cancer in the small intestine, distal colon
and rectum, indicating that PAK1 might contribute to the tumour eradication by immune
cells [34]. Accordingly, PAK1 depletion decreased tumour incidence rates and size in mice
developing spontaneous intestinal-colorectal tumorigenesis [34]. It also enhanced CD4+

and CD8+ T cell recruitment in a mouse model of pancreatic adenocarcinoma, prolonging
mouse survival [33].

4.2.2. Adhesion Organisation

Besides adhesome signalling, emerging data demonstrate that adhesion scaffolding
proteins have an essential function in adaptive immunity and therefore, could impact
cancer development. T cell specific deletion of talin1 displayed defective immunological
synapses and transient T cell-APC interactions leading to reduced T cell activation and
proliferation [83]. Another in vivo study showed that talin1 is necessary for Treg survival
and function [84]. Furthermore, B cell specific ablation of talin1 revealed that, although
talin does not affect the maturation of B cells, it is required for humoral responses to T cell
dependent antigen and emigration to lymph nodes [85]. The partner of talin, vinculin, also
localises to immunological synapses at B cells and is required for B cell stable adhesion
and migration [286]. Recent data also implicated filamin A in T cell trafficking to lymph
nodes and inflamed skin in vivo [100]. Additionally, T cell specific ILK deletion decreased
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chemokine-mediated T cell trafficking and survival [90]. A context-dependent role of
kindlin3 was revealed through in vivo studies. T cells lacking kindlin3 failed to arrest and
transmigrate through blood vessels under normal shear stress conditions. However, an in-
flamed vasculature, as observed in cancer, provided sufficient integrin ligands to overcome
kindlin3 deficiency and rescued the defective extravasation [76]. Taken together, these
findings indicate a putative role of integrin-interacting proteins in adaptive antitumour
responses.

4.2.3. Actin Regulatory Layer

Genetic ablation studies in mice have revealed that Rho GTPase family members
regulate essential T cell functions, including activation, cell division, migration, and adhe-
sion [114,287–289]. Mice lacking both Rac1 and Rac2 present defects in T cell development,
resulting in decreased CD4+ and CD8+ thymocytes [111,112]. Other studies also showed
that combined Rac1 and Rac2 function regulate T-cell migration and homing to lymph
nodes, thymus and spleen [115]. A similar phenotype is observed in the absence of Vav1,
Vav2 and Vav3 guanine nucleotide exchange factors of Rac [112]. Likewise, gene target-
ing of cdc42 in mice impairs the initial stages of T cell development, proliferation and
migration but augments effector and memory T cell differentiation [106,107], indicating a
stage-specific role with putative implications in cancer. While other Rho GTPases, includ-
ing RhoC and RhoG, do not affect T cell function [121,122], specific deletion of RhoA in
thymocytes leads to reduced proliferation, survival and differentiation of T cells. More-
over, it abolishes Th1 inflammation responses, resulting in amelioration of autoimmune
diseases [118]. These findings imply a putative important, yet unexplored, function in
tumour suppressive immunity. Additionally, RhoA affects B cell development but not BCR-
dependent proliferation [119]. Similar to RhoA, Cdc42 deficiency and double Rac1/Rac2
deletion have reduced numbers of transitional, marginal zone and follicular B cells and de-
creased BCR-mediated survival and proliferation [116,289,290]. However, the importance
of B cell expression of Rho GTPases in shaping cancer immunity is not explored yet.

Besides Rho-GTPases, evidence exists for other actin regulators, including the ERM
family of ezrin-radixin-moesin and the Ena/VASP proteins in T cell function. Specifically,
ERM inactivation and removal from the TCR microstructures via the Rac1/Vav signalling
axis is important for efficient T cell-APC association [291,292] suggesting that ERM proteins
could facilitate immune evasion in cancer. Cytoskeletal remodelling is important for T cell
function as is indicated by mutations in WASP that disrupt T cell cytoskeleton in Wiskott–
Aldrich syndrome patients [293] and cause defective TCR signalling and activation in
Jurkat T cells [294]. Moreover, Ena/VASP combined deficiency in mice is dispensable for
T cell development, adhesion and crawling on the vascular endothelium. Nevertheless,
recruitment of CD4+ activated T cells to inflammatory sites is severely compromised
in double Ena/VASP knockout mice due to defective transendothelial migration [98],
suggesting a suppressing mechanism of cancer immunity. A more detailed examination is
needed to decipher the role of actin regulators in shaping cancer adaptive immunity.

5. Conclusions

It is becoming increasingly evident that the tumour stroma is not a bystander but rather
a key driver in tumour development. Malignancy is controlled by the cumulative action of
the different TME constituents. In the dynamic crosstalk between cancer cells and TME
components, cell adhesion to the ECM has a dominant function. Despite the entrenched role
of adhesome members in cancer cells, which adhesome proteins are important to regulate
TME cellular players, ECs, mural cells, CAFs and immune cells- is poorly understood.
While comprehensive approaches dissecting cancer-intrinsic vs. tumour-associated host
effects of adhesome components are still lacking, evidence derived from developmental
studies could shed light into the functional requirement of adhesome in controlling TME
and tumour progression. It is envisaged that the impact of individual adhesome members
in cancer could be cell-type-dependent, with both tumour promoting and suppressive
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effects elicited by the same protein in different TME cellular components and cancer cells.
Therefore, gene-targeting approaches are needed to define the requirement of adhesome
proteins in specific cell types of TME. Deciphering how cell adhesion organisation and
signalling determines tumour stroma architecture and impact on malignancy will set the
stage for effective interventions in cancer prognosis and treatment. Specifically, evidence
exists about the role of ECM rigidity in defining cancer outcome and studies have revealed
that radiation treatment could lead to fibrosis. One avenue for exploration could be to
dissect how adhesome members could impact on tumour fibrosis, affect ECM remodelling
and define cancer responses to treatment.
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