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Neuropeptide Y (NPY) plays a role in a variety of basic physiological functions and has
also been implicated in regulating cognition, including learning and memory. A decrease in
neocortical NPY has been reported for Alzheimer’s disease, schizophrenia, bipolar disorder,
and depression, potentially contributing to associated cognitive deficits. The goal of the
present analysis was to examine variation in neocortical NPY-immunoreactive axon and
varicosity density among haplorhine primates (monkeys, apes, and humans). Stereologic
methods were used to measure the ratios of NPY-expressing axon length density to total
neuron density (ALv/Nv) and NPY-immunoreactive varicosity density to neuron density
(Vv/Nv), as well as the mean varicosity spacing in neocortical areas 10, 24, 44, and 22 (Tpt)
of humans, African great apes, New World monkeys, and Old World monkeys. Humans
and great apes showed increased cortical NPY innervation relative to monkey species for
ALv/Nv and Vv/Nv. Furthermore, humans and great apes displayed a conserved pattern of
varicosity spacing across cortical areas and layers, with no differences between cortical
layers or among cortical areas. These phylogenetic differences may be related to shared
life history variables and may reflect specific cognitive abilities.
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INTRODUCTION
Neuropeptide Y (NPY), a 36-amino acid peptide, has an evo-
lutionarily conserved sequence (Blomqvist et al., 1992), and is
expressed at high levels throughout the central nervous system
(Tatemoto et al., 1981; Adrian et al., 1983). The NPY that is
expressed in the cerebral cortex derives from both intrinsic and
extrinsic sources. NPY is often colocalized with GABA in corti-
cal interneurons, and NPY-containing neurons of the olfactory
bulb, nucleus of the tractus solitarius, and locus coeruleus send
projections to innervate neurons of the cerebral cortex, spinal
cord, and hypothalamus (Adrian et al., 1983; Allen et al., 1983;
von Bohlen und Halbach and Dermietzel, 2006). The effects of
NPY are mediated by at least four recognized receptor subtypes
(Michel, 1991; Dumont et al., 1998). Its roles within the cere-
bral cortex include the regulation of blood flow and synaptic
activity, and inhibition of neuronal excitability (Colmers and
Bleakman, 1994; Cauli et al., 1997; Estrada and Defelipe, 1998;
Bacci et al., 2002; Hamel et al., 2002). NPY is involved in
regulating a variety of physiological functions, such as feeding
behaviors, sleep regulation, and cardiovascular neuroendocrine
functions, but has also been implicated in cognitive functions,
including learning and memory (Rangani et al., 2012). In addi-
tion, decreased NPY concentrations are associated with condi-
tions such as schizophrenia, depression, bipolar disorder, and
Alzheimer’s disease (Beal et al., 1986b; Kowall and Beal, 1988;

Caberlotto and Hurd, 1999; Kuromitsu et al., 2001; Frederickson
et al., 2007; Morales-Medina et al., 2010). Accordingly, evolution-
ary changes in the synthesis and innervation pattern of NPY may
be present among primates related to cognitive and behavioral
variability.

Neuroanatomical evidence indicates that the distribution and
density of axons selectively expressing several neocortical neuro-
transmitters exhibit differences among primate species (Raghanti
et al., 2008a,b,c). Humans and chimpanzees share increased neo-
cortical innervation by dopaminergic and serotonergic axons and
a different laminar pattern of cholinergic afferents selectively
within prefrontal cortex (areas 9 and 32) relative to macaques,
with no species differences evident in the primary motor cortex
(area 4) (Raghanti et al., 2008a,b,c). In primates and other mam-
mals, neocortical neurotransmitter innervation has been demon-
strated to have species- and area-specific patterns (Morrison et al.,
1982; Morrison and Foote, 1986; Lewis et al., 1987; Berger et al.,
1991, 1992), raising the possibility that these systems may provide
targets for the evolutionary modification of neuronal processing
capacity. To understand the role of neurotransmitters in the evo-
lution of the human brain, each system must be analyzed in a
comparative context, so ultimately, broad quantitative compar-
ative analyses of each cortical neurotransmitter system can be
integrated and evaluated to reveal species-typical neurochemical
phenotypes.
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In the present study, we quantified the density of NPY-
immunoreactive (ir) axons and varicosities in neocortical areas
10, 24, 44, and 22 among humans, African great apes, Old World
monkeys, and New World monkeys. Cortical areas were cho-
sen based on their roles in cognitive functions, including regions
involved in language. The goal of the study was to determine if
there was an evolutionary shift in cortical NPY innervation that
might be associated with the emergence of cognitive or behavioral
differences among haplorhine primates.

MATERIALS AND METHODS
SPECIMENS
Brain samples from the left hemisphere of 46 individuals repre-
senting eight haplorhines species were used for this study and
included New World monkeys (black-capped squirrel monkeys
and tufted capuchins), Old World monkeys (moor macaques, pig-
tailed macaques, and olive baboons), African great apes (western
lowland gorillas and common chimpanzees), and humans (see
Table 1 for details). Brain weight was recorded for every spec-
imen either at the time of necropsy or shortly afterwards. All
individuals were adults and had no evidence of neuropathologi-
cal alterations based on inspection of gross specimens. Sexes were
balanced within species as much as possible given the oppor-
tunistic nature of brain collection. Human brain samples were
provided by the Northwestern University Alzheimer’s Disease
Center Brain Bank. The human subjects exhibited no evidence
of cognitive changes before death and all received a score of zero
for the CERAD senile plaque grade (Mirra et al., 1991) and the
Braak and Braak neurofibrillary tangle stage (Braak and Braak,
1991). Non-human primate brains were acquired from American
Zoo and Aquarium-accredited zoos or research institutions and
were maintained in accordance with each institution’s animal care
and use guidelines. All brains except those of the moor macaques
were immersion-fixed in 10% buffered formalin for at least 7
days, transferred to a 0.1 M phosphate buffered saline solution
containing 0.1% sodium azide, and stored at 4◦C until process-
ing. The moor macaques were perfused transcardially with 4%
paraformaldehyde as part of unrelated experiments (Duan et al.,
2003). Postmortem interval (PMI) did not exceed 17 h for any of
the specimens. While all four cortical areas were available for the
majority of specimens, some individuals were not represented for
every area. All available materials were analyzed for neuron densi-
ties and axon length densities. A minimum of four individuals per
species (except three for squirrel monkeys) was used to quantify
varicosity densities.

SAMPLE PROCESSING
Prior to sectioning, specimens were cryoprotected in a series
of sucrose solutions (10, 20, and 30%) until saturated. Brains
were frozen in dry ice and cut in the coronal plane into 40 μm-
thick sections using a Leica SM2000R freezing sliding micro-
tome. Sections were placed into individual microcentrifuge tubes
containing a freezer storage solution (30% of each distilled
water, ethylene glycol, and glycerol and 10% 0.244 M phosphate-
buffered saline) and numbered sequentially. Sections were stored
at −20◦C until further processing. Every tenth section was stained

Table 1 | Study sample.

Group Species Common name Sex Age

Humans Homo sapiens* Human M 54

Homo sapiens* Human M 54

Homo sapiens* Human M 56

Homo sapiens Human F 40

Homo sapiens* Human F 43

Homo sapiens Human F 43

Homo sapiens Human F 54

Great apes Pan troglodytes* Chimpanzee F 44

Pan troglodytes* Chimpanzee F 45

Pan troglodytes* Chimpanzee M 25

Pan troglodytes* Chimpanzee M 17

Pan troglodytes* Chimpanzee M 19

Gorilla gorilla* Western lowland gorilla M 13

Gorilla gorilla* Western lowland gorilla M 21

Gorilla gorilla* Western lowland gorilla M 42

Gorilla gorilla Western lowland gorilla M 49

Gorilla gorilla* Western lowland gorilla F 50

Gorilla gorilla Western lowland gorilla F 55

Old World Macaca nemestrina* Pigtailed macaque M 3

monkeys Macaca nemestrina* Pigtailed macaque M 4

Macaca nemestrina* Pigtailed macaque M 7

Macaca nemestrina* Pigtailed macaque M 15

Macaca nemestrina* Pigtailed macaque F 6

Macaca nemestrina* Pigtailed macaque F 9

Macaca nemestrina* Pigtailed macaque F 15

Macaca maura* Moor macaque M 8

Macaca maura* Moor macaque M 10

Macaca maura* Moor macaque F 5

Macaca maura Moor macaque F 7

Macaca maura* Moor macaque F 7

Macaca maura* Moor macaque F 8

Papio anubis* Baboon M 5

Papio anubis* Baboon M 7

Papio anubis* Baboon M 9

Papio anubis* Baboon M 10

Papio anubis Baboon F 5

Papio anubis* Baboon F 9

Papio anubis* Baboon F 12

New World Saimiri boliviensis* Squirrel monkey F 12

monkeys Saimiri boliviensis* Squirrel monkey F 9

Saimiri boliviensis* Squirrel monkey F 9

Cebus apella* Capuchin M 15

Cebus apella* Capuchin M 16

Cebus apella* Capuchin F 12

Cebus apella Capuchin F 17

Cebus apella* Capuchin F 18

Age is in years, M, male; F, female.
*included in among-species analyses of ALv/Nv (i.e., all four cortical areas were

represented).
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for Nissl substance with a solution of 0.5% cresyl violet. Nissl-
stained sections were used to identify the cortical areas of interest
based on cytoarchitecture.

IDENTIFICATION OF CORTICAL AREAS
The identification of each cortical area was performed using
descriptions from previous parcellations in a wide range of pri-
mate species, including galagos, New World monkeys, Old World
monkeys, apes, and humans (Bailey et al., 1950; Rosabal, 1967;
Preuss and Goldman-Rakic, 1991b; Watanabe-Sawaguchi et al.,
1991; Vogt et al., 1995; Petrides and Pandya, 1999; Paxinos et al.,
2000; Sherwood et al., 2003, 2004; Petrides, 2005; Schenker et al.,
2008; Spocter et al., 2010). Because the cytoarchitecture of the
areas of interest have not been described for all species analyzed
in the present study, reports from a diverse array of primates were
used to identify the cortical areas using Nissl-stained sections.

Broca’s area (area 44) and its homolog have been described
in humans (Amunts et al., 1999; Petrides, 2005), chimpanzees
(Sherwood et al., 2003), and other great apes (Schenker, 2007).
There has been considerable controversy over whether mon-
keys possess a homolog of human area 44. Petrides et al. (2005)
addressed this question using both electrophysiological record-
ings and quantitative cytoarchitecture in macaque monkeys,
demonstrating the presence of a cortical area that is topologically
and cytoarchitecturally comparable to that of humans and which
is involved in orofacial muscle movement. Coudé et al. (2011) also
recently reported that voluntary vocalizations, but not emotional
vocalizations, evoked the firing of neurons within the macaque
homolog of Broca’s area. Area 44 is characterized in each species
as being dysgranular with a poorly developed layer IV and large
pyramidal cells in the lower portion of layers III and V.

Wernicke’s area and its homolog (area 22 or Tpt) is well
described for humans (Fullerton and Pandya, 2007), chimpanzees
(Spocter et al., 2010), macaques (Preuss and Goldman-Rakic,
1991a; Lewis and Van Essen, 2000; Fullerton and Pandya, 2007;
Gannon et al., 2008), and galagos (Preuss and Goldman-Rakic,
1991a). Area Tpt is located in the caudal portion of the superior
temporal gyrus and is readily distinguished by its well-developed
layer II, a columnar appearance of pyramidal neurons in layers III
and V and a thick layer IV (Galaburda and Pandya, 1982; Preuss
and Goldman-Rakic, 1991a; Fullerton and Pandya, 2007; Gannon
et al., 2008).

Both areas 10 and 24 are present in all haplorhine primate
species (Brodmann, 1909; Allman et al., 2001; Semendeferi et al.,
2001; Burman et al., 2006; Passingham and Wise, 2012). The
anterior cingulate cortex (area 24) is involved in visceral, emo-
tional, and cognitive processes including control of heart rate,
blood pressure, vocalizations, and facial expressions (Smith, 1945;
Jürgens and Ploog, 1970; Jürgens, 1998). This area also regulates
emotional self-control (Damasio et al., 2000), and is activated
during cognitively demanding tasks as well as intense drive states
in humans (Paus et al., 1993, 1998; Bartels and Zeki, 2000; Bush
et al., 2000). The cytoarchitecture of area 24 has been described
in humans (Vogt et al., 1995; Öngür and Price, 2000; Öngür et al.,
2003), macaques (Hof and Nimchinsky, 1992; Carmichael and
Price, 1994; Dombrowski et al., 2001; Vogt et al., 2005), and in
a study that compared the cytoarchitecture of humans to that of
macaques (Petrides and Pandya, 1994). Area 24 is located in the

anterior cingulate gyrus (Carmichael and Price, 1994; Vogt et al.,
1995, 2005; Öngür et al., 2003) and the region sampled for this
study was anterior to the genu of the corpus callosum, which is
agranular.

Area 10 is involved in verbal and non-verbal episodic mem-
ory, reward-based decision making, and planning future actions
(Buckner, 1996; Okuda et al., 1998; Daffner et al., 2000; Lepage
et al., 2000; Burgess et al., 2007). Lesions restricted to area 10 in
humans impair the ability to extract meaning from events, and
limit creative thinking, artistic expression, and disrupt the abil-
ity to plan future actions. Semendeferi et al. (2001) assessed the
homology of area 10 among humans, apes, and macaque mon-
keys. The authors found that area 10 of the frontal pole in human,
bonobo, chimpanzee, and orangutan was homologous with the
orbital sector of the frontal pole in gibbons. The orbitolateral
component of the frontal pole in macaques most closely resem-
bled area 10 of the other species (Semendeferi et al., 2001). Area
10 also has been described in the hamadryas baboon (Watanabe-
Sawaguchi et al., 1991), squirrel monkey (Rosabal, 1967), and
marmoset (Burman et al., 2006). Area 10 is a granular cortex with
a thin layer II, wide layer III, and a sharp border between layer VI
and white matter (Semendeferi et al., 2001).

IMMUNOHISTOCHEMISTRY
Every tenth section from each individual and cortical area was
processed for NPY immunohistochemistry using the avidin-
biotin-peroxidase method as described previously (Raghanti
et al., 2013). Briefly, sections were pretreated for antigen retrieval
by incubation in 0.05% citraconic acid (pH 7.4) at 85–90◦C
for 30 min. Endogenous peroxidase was quenched and sections
were preblocked, pretreated, and incubated in a polyclonal pri-
mary antibody (Abcam, Cambridge, MA, catalog # ab30914) at
a dilution of 1:5000 for 24 h at room temperature followed by
24 h at 4◦C (Massoner et al., 2013; Raghanti et al., 2013). This
antibody is derived from within residues 1 to the C-terminus
of pig NPY. NPY has a high degree of sequence homology
among vertebrates, with 22 of its 36 positions identical in all
sequenced species (Larhammar et al., 1987; Larhammar, 1996),
and 100% sequence homology in human, rabbit, rat, guinea
pig, and alligator (O’Hare et al., 1988; Larhammar, 1996). After
incubation in primary antibody, sections were incubated in a
biotinylated secondary antibody (1:200) followed by the avidin-
peroxidase complex (PK-6100, Vector Laboratories, Burlingame,
CA). A 3,3′-diaminobenzidine-peroxidase (DAB) substrate with
nickel enhancement was used as the chromogen (SK-4100, Vector
Laboratories).

DATA ACQUISITION
Quantitative analyses were performed using computer-assisted
stereology with a system including an Olympus BX-51 photomi-
croscope equipped with a digital camera and StereoInvestigator
software version 10 (MBF Biosciences, Williston, VT). Sampling
parameters for each species and variable were determined using
subsampling techniques to obtain a coefficient of error below
0.08 (Slomianka and West, 2005). Sampling areas (i.e., layers
III and V-VI of each area) were outlined at low magnification
(4×, N.A. 0.13). Total axon length was measured utilizing the
SpaceBalls probe under Koehler illumination at 60x using the
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following equation: L = 2 ∗ (v/a) ∗ (�is) ∗ 1/asf ∗ 1/ssf ∗ 1/tsf,
where v/a is the ratio of sampling frame volume to probe surface
area, �is is the sum of the number of intersections between fibers
and sampling hemispheres, asf (area sampling fraction; the frac-
tion of the total area sampled) is the area of the counting frame
divided by the total area of the reference space, section sampling
fraction (ssf) is the number of sections analyzed divided by the
total number of sections through the reference space, and tis-
sue sampling fraction (tsf) is the sampling box height divided
by mean mounted section thickness (Calhoun et al., 2004). Mean
mounted section thickness was measured at every fifth sampling
site. To measure axon length density (ALv), total axon length was
divided by the planimetric measurement of the reference volume
sampled.

Axonal varicosities, or synaptic boutons, are enlarged areas of
an axon that contain release sites for neurotransmitters (Sutoo
et al., 2001; Shepherd and Raastad, 2003), and were quantified as
a putative measure of neuron-specific innervation to differentiate
between axons that are directly innervating cells of a specific area
vs. those that are en passant. Varicosities were defined as having a
transverse diameter greater than 0.5 μm (Mechawar et al., 2000).
Varicosity density (Vv) was quantified using the optical disector
probe with a 100× (N.A. 1.4) objective lens. Vv was calculated as
the sum of varicosities counted divided by the product of the dis-
ectors and the volume of the disector (e.g., Sherwood et al., 2007).
In addition to varicosity density, mean spacing of varicosities was
calculated for each cortical layer and area for each species using
the calculated estimates of NPY-ir Vv and ALv. Varicosity spacing
has received attention as a putative measure of synaptic density
(Shepherd et al., 2002; Shepherd and Raastad, 2003). Here, we
aimed to evaluate the variability of varicosity spacing (i.e., mean
spacing of varicosities in μm) to determine if this system is glob-
ally conserved across cortical regions within a species and among
species. Nissl-stained sections were used to obtain neuron density
(Nv) with a 60× (N.A. 1.35) objective lens. Nv was calculated in
the same manner as Vv.

STATISTICAL ANALYSES
The variables used to compare cortical NPY innervation among
species were ALv/Nv, Vv/Nv, and mean varicosity spacing. The

ratio of NPY-ir axon and varicosity density to neuron density
allowed for comparison among species with divergent brain sizes.
Factorial analyses of variance (ANOVA) with repeated-measures
design were used to analyze differences among species for NPY-ir
ALv/Nv, Vv/Nv, and mean varicosity spacing. Cortical area and
layer were within-subjects factors and species was the between-
subjects factor. Repeated-measures ANOVAs also were used to
evaluate the uniformity of varicosity spacing within each species
with both layer and area as within-subjects factors. Fisher’s LSD
post hoc analyses were employed to evaluate significant findings.
Nonparametric Spearman’s correlation coefficient was used to
assess whether PMI affected the intensity of immunohistochem-
ical staining in humans. Exact PMIs were not known for other
species. Additionally, Spearman’s correlation was used to test the
effect of age on cortical NPY innervation within each species
and the relationship between ALv/Nv and Vv/Nv. Independent
t-tests were used to examine differences between sexes. Standard
linear regression was used to determine if differences in corti-
cal ALv or Vv were associated with variation in brain mass or
encephalization quotient. Brain masses were obtained for each
specimen before processing. Because body mass was not avail-
able for all individuals, encephalization quotients were taken from
Jerison (1973). Neither body mass nor encephalization quotients
were available for moor macaques and were omitted from these
analyses. Finally, an intraclass correlation coefficient was used to
assess inter-observer reliability for quantitative stereological data.
Periodically, inter-observer reliability was evaluated utilizing an
audit feature within the StereoInvestigator software. The level of
significance (α) was set at 0.05 for all statistical tests.

RESULTS
Figures 1–3 provide examples of cortical NPY immunostain-
ing for each species. The mean number of sampling sites
for each layer/area/individual was 109.8 ± 25.4 for Nv (total
sampling sites = 39,730; total neurons counted = 238,487),
86.4 ± 11.7 for ALv (total sampling sites = 33,869; total inter-
sections counted = 234,583), and 68.5 ± 6.2 for Vv (total sam-
pling sites = 19,433; total varicosities counted = 148,548). The
mean coefficient of error was 0.04 ± 0.01 for Nv and 0.05 ±
0.01 for Vv (Schmitz and Hof, 2000). The intraclass correlation

FIGURE 1 | Photomicrographs of NPY immunostaining in layer III of area 44 in (A) squirrel monkey, (B) capuchin, (C) moor macaque, (D) pigtailed

macaque, (E) baboon, (F) gorilla, (G) chimpanzee, and (H) human. Scale bar = 50 μm.
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FIGURE 2 | Low-powered photomicrographs of NPY immunostaining in layer III (A–H) and layers V–VI (I–P) of area 10. (A,I) squirrel monkey, (B,J)

capuchin, (C,K) moor macaque, (D,L) pigtailed macaque, (E,M) baboon, (F,N) gorilla, (G,O) chimpanzee, (H,P) human. Scale bars = 100 μm.
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FIGURE 3 | Darkfield photomicrographs of NPY immunostaining in area 24 of (A) capuchin, (B) baboon, (C) gorilla, and (D) chimpanzee. Roman
numerals indicate cortical layers, wm, white matter. Scale bars = 250 μm.

FIGURE 4 | Correlations between NPY-ir ALv/Nv and Vv/Nv for (A) area 10, (B) area 24, (C) area 44, and (D) area 22. The outlier in (B) and (D) is one
chimpanzee male.
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coefficient for inter-observer reliability was 0.86 (n = 24,
p < 0.01).

POSTMORTEM INTERVAL
We examined the effect of PMI on our measures of cortical NPY
in humans, where the most precise data on PMI were avail-
able. In humans, PMI was not correlated with NPY-ir ALv/Nv
in layers III or V-VI in area 10 (Spearman’s rho = −0.23,
p = 0.66; −0.12, p = 0.83), area 24 (Spearman’s rho = −0.21,
p = 0.74; 0.15, p = 0.81), or area 22 (Spearman’s rho = 0.56, p =
0.61; 0.31, p = 0.61). PMI was not correlated with NPY ALv/Nv
in layer III of area 44 (Spearman’s rho = 0.56, p = 0.32), but
a significant correlation existed within layers V-VI (Spearman’s
rho = −0.81, p = 0.03). Given that 87.5% of possible correla-
tions were not significant and PMI did not exceed 17 h for any
individual, PMI is not considered a confounding variable for this
study.

SEX
Independent samples t-tests were used to determine possi-
ble differences in NPY-ir ALv/Nv or Vv/Nv between males
and females in each species except squirrel monkeys, as only
females were available from this species. No sex differences

were detected in capuchins, pigtailed macaques, baboons, chim-
panzees, or gorillas. In humans, females exhibited a denser
ALv/Nv relative to males only for layers V-VI of area 22
[t(3) = −3.51, p = 0.04]. There was also a sex difference for
layer III of area 44 in moor macaques [t(4) = −3.32, p =
0.03], with females having a denser ALv/Nv. Given these results,
the overall effect of sex on cortical NPY innervation was not
substantial.

AGE
To determine if there was a significant effect of age on
NPY-ir ALv/Nv and Vv/Nv, each species was analyzed separately,
for a total of 64 correlation analyses per measure. Age was
not correlated with NPY ALv/Nv in any layer or area for non-
human species. In humans, only layer III of area 22 showed an
effect of age (Spearman’s rho = −0.95, p = 0.01). For Vv/Nv,
two significant correlations were found for pigtailed macaques
(layer III of area 44, Spearman’s rho = −0.90, p < 0.01; layers
V-VI of area 22, p = −1.00, p < 0.01) and one for capuchins
(layer III of area 10, Spearman’s rho = 1.00, p < 0.01). Age
within the present was not a significant variable as only 0.02%
(ALv/Nv) and 0.05% (Vv/Nv) of the possible correlations were
significant.

FIGURE 5 | NPY-ir ALv/Nv for each species for (A) area 10, (B) area 24, (C) area 44, and (D) area 22. Means are shown by bars. Error bars indicate standard
deviation.
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BRAIN MASS AND ENCEPHALIZATION QUOTIENT
NPY-ir ALv and Vv were each regressed on brain mass and
encephalization quotient. There was a significant relationship
between ALv and brain mass [F(1, 343) = 28.48, p < 0.01, R2 =
0.08], but not Vv and brain mass [F(1, 289) = 1.66, p = 0.20,
R2 = 0.006). Neither measure was significant when regressed on
encephalization quotient [ALv: F(1, 296) = 2.70, p = 0.10, R2 =
0.009; Vv: F(1, 250) = 0.05, p = 0.83, R2 = 0.00].

AMONG-SPECIES ANALYSES
Across the entire primate sample, NPY-ir ALv/Nv was signifi-
cantly correlated with Vv/Nv in layers III and V-VI in all cortical
areas (Spearman’s rho, all p’s < 0.05, Figure 4). In some individ-
uals, not every cortical area was represented due to tissue damage
during brain extraction or unavailability of tissue. Therefore,
analyses were restricted to individuals in which all four corti-
cal areas were represented (see Table 1). Initial repeated-measures
ANOVAs revealed no differences among species within the phylo-
genetic groups of New World monkeys, Old World monkeys, and
hominids (great apes and humans) for ALv/Nv (Figure 5), Vv/Nv
(Figure 6), and varicosity spacing (Figure 7). Thus, species were
collapsed into these categories for further analysis.

A repeated-measures ANOVA was used to analyze ALv/Nv
among New World monkeys, Old World monkeys, and hominids
(Figure 8). There were significant main effects of phylogenetic
group [F(2, 34) = 10.34, p < 0.01], cortical area [F(3, 102) = 8.24,
p < 0.01], and layer[F(1, 34) = 14.75, p < 0.01]. Additionally, the
interaction between layer and phylogenetic group was significant
[F(2, 34) = 6.32, p < 0.01]. The interaction terms of area by phy-
logenetic group, area by layer, and the three-way interaction of
area by layer by phylogenetic group were not significant (all p’s >

0.05). Fisher’s LSD post-hoc analyses revealed that hominids had
significantly higher ALv/Nv relative to both New World monkeys
and Old World monkeys (all p’s < 0.01). No differences were
detected between the monkey groups (p = 0.50).

The repeated measures ANOVA for Vv/Nv (Figure 9) revealed
significant main effects of phylogenetic group [F(2, 28) = 24.73,
p < 0.01] and area [F(3, 84) = 4.94, p < 0.01]. The main effect of
layer [F(1, 28) = 0.87, p = 0.36] and interaction terms were not
significant (all p’s > 0.05). Fisher’s LSD post-hoc analyses demon-
strated that hominids had significantly higher Vv/Nv relative to
both New World monkeys and Old World monkeys (all p’s <

0.05). No differences were detected between the monkey groups
(p = 0.56).

FIGURE 6 | NPY-ir Vv/Nv for each species in (A) area 10, (B) area 24, (C) area 44, and (D) area 22. Means are shown by bars. Error bars indicate standard
deviation.
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FIGURE 7 | Varicosity spacing in μm for each species in (A) area 10, (B) area 24, (C) area 44, and (D) area 22. Means are shown by bars. Error bars
indicate standard deviation.

For varicosity spacing (Figure 10), there were significant
main effects of phylogenetic group [F(2, 28) = 17.35, p < 0.01],
area [F(3, 84) = 18.19, p < 0.01] and layer [F(1, 28) = 76.19, p <

0.01]. The interaction of area by phylogenetic group [F(6, 27) =
3.07, p < 0.05], layer by phylogenetic group [F(2, 27) = 10.53,
p < 0.01], and layer by area [F(3, 27) = 10.47, p < 0.01] were
significant. The three-way interaction of phylogenetic group by
area by layer was not statistically significant [F(6, 84) = 1.97, p =
0.08]. Post-hoc analyses showed that hominids had smaller inter-
varicosity spacing relative to both New and Old World monkeys
in area 22 (p = 0.03 and 0.001, respectively). Hominids also had
a lower varicosity spacing relative to Old World monkeys in area
44 (p = 0.01). Furthermore, hominids displayed a lower mean
varicosity spacing in layer III relative to the Old World monkeys
(p = 0.02). No other significant differences were detected.

WITHIN-SPECIES ANALYSIS OF VARICOSITY SPACING
Varicosity spacing was analyzed within each species to deter-
mine variability among cortical areas and layers using repeated-
measures ANOVAs. A summary of main effects and interaction
are listed in Table 2.

For squirrel monkey, post-hoc tests showed that area 22 had
higher varicosity spacing relative to the other cortical areas, with

area 10 having the lowest varicosity spacing (all p’s < 0.05). No
significant differences between layers were detected (all p’s >

0.05). Capuchin varicosity spacing was higher in area 22 relative
to the other areas and was lower in layers V-VI relative to layer III
within areas 44 and 22 (all p’s > 0.05).

Post-hoc analyses for moor macaques showed that areas 44
and 22 had higher varicosity spacing relative to areas 10 and 24,
and layers V/VI displayed lower varicosity spacing than layer III
in areas 24 and 44 (all p’s < 0.05). In pigtailed macaques, there
was increased spacing of varicosities in area 22 relative to area 10
(p = 0.04). Distance between varicosities was lower for layer V-VI
relative to layer III (p = 0.02). For baboon, area 22 had higher
varicosity spacing relative to areas 10 and 24 (p = 0.02 for each).
Post-hoc analyses did not detect a significant difference between
layers III and V/VI.

Post-hoc analyses for gorillas did not detect a significant dif-
ference between layers (p = 0.13). No significant differences were
detected in either the chimpanzee or human.

DISCUSSION
The present report provides a broad quantitative comparative
analysis of cortical NPY-ir axon and varicosity densities among
haplorhine primate species. NPY is involved in a wide variety
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FIGURE 8 | NPY-ir ALv/Nv collapsed into phylogenetic groups for (A) area 10, (B) area 24, (C) area 44, and (D) area 22. OWM, Old World monkeys;
NWM, New World monkeys. Means are shown by bars. Error bars indicate standard deviation.

of physiological functions as well as cognitive processes, such as
learning and memory, and deficits in NPY are associated with
neuropathological conditions that exhibit decreases in intellec-
tual abilities (Beal et al., 1986a; Kowall and Beal, 1988; Caberlotto
and Hurd, 1999; Kuromitsu et al., 2001; Frederickson et al., 2007;
Rangani et al., 2012). Our results demonstrated that humans and
African great apes (i.e., hominids) shared a significant increase in
cortical NPY-ir axons and varicosities relative to Old World mon-
keys and New World monkeys, as measured by NPY-ir ALv/Nv
and Vv/Nv. Vv/Nv putatively represents a fine-grained measure
of innervation as neurotransmitters are released from varicosities.
Interestingly, the differences between hominids and monkeys are
more apparent in this measure relative to ALv/Nv (see Figures 5,
6, 8, and 9). Although the overall effect of phylogenetic group
(i.e., hominid vs. Old World and New World monkeys) was sig-
nificant, area 24 did not appear dramatically different among the
species analyzed here for either ALv/Nv or Vv/Nv. It is notable,
however, that we did not find an increase in cortical NPY input
for humans relative to the African great apes, chimpanzees and
gorillas.

Increased NPY afferents to cortical regions, such as areas 10,
22, and 44, in humans and great apes could contribute to cor-
tical processing by mediating synaptic inhibition, glutamatergic
output, and an increase in cerebral blood flow. Interestingly, glu-
tamatergic gene and protein expression are altered in the frontal
pole of hominids relative to other primate species (Muntané

et al., 2014), and these modifications may have co-evolved with
increased cortical NPY. The most dramatic and consistent phy-
logenetic differences observed within the current data set were
within the language areas (44 and 22), where humans and great
apes exhibited higher NPY-ir Vv/Nv (see Figure 6); however,
humans clearly deviate from apes in language proficiency. Ape
language training experiments have required extensive effort to
teach subjects to acquire a limited vocabulary and rudimentary
syntax as compared to human children (Nowak and Komarova,
2001; Hauser et al., 2002). In addition to a shared capacity to learn
certain aspects of symbolic language, humans and great apes also
exhibit increased capacity for behavioral inhibition (Beran and
Evans, 2006; Evans and Beran, 2007a,b), cultural transmission
of knowledge (Boesch, 1993), episodic memory (Martin-Ordas
et al., 2013), and an understanding of the attentional states of oth-
ers (Tempelmann et al., 2011). Likewise, great apes consistently
outperform other non-human primates in several cognitive tests,
including mirror self-recognition, tool use, deception, and com-
plex manipulation (Gallup, 1970; Tomasello et al., 2003; Deaner
et al., 2006).

NPY may protect cortical neurons from glutamate excitotoxi-
city by inhibiting glutamate release (Decressac and Barker, 2012).
NPY also protects cortical neurons against toxicity mediated by
the amyloid β peptide, potentially by increasing the synthesis
and release of nerve growth factor (Croce et al., 2012). In addi-
tion, NPY plays a significant role in neurogenesis (Decressac and
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FIGURE 9 | NPY-ir Vv/Nv collapsed into phylogenetic groups for (A) area 10, (B) area 24, (C) area 44, and (D) area 22. OWM, Old World monkeys; NWM,
New World monkeys. Means are shown by bars. Error bars indicate standard deviation.

Barker, 2012). It could be argued that these functions of NPY are
critical to meet the demands of enlarged brains. However, neocor-
tical NPY innervation density in our samples was not associated
with encephalization quotient, and only 0.06–7.7% of the vari-
ance in measures of NPY innervation could be explained by brain
size. Whereas brain mass varied by six-fold among the monkeys
(squirrel monkey to baboon), there were no significant differ-
ences among these species in NPY innervation. Similarly, human
brains are approximately three times larger than chimpanzees
and gorillas, yet NPY density did not vary significantly among
hominid species. This suggests that that the increase observed
in hominids is not simply associated with encephalization, but
rather represents a significant change that occurred in the devel-
opment of NPY cortical innervation in the stem ancestral ape
lineage.

The present analysis of NPY-ir varicosity spacing revealed
interesting differences within each species. Notably, there was a
conservation of varicosity spacing for humans, chimpanzees, and
gorillas across cortical areas and between layers III and V/VI. For
both New and Old World monkeys, there was higher varicosity
spacing in area 22. There was also decreased varicosity spacing in
layers V/VI relative to layer III for both macaque species and the
capuchin monkey.

In an earlier study, we reported significant differences among
haplorhine primate species in the density of cortical NPY-ir

neurons in area 22 that did not clearly conform to a phylogenetic
branching pattern (Raghanti et al., 2013). Interestingly, NPY-ir
cortical neurons are one of the first affected neuron populations
in Alzheimer’s disease, suggesting a unique vulnerability among
interneurons that are known to be rather resistant to the disease
(Beal et al., 1986b; Kowall and Beal, 1988; Hof and Morrison,
1991; Hof et al., 1991, 1993). In our prior report, we found squir-
rel monkeys possessed the highest percentage of NPY-ir cortical
neurons; however, that increase in NPY-ir cortical neurons was
not associated with an increased NPY-ir ALv/Nv or Vv/Nv, as
illustrated by the present data set. Overall, comparison of the den-
sity of NPY-ir cortical neurons with the results presented here
indicates that the density of NPY-ir axons or varicosities is not
correlated with the density of NPY-ir neurons within the cortex.

Our results indicate that humans and great apes share a sig-
nificant increase in cortical NPY ALv/Nv and Vv/Nv relative to
monkey species with a conserved pattern of NPY-ir varicosity
spacing. The increase in cortical NPY innervation may con-
tribute to the differences in behavioral and cognitive flexibility
observed in hominids relative to other primates. Alternatively,
this phylogenetic difference may be due to the increased lifes-
pans observed within these lineages, since NPY peptide medi-
ates neurodegenerative damage caused by glutamate turnover
and amyloid β toxicity. Further research is necessary to deter-
mine the role of NPY within cortical language circuits and other
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FIGURE 10 | NPY-ir varicosity spacing collapsed into phylogenetic groups for (A) area 10, (B) area 24, (C) area 44, and (D) area 22. OWM, Old World
monkeys; NWM, New World monkeys. Means are shown by bars. Error bars indicate standard deviation.

Table 2 | Summary of main effects (area and layer) and interaction term for the within-species repeated-measures ANOVA for varicosity

spacing.

Area Layer Area * Layer

Squirrel monkey F(3, 6) = 34.15, p < 0.01* F(1, 6) = 21.43, p = 0.04* F(3, 6) = 3.59, p = 0.09

Capuchin F(3, 9) = 5.58, p = 0.02* F(1, 9) = 20.01, p = 0.02* F(3, 9) = 14.17, p < 0.01*

Moor macaque F(3, 9) = 6.29, p = 0.01* F(1, 9) = 79.83, p < 0.01* F(3, 9) = 6.40, p = 0.01*

Pigtailed macaque F(3, 12) = 4.01, p = 0.03* F(1, 12) = 66.76, p < 0.01* F(3, 12) = 0.54, p = 0.66

Baboon F(3, 9) = 7.43, p = 0.01* F(1, 9) = 23.98, p = 0.02* F(3, 9) = 2.26, p = 0.15

Gorilla F(3, 6) = 0.34, p = 0.80 F(1, 6) = 23.38, p = 0.04* F(3, 6) = 0.95, p = 0.47

Chimpanzee F(3, 9) = 0.10, p = 0.96 F(1, 9) = 1.52, p = 0.31 F(3, 9) = 1.58, p = 0.26

Human F(3, 9) = 3.98, p = 0.07 F(1, 9) = 0.71, p = 0.49 F(3, 9) = 0.68, p = 0.60

Significant results (p < 0.05) are indicated by asterisks.

executive functions and whether this difference in NPY innerva-
tion between hominids and monkeys extends to cortical regions
that are not directly associated with cognition.
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