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Abstract
The active ingredient of ginseng, ginsenosides Rg1, has been shown to scavenge free radicals and improve antioxidant capacity. This study 
hypothesized that ginsenosides Rg1 has a protective role in human neuroblastoma cells injured by H2O2. Ginsenosides Rg1 at different con-
centrations (50 and 100 μM) was used to treat H2O2 (150 μM)-injured SH-SY5Y cells. Results demonstrated that ginsenoside Rg1 elevated 
the survival rate of SH-SY5Y cells injured by H2O2, diminished the amount of leaked lactate dehydrogenase, and increased superoxide 
dismutase activity. Ginsenoside Rg1 effectively suppressed caspase-3 immunoreactivity, and contributed to heat shock protein 70 gene ex-
pression, in a dose-dependent manner. These results indicate that ginsenoside Rg1 has protective effects on SH-SY5Y cells injured by H2O2 
and that its mechanism of action is associated with anti-oxidation and the inhibition of apoptosis. 

Key Words: nerve regeneration; traditional Chinese medicine monomer; ginsenoside Rg1; SH-SY5Y cells; H2O2; cerebral ischemia; cell apoptosis; 
lactate dehydrogenase; superoxide dismutase; caspase-3; heat shock protein 70; dose-effect relationship; neural regeneration

Graphical Abstract

Ginsenoside Rg1 suppressed oxidative stress and apoptosis in SH-SY5Y cells injured by H2O2

Introduction
The effects of ischemic cerebrovascular disease on learning 
and memory and the neurobiological mechanisms involved 
are a hot topic in neuroscience (Dong et al., 2013). Ischemic 
cerebrovascular disease refers to a decrease in chronic blood 
flow caused by various factors, which promotes patholog-
ical and biochemical alterations, disorders energy metab-

olism (Liang et al., 2012; Chen et al., 2014; Ji et al., 2014), 
and causes oxygen free radical injury (Fraser et al., 2011), 
changes in neurotransmitters (Shen et al., 2011), cholinergic 
receptor deletion (Tracey et al., 2007), white matter damage 
and neuronal deletion (Xiong et al., 2012). These changes 
form the pathophysiological basis of chronic cerebral isch-
emia-induced dysfunction (Inoue et al., 2012). Jian et al. 
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(2013) suggested that free radical injury was a key factor in 
the injury to ischemic neurons. Ischemia and hypoxia in 
brain tissues induce a large amount of oxygen free radicals. 
Free radicals with a strong oxidative capacity attack vascular 
endothelial cells, destroy lipid membranes and cross-link 
membrane proteins to phospholipids, resulting in lipid per-
oxidation, increased permeability of the cell membrane to 
Ca2+, destruction of the blood-brain barrier, and irreversible 
protein deactivation (Lu et al., 2012). Free radicals also in-
crease proapoptotic gene caspase-3 expression and suppress 
anti-apoptotic gene heat shock protein 70 (HSP70) activity, 
causing cell membrane destruction, neuronal injury, and 
apoptosis (Tirapelli et al., 2012). 

Recently, increasing numbers of studies have focused on 
the effects of traditional Chinese medicine to counter oxi-
dative stress (Wang et al., 2013). Panax ginseng C.A.Meyer 
is a traditional Chinese herb that has been reported to 
regulate immunity, promote excitability, resist oxidation 
and fatigue, improve brain function, and contribute to 
the recovery of learning and memory functions (Zheng et 
al., 2011). Ginsenoside Rg1, a major component of Panax 
ginseng C.A.Meyer, has been shown to enhance superox-
ide dismutase (SOD) activity, inhibit the production of 
malondialdehyde, scavenge accumulating free radicals, 
and elevate antioxidative effects (Kim et al., 2009). Anoth-
er study confirmed that a Shenlong decoction containing 
ginsenoside Rg1 reduced nitric oxide and inducible nitric 
oxide synthase contents, elevated the ability of learning and 
memory in rats with cerebral ischemia, and strengthened 
vascular endothelial growth factor expression in the rat 
hippocampus after cerebral ischemia (Zhang et al., 2011). 
Studies addressing the antioxidative mechanism of ginse-
noside Rg1 for treatment of ischemic brain damage have 
mainly focused on the inhibitory effects of ginsenoside 
against neuronal apoptosis and its protective effects on 
neuronal cells (Li et al., 2015), but have seldom focused on 
the antioxidative mechanism of cells in vitro (Huang et al., 
2016). 

SH-SY5Y cells generated from human neuroblastoma have 
a low level of differentiation and are pyramidal with the 
presence of apparent axons (Lee et al., 2010). Some physi-
ological functions of SH-SY5Y cells are similar to those of 
normal neurons (Waly et al., 2016). SH-SY5Y cells are com-
monly used in studies of the onset of nervous system disease 
and the mechanisms involved in the action of drugs (Ccy et 
al., 2014). 

The current study investigated the regulatory effects of 
ginsenoside Rg1 on the survival rate, amount of leaked lac-
tate dehydrogenase (LDH), SOD activity, caspase-3 expres-
sion, and HSP70 gene activity in SH-SY5Y cells injured by 
H2O2 to determine its protective effects and the mechanisms 
involved in its antioxidative and antiapoptotic effects. 

Materials and Methods
Cells
Human dopaminergic neuroblastoma cell strain (SH-SY5Y) 
was a gift from the Sixth Institute of Academy of Military 

Medical Sciences, China. 

Drugs
Ginsenoside Rg1 powder was purchased from Nanjing 
Zelang Medical Technology Co., Ltd., (Nanjing, Jiangsu 
Province, China, batch No. ZL201003; purity > 95%). 

The experiments were approved by the Animal Ethics 
Committee, Chinese PLA General Hospital, China.

SH-SY5Y cell culture
SH-SY5Y cells were thawed and, digested with 0.25% trypsin 
and 0.02% ethylenediamine tetraacetic acid for 3 minutes, 
incubated with Dulbecco’s modified Eagle’s medium contain-
ing 10% fetal bovine serum (Hyclone, Logan, UT, USA), 100 
U/mL penicillin and 100 U/mL streptomycin in a 37°C 5% 
CO2 incubator. The medium was replaced every 3 days. When 
cells reached 90% confluence, they were digested with 0.25% 
trypsin (Gibco, Carlsbad, CA, USA) for passage. Cells in the 
logarithmic phase were collected for further experiments.

Establishment of a cell model of H2O2-induced injury
SH-SY5Y cell concentrations in each group were adjusted to 
1 × 106/mL. After removal of primary medium, cells in each 
well were incubated in complete medium containing 50, 100, 
150, or 200 μM H2O2 in a 5% CO2, 37°C incubator (Thermo, 
American) for 12 hours. The experimental cells were allo-
cated to control, model (H2O2 150 μM), 50 μM ginsenoside 
Rg1 (H2O2 150 μM + ginsenoside Rg1 50 μM) and 100 μM 
ginsenoside Rg1 (H2O2 150 μM + ginsenoside Rg1 100 μM) 
groups. 

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide (MTT) assay to measure rate of cell survival
Cells from each group were adjusted to 1 × 106/mL. MTT 
(5 g/L; Sigma, St. Louis, MO, USA) 20 μL was added to 
each well of a tissue culture plate in a 5% CO2 incubator 
at 37°C (Shellab, Cornelius, NC, USA) for 4 hours. When 
blue-purple crystals formed, the supernatant was removed. 
The samples were incubated with 150 μL dimethyl sulfoxide 
(Sigma) in each well, and shaken in a shaking bed for 10 
minutes to dissolve the blue-purple crystals in cells com-
pletely. Optical density values were measured at 570 nm with 
a microplate reader (Polar star Galaxy; BMG, Offenburg, 
Germany). The average optical density value of cells from six 
wells was calculated by the following formula: survival rate 
= optical densityexperimental group/optical densitycontrol group × 100%. 
The experiment was performed in triplicate. Cell viability 
was determined by MTT assay to identify the optimal H2O2 
concentration (150 μM in this study). Different doses of gin-
senosides Rg1 (10, 50, and 100 μM) combined with 150 μM 
H2O2 were used for 12 hours to observe the protective effects 
of different concentrations of cells.

Measurement of LDH leakage and SOD activity in cells 
The cells (method described above) were treated with 150 
μM H2O2. SH-SYSY cells were additionally treated with 10, 
50, or 100 μM ginsenoside Rg1 in a 5% CO2 incubator at 
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37°C for 24 hours following H2O2 (150 μM) treatment. The 
amount of leaked LDH and SOD activity in supernatants 
were examined using an LDH assay kit and SOD activity as-
say kit (Nanjing Jiancheng Bioengineering Institute, Nanjing, 
Jiangsu Province, China). 

Immunofluorescence histochemistry for caspase-3 
expression in cells 
The experimental procedure followed the instructions of 
the caspase-3 fluorescence detection kit (Beijing Boaosen 
Bioengineering Institute, Beijing, China). SH-SY5Y cells (1 
× 106/mL) were washed three times with PBS, fixed with 4% 
paraformaldehyde for 20 minutes, washed three times with 
PBS, blocked with normal goat serum at 37°C for 20 min-
utes, incubated with primary antibody (rabbit anti-caspase-3 
polyclonal antibody; Bioss, Woburn, MA, USA) at 4°C over-
night, rewarmed for 10 minutes, and washed three times 
with PBS (each for 5 minutes). Subsequently, the samples 
were incubated with secondary antibody (goat anti-rabbit 
IgG, 1:20–1:100) at 37°C for 90 minutes, washed three times 
with PBS (each for 5 minutes), mounted with glycerol buffer, 
and then observed under a fluorescence (fluorescein isothio-
cyanate, Cy3 labeled) microscope (BX-60; Olympus, Tokyo, 
Japan). The Image-Pro Plus 5.1 image analytical system 
(Media Cybernetics, Seattle, WA, USA) was used to measure 
the number of caspase-3-positive cells and the fluorescence 
intensity. 

Reverse transcription-polymerase chain reaction 
(RT-PCR) to measure HSP70 mRNA expression 
Cells were adjusted to 1 × 106/mL, and total RNA was extract-

ed (Liu et al., 2006). An ultraviolet spectrophotometer was 
utilized to measure nucleic acid concentrations. Total RNA 
(0.5 μg) was treated with DNaseI (EN0521, Fermentas, Cana-
da), and reverse transcribed (K1622, Fermentas) into cDNA. 
cDNA (1 μL) was mixed with 8.2 μL ddH2O. HSP70 and β-ac-
tin were amplified on a quantitative PCR device. Primers were 
prepared as previously described (Liu et al., 2006).

Amplification conditions were as follows: predenaturation 
at 94°C for 5 minutes, denaturation at 94°C for 30 seconds, 
annealing at 57°C for 45 seconds, extension at 72°C for 20 
seconds, for 40 cycles, followed by 72°C for 10 minutes. PCR 
products were electrophoresed on a 2% agarose gel, and 
photographed using a gel imaging system (Media Cyber-
netics). Results were expressed as the relative optical density 
value (HSP70/β-actin).

Statistical analysis
Measurement data, expressed as the mean ± SD, were an-
alyzed with SPSS 13.5 software (SPSS, Chicago, IL, USA). 

Primer sequences used in this study:

Primer Sequence Product size (bp)

HSP70 Upstream: 5'-CGC GAC CTG AAC AAG 
  AGC AT-3'
Downstream: 5'-TCG AAG GTC ACC 
  TCG ATC TG-3'

375

β-Actin Upstream: 5'-TG GGG CGC CCC 
  AGG CAC CA-3'
Downstream: 5'-CTC CTT AAT GTC 
  ACG CAT TT-3'

226

Figure 2 Effect of ginsenoside Rg1 on caspase-3 expression in SH-SY5Y cells injured by H2O2 (red immunofluorescence staining, inverted 
fluorescence microscope, magnification × 200). 
(A) Control group; (B) model group; (C) 50 μM ginsenoside Rg1 group; (D) 100 μM ginsenoside Rg1 group. Arrows represent caspase-3-immuno-
reactive cells. 

Figure 1 Effect of ginsenoside Rg1 on the viability of H2O2-treated 
SH-SY5Y cells. 
*P < 0.05, **P < 0.01, vs. I; #P < 0.05, ##P < 0.01, vs. IV (mean ± SD, 
n = 6, one-way analysis of variance and least significant difference post 
hoc test). I: Control group; II: H2O2 50 μM group; III: H2O2 100 μM 
group; IV: 150 μM group; V: H2O2 (150 μM) + ginsenoside Rg1 (10 
μM) group;  VI: H2O2 (150 μM) + ginsenoside Rg1 (50 μM) group; VII: 
H2O2 (150 μM) + ginsenoside Rg1 (100 μM) group. 
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Figure 3 Effects of ginsenoside Rg1 on HSP70 mRNA expression in H2O2-treated SH-SY5Y cells.
**P < 0.01, vs. control group; #P < 0.05, ##P < 0.01, vs. model group (mean ± SD, n = 6, one-way analysis of variance and least significant differ-
ence post hoc test). HSP70: Heat shock protein 70. I: Control group; II: model group; III: 50 μM ginsenoside Rg1 group; IV: 100 μM ginsenoside 
Rg1 group. 

One-way analysis of variance and post hoc least significant 
difference test were used at α = 0.05.

Results
Effects of ginsenoside Rg1 on the survival rate of 
H2O2-treated SH-SY5Y cells 
As shown in Figure 1, the survival rate of SH-SY5Y cells 
was gradually decreased with an increasing concentration of 
H2O2. When SH-SY5Y cells were treated with 150 μM H2O2  
for 12 hours, the optical density of cells was significantly 
decreases compared with the control group (P < 0.01). This 
indicated that the ability of cells to reduce MTT decreased, 
and the cell survival rate was diminished. Therefore, 150 
μM H2O2 was used in all the following experiments. After 
12 hours of H2O2 treatment, 10 μM ginsenoside Rg1 had no 
significant effects on the cell survival rate compared with the 
model group (P > 0.05). However, 50 and 100 μM ginseno-
side Rg1 had significant protective effects on SH-SY5Y cells 
injured by 150 μM H2O2 compared with the model group (P 
< 0.05, P < 0.01, respectively). Thus, 50 and 100 μM ginse-
noside Rg1 were utilized in the following experiments.

Effects of ginsenoside Rg1 on the amount of leaked LDH 
from H2O2-treated SH-SY5Y cells 
LDH leakage was significantly greater in SH-SY5Y cells 
injured by 150 μM H2O2 (model group) compared with 
the control group (P < 0.01). In addition, 50 and 100 μM 

ginsenoside Rg1 effectively significantly inhibited the LDH 
leakage in SH-SY5Y cells injured by H2O2 compared with the 
model group (P < 0.05, P < 0.01, respectively). The inhibito-
ry effect was significantly enhanced with an increased dose 
of ginsenoside Rg1. Significant differences in LDH leakage 
were observed between the 50 and 100 μM ginsenoside Rg1 
groups (P < 0.05; Table 1).

Effects of ginsenoside Rg1 on SOD activity in SH-SY5Y 
cells injured by H2O2 
SOD activity was significantly lower in SH-SY5Y cells in-
jured by H2O2 (model group) compared with the control 
group (P < 0.01). SOD activity was significantly higher in 
the 50 and 100 μM ginsenoside Rg1 groups in a dose-depen-
dent manner compared with the model group (P < 0.05, P 
< 0.01, respectively). Nevertheless, no significant differences 
in SOD activity were detectable between the 50 and 100 μM 
ginsenoside Rg1 groups (P > 0.05; Table 1).

Effects of ginsenoside Rg1 on caspase-3 expression in 
SH-SY5Y cells injured by H2O2

As shown in Figure 2 and Table 2, immunofluorescence stain-
ing revealed that caspase-3 expression was significantly higher 
in SH-SY5Y cells injured by H2O2 (model group) than in hip-
pocampal neurons of the control group (P < 0.05, P < 0.01, 
respectively). In addition, 50 and especially 100 μM ginseno-
side Rg1, significantly diminished the caspase-3 expression in 

Table 1 Effect of ginsenoside Rg1 on the release of LDH and SOD 
activity in SH-SY5Y cells injured by H2O2

Group LDH (U/L) SOD (U/mg protein)

Control 277.00±62.00 637.59±26.02

Model 642.00±53.00** 307.72±30.43**

50 μM ginsenoside Rg1 447.00±67.00# 510.87±22.71#

100 μM ginsenoside Rg1 374.00±59.00##& 594.70±19.06##

**P < 0.01, vs. control group; #P < 0.05, ##P < 0.01, vs. model group; 
&P < 0.05, vs. 50 μM ginsenoside Rg1 group (mean ± SD, n = 6, one-
way analysis of variance and least significant difference post hoc test). 
LDH: Lactate dehydrogenase; SOD: superoxide dismutase.  

Table 2 Effects of ginsenoside Rg1 on caspase-3 immunoreactivity in 
H2O2-treated SH-SY5Y cells 

Group 
Fluorescence 
intensity 

Number of 
immunoreactive cells

Control 0.542±0.013 5.961±3.827

Model 1.879±0.061**            24.079±4.010*      

50 μM ginsenoside Rg1 1.503±0.029#            14.905±2.764#

100 μM ginsenoside Rg1 1.337±0.057##           10.256±3.907#

*P < 0.05, **P < 0.01, vs. control group; #P < 0.05, ##P < 0.01, vs. 
model group (mean ± SD, n = 6, one-way analysis of variance and  least 
significant difference post hoc test).  
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injured cells (P < 0.05, P < 0.01, respectively).

Effects of ginsenoside Rg1 on HSP70 mRNA expression in 
SH-SY5Y cells injured by H2O2

Clear bands of different brightness at 377 bp RT-PCR indi-
cated the presence of HSP70 mRNA expression in cells from 
each group. Compared with the control group, HSP70 was 
obviously activated in cells injured by H2O2 for 12 hours. 
Furthermore, 50 and 100 μM ginsenoside Rg1 enhanced 
HSP70 expression in the injured cells. The optical density 
ratio of HSP70 to β-actin was considered a measurable in-
dicator of the expression of HSP70 mRNA. The ratios in the 
control, model, 50, and 100 μM ginsenoside Rg1 groups were 
0.630, 0.351, 0.457, and 0.630, respectively. Significant differ-
ences in the above ratios were detectable between the 50 and 
100 μM ginsenoside Rg1 groups and the model group (P < 
0.05, P < 0.01, respectively; Figure 3). 

Discussion
The pathogenesis of neurons injured by cerebral ischemia is 
complicated, and is associated with oxygen free radical inju-
ry, inflammatory factor damage, excitatory amino acid inju-
ry, and intracellular Ca2+ overload (Nakase et al., 2008; Sierra 
et al., 2011). Of these, oxidative stress-induced oxygen free 
radical injury has become the focus of most attention (Allen 
et al., 2009). Brain tissues contain abundant unsaturated 
fatty acids and are therefore more susceptible to damage by 
free radicals (Kim et al., 2008). A recent study confirmed 
that oxygen free radical injury to ischemic neurons was cor-
related with caspase-3 and HSP70 expression in the brain 
(Ueda et al., 2002). When brain tissues experienced oxida-
tive stress, such as during ischemia or hypoxia, caspase-3, 
a key executor of neuronal apoptosis, i.e., apoptotic ef-
fector molecule (Awasthi et al., 2013), becomes activated. 
Caspase-3 destroys collagen, intervenes in mRNA splicing, 
blocks DNA replication and repair, and induces cell apop-
tosis (Broughton et al., 2009). Simultaneously, caspase-3 ac-
tivation was reported to exhaust intracellular nicotinamide 
adenine dinucleotide/adenosine triphosphate, resulting in 
cell loss (Jie et al., 2011). HSP70 is expressed at low levels in 
normal cells, but this expression is increased during stress 
(Dong et al., 2012). Under ischemic/hypoxic conditions, in-
tracellular nucleoproteins are denatured, heat shock factors 
bind to heat shock elements, and many molecules of HSP70 
are synthesized (Franklin et al., 2005). HSP70 inhibits 
caspase-3 activation, cleaves caspase cascade reactions, and 
prevents cell apoptosis. HSP70 also prevents protein aggre-
gation or incorrect folding under stress, maintains protein 
homeostasis, and prevents degeneration-induced disorders 
of DNA (Wang et al., 2012). 

LDH leakage reflects the degree of cell membrane inju-
ry (Ya et al., 2013). Increased LDH concentrations in the 
extracellular fluid are a marker for irreversible damage or 
cell necrosis (Noh et al., 2011). SOD is a scavenger enzyme 
of superoxide free radical anions in vivo (Park et al., 2011). 
During oxidative stress, increased SOD consumption led to 
a reduction in SOD activity (Cui et al., 2013). Another study 

showed that ginsenoside Rg1 elevated SOD production and 
scavenged oxygen free radicals (Li et al., 2010). In this study, 
when SH-SY5Y cells were treated with 150 μM H2O2 for 12 
hours, the amount of LDH leaked was markedly increased, 
but the SOD concentration was decreased. Ginsenoside Rg1 
increased the survival rate of H2O2-injured SH-SY5Y cells, 
diminished the amount of leaked LDH and increased SOD 
activity. These results indicated that ginsenoside Rg1 strong-
ly inhibited oxidative stress injury. Furthermore, ginsenoside 
Rg1 reduced caspase-3 immunoreactivity, promoted HSP70 
gene expression, and reduced oxygen free radical injury in 
SH-SY5Y cells injured by H2O2.

Ginsenoside Rg1 had a dose-dependent mechanism in-
volved in improving cell apoptosis because the protective 
effect of ginsenoside Rg1 increased with an increasing dose 
of ginsenoside Rg1. 

In conclusion, cerebral ischemia-induced nerve cell apop-
tosis is a key neuropathological process. After cerebral isch-
emia, multiple factors and mechanisms interact, participate 
in the occurrence and development of nerve cell apoptosis, 
finally resulting in apoptosis. Ginsenoside Rg1 resists oxida-
tive stress and free radical injury, increases the survival rate 
of damaged cells, reduces the amount of leaked LDH and 
caspase-3 activation, increases SOD activity and HSP70 ex-
pression, and finally suppresses cell apoptosis, in a dose-de-
pendent manner. 
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