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Abstract

Essential proteins are the proteins that are indispensable to the survival and development of

an organism. Deleting a single essential protein will cause lethality or infertility. Identifying

and analysing essential proteins are key to understanding the molecular mechanisms of liv-

ing cells. There are two types of methods for predicting essential proteins: experimental

methods, which require considerable time and resources, and computational methods,

which overcome the shortcomings of experimental methods. However, the prediction accu-

racy of computational methods for essential proteins requires further improvement. In this

paper, we propose a new computational strategy named CoTB for identifying essential pro-

teins based on a combination of topological properties, subcellular localization information

and orthologous protein information. First, we introduce several topological properties of the

protein-protein interaction (PPI) network. Second, we propose new methods for measuring

orthologous information and subcellular localization and a new computational strategy that

uses a random forest prediction model to obtain a probability score for the proteins being

essential. Finally, we conduct experiments on four different Saccharomyces cerevisiae

datasets. The experimental results demonstrate that our strategy for identifying essential

proteins outperforms traditional computational methods and the most recently developed

method, SON. In particular, our strategy improves the prediction accuracy to 89, 78, 79, and

85 percent on the YDIP, YMIPS, YMBD and YHQ datasets at the top 100 level,

respectively.

Introduction

Essential proteins are the proteins that are indispensable to the survival of an organism; there-

fore, these proteins are considered to be the basis of life. Deleting any of these proteins will

lead to cell death [1]. Thus, identifying essential proteins is of great significance, and it will
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help us understand the minimum requirements for cell life and find novel treatments for dis-

eases [2–4].

To date, many traditional biological methods have been proposed for identifying essential

proteins, such as gene knockouts [5], conditional knockouts [6] and RNA interference [7].

These traditional biological methods are time consuming, expensive and not always practical.

To overcome the shortcomings of these biological methods, a number of computational meth-

ods that only consider the topological properties have been proposed, such as degree centrality

(DC) [8], betweenness centrality (BC) [9], eigenvector centrality (EC) [10], subgraph centrality

(SC) [11], local average connectivity-based method (LAC) [12], and network centrality (NC)

[13]. To further improve the prediction accuracy, Li [14] proposed a method called TP that

uses topology potential to identify essential proteins. Although these methods facilitate the

detection of essential proteins, they only consider the topological properties of the network,

and they do not take the intrinsic properties of individual proteins into account. Consequently,

many computational methods combined with biological information have been proposed.

Such biological information includes protein complex information, gene expression data, sub-

cellular localization information, orthologous protein information, and so on.

A protein complex is a group of proteins that interact with each other and function as a

unit at a given time and place in a certain biological process. It has been proven that essential

proteins are more likely to gather in protein complexes [15]. Based on this idea, Li [15] pro-

posed a method called united complex centrality (UC) that integrates protein complex infor-

mation. Luo [16] proposed a method named LIDC combined with the in-degree centrality of

complex (IDC), which measures the in-degree value of a protein in the protein complex. Qin

[17] proposed a method named LBCC that integrates the local topological features, global

topological features, and protein complex information, where the local topological features are

Den1 and Den2, representing the local densities of networks, and it improved the prediction

precision to 75 percent on the YMIPS dataset at the top 100 level.

Gene expression is the process of transcribing and translating genetic information stored in

a DNA sequence into functional gene products, which are often proteins, and it is also an

important feature for predicting essential proteins. Li [18] proposed a method named PeC that

integrates gene expression data for predicting essential proteins. Tang [19] proposed a

weighted degree centrality using gene expression data to achieve the reliable prediction of

essential proteins. Zhao [20] proposed a method named PEMC that integrates network topol-

ogy with gene expression profile and protein domain information to construct weighted pro-

tein networks for discovering essential proteins.

Some researchers have reported that the locations of proteins are correlated with their

essentiality and that essential proteins appear more frequently at specific locations. Zhong [21]

proposed a feature selection method for predicting essential proteins, and the results indicated

that the subcellular localization information can help increase the prediction accuracy for pre-

dicting essential proteins.

Orthologous protein information is another important aspect for identifying essential pro-

teins. Orthologous proteins are proteins that are derived from a common ancestor and gener-

ally retain the same or very similar functions. It has been proven that orthologous properties

are positively correlated with protein essentiality [22]. Li [23] proposed a method named SON

that integrates subcellular localization and orthologous score (OS) information, and this

method improved the accuracy of predicting essential proteins to approximately 81 percent on

the YDIP dataset at the top 100 level. Li [24] proposed a method named GOS that integrates

gene expression, orthology, and subcellular localization information to identify essential

proteins.
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In this paper, we first introduce several traditional topological properties of protein-protein

interaction (PPI) networks, including Laplacian centrality (LC) [25], which is an intermediate

measure between global and local properties. We then propose new measures of orthologous

score (DOS) and subcellular localization score (SLS), as well as our new prediction method

named CoTB, which combines Den1, Den2, BC, IDC, LC, DOS and SLS and uses a random

forest model to obtain a probability score for the proteins being essential.

We conducted our experiments on four different PPI networks of Saccharomyces cerevisiae,

namely, YDIP, YMIPS, YMBD, and YHQ, which will be described in the Experimental data

section. The experimental results showed that our method, CoTB, obtained superior perfor-

mance compared to the traditional measures, including DC, BC, SC, EC, NC, and LAC. CoTB

exhibited the best performance and obtained prediction precisions of 89, 78, 79, and 85 per-

cent on the YDIP, YMIPS, YMBD and YHQ datasets at the top 100 level, respectively. In par-

ticular, compared to the most recently developed method, SON [23], CoTB improved the

prediction precisions by at least 9, 10, 8, 8, 7, and 8 percent on the YDIP dataset at the top 100

to top 600 levels, respectively. Compared to GOS [24], CoTB improved the prediction preci-

sions by at least 6, 6, 9, and 10 percent on the YDIP dataset at the top 300 to top 600 levels,

respectively. Compared to our LBCC [17], CoTB improved the prediction precisions by at

least 20, 4, 21, and 500 percent on the YDIP, YMIPS, YMBD and YHQ datasets at the top 100

level, respectively.

Preliminaries

A PPI network is represented as an undirected simple graph G(V, E) with a set of nodes (pro-

teins) V and a set of edges E (interactions). Let Nv denote the set of neighbour nodes of node v,

|Nv| denote the number of neighbours of node v and G[S] denote the induced subgraph of G
on node set S. The definitions of several topological properties of a PPI network are as follows.

Degree centrality (DC). The DC of a node v is denoted as the total number of its neighbour

nodes, and it is denoted as

DCðvÞ ¼ degðvÞ;

where deg(v) is the number of its incident edges.

Betweenness centrality (BC). The BC of a node v is calculated based on the shortest paths,

and it is denoted as

BCðvÞ ¼
X

s

X

t

sstðvÞ
sst

; s 6¼ t 6¼ v 2 V;

where σst is the total number of shortest paths from s to t and σst(v) is the total number of short-

est paths passing through v from s to t.
Eigenvector centrality (EC). The EC of a node v is calculated based on the adjacency matrix

of the network, and it is denoted as

ECðvÞ ¼ amaxðvÞ;

where αmax is the eigenvector corresponding to the largest eigenvalue of the adjacency matrix

and αmax(v) is the vth component of αmax.

Local average connectivity centrality (LAC). The LAC of a node v describes the closeness of

its neighbours, and it is denoted as

LACðvÞ ¼
P

u2Nv
degCvðuÞ
jNvj

; u 2 Nv;
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where Cv is the induced subgraph of G on node set Nv and degCvðuÞ is the number of its neigh-

bour nodes in Cv.

Neighbourhood centrality (NC). The NC of a node v considers the importance of the rela-

tionship between v and its neighbours, and it is denoted as

NCðvÞ ¼
X

u2Nv

zv;u
minðdv � 1; du � 1Þ

;

where zv,u is the number of common neighbour vertices of v and u and dv and du are the

degrees of nodes v and u, respectively.

Subgraph centrality (SC). The SC of a node v measures the participation of a node in all sub-

graphs of the network, and it is denoted as

SCðvÞ ¼
X1

k¼0

mkðvÞ
k!

;

where μk(v) is the number of circles starting and ending at v with length k.

Laplacian centrality (LC). For a graph G with n nodes, let W(G) be the adjacency matrix of

size n by n, and let X(G) be a matrix as follows:

x1 0 . . . 0

0 x2 . . . 0

: : : :

0 0 . . . xn

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

where xi is the number of neighbours of node i. The LC LC(vi, G) of vertex vi is defined as

LCðvi;GÞ ¼
ELðGÞ � ELðGiÞ

ELðGÞ
;

ELðGÞ ¼
Xn

i¼1

l
2

i ;

where Gi is the graph obtained by deleting vi from G and λi is the eigenvalues of the matrix

L(G) = X(G) −W(G).

In-degree centrality of complex (IDC). The IDC of a node v measures the sum of degrees of

node v in different protein complexes, and it is denoted as

IDCðvÞ ¼
X

i2ComplexSetðvÞ

IN � DegreeðvÞi;

where ComplexSet(v) is the set of protein complexes with protein v and IN-Degree(v)i is the

value of DC(v) for the i−th protein complex in ComplexSet(v).

Den1(v). For a node v, Den1(v) is the ratio of the number of edges to the number of all possi-

ble edges of the induced subgraph in G by the node set Nv [ {v}, and it is denoted as

Den1ðvÞ ¼
2jEðHÞj

jVðHÞjðjVðHÞj � 1Þ
;

where H denotes the induced subgraph of G[Nv [ {v}].
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Den2(v). For a node v, let Mu be the node set for which the distance to v is 2. Den2(v) is the

ratio of the number of edges to the number of all possible edges of the induced subgraph in G
by the node set Mu [ Nv [ {v}, and it is denoted as

Den2ðvÞ ¼
2jEðHÞj

jVðHÞjðjVðHÞj � 1Þ
; ð12Þ

where H denotes the induced subgraph of G[Mu [ Nv [ {v}].

Methods

New measure of orthologous score

Orthologous proteins are proteins that are derived from a common ancestor and generally

retain the same or very similar functions. It has been proven that orthologous properties are

positively correlated with protein essentiality [22]. The greater the number of reference organ-

isms in which such a protein appears, the more essential the protein is.

For a protein v, its orthologous score OS(v) from [22] is the number of reference organisms

where it appears, and it is denoted as

OSðvÞ ¼
Xs

i¼1

TiðvÞ;

TiðvÞ ¼
1 v 2 oðiÞ

0 v =2 oðiÞ
;

(

where s is the number of reference organisms and o(i) is the set of nodes (proteins) in the ith
reference organism.

In this paper, we define a new measure of orthologous score DOS(v) as

DOSðvÞ ¼ a � DCðvÞ þ OSðvÞ;

where a is a scaling parameter that ranges from 0.1 to 1. Through a large number of experi-

ments for identifying essential proteins on four different testing datasets, we found that our

new computational strategy, CoTB, which will be described in the following, obtains the best

performance when a is set to 0.1.

New measure of subcellular localization score

The localization of proteins is the location in cells where a protein appears. It has been proven

that the localization of proteins is an important factor for determining protein essentiality [21,

23, 26, 27], and statistical results show that essential proteins are more likely to exist in specific

cellular locations. For example, many important biological processes, such as DNA replication

and mRNA synthesis, usually occur in the nuclear.

In this section, we propose a new measure of subcellular localization score (SLS). For a pro-

tein v, we define its SLS as the sum of the subcellular localization coefficient (SLC) of each sub-

cellular localization,

SLSðvÞ ¼
X

v2sðlÞ

SLCðlÞ;

where s(l) is the set of proteins in the l subcellular location and SLC(l) is the SLC, which is
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defined as

SLCðlÞ ¼
tl
t
�

al

a
;

where al is the total number of proteins in the l subcellular location and a is the total number

of proteins. The values of tl and t are obtained after we rank the proteins in descending order

by the values of a certain network topology attribute. In [23], Li selected the top 5% proteins as

the essential proteins, so we selected the top 5% proteins as essential proteins, that is, tl is the

number of proteins in the l subcellular location from the top 5% proteins, and t is the number

of the top 5% proteins. We think that the importance of the l subcellular location is directly

proportional to the number of proteins from the top 5% in the l subcellular location. If SLC(l)
is greater than 0, it means that there are more essential proteins appearing in the l subcellular

location. If SLC(l) is less than 0, it means that essential proteins rarely appear in the l subcellu-

lar location.

Because LBCC is one of the most effective methods for identifying essential proteins, we

select LBCC [17] to rank proteins in descending order. LBCC(v) is defined as

LBCCðvÞ ¼ logDen1ðvÞ þ 4 � logDen2ðvÞ þ 3 � log IDCðvÞ þ logBCðvÞ:

New computational strategy: CoTB

In this section, we propose our new computational strategy, CoTB. This strategy combines

Den1, Den2, BC, LC, IDC, SLS and DOS. CoTB is based on the following basic concepts:

1. Den1 and Den2, which are two types of densities, represent the local properties of a PPI net-

work. Den1(v) measures the density of the induced subgraph on the node set of node v and

its neighbour nodes. Den2(v) measures the density of the induced subgraph on the node set

of node v and nodes whose distance to node v is less than 3.

2. BC represents a global property of a PPI network. A node with a high BC will have more

influence on the transfer of information through the network.

3. LC represents an intermediate attribute between the global and local properties used to

measure the importance of a node, and it provides more structural information about the

connectivity and density around a node.

4. IDC is another topological property that represents the protein complex information, and

it has been proven that essential proteins are more likely to gather in protein complexes.

5. SLS is an intrinsic feature of a protein that represents a correlation between the position of

a protein in the cell and the protein being essential.

6. DOS is also an intrinsic feature of a protein, and the larger the value is, the more important

it is.

To take advantage of these seven attributes, we use the machine learning method random

forest [28], which is an efficient method for investigating classification problems, to obtain the

probability scores for predicting essential proteins. This method is implemented using the

WEKA software package [29], and the number of generated trees is set to be 1000. We then

use three of the four datasets as the training set and the remaining one as the testing set, which

will be described in the following section. Finally, the proteins are sorted in descending order

according to the values of the probability scores for proteins being essential.

A new computational strategy for identifying essential proteins
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Results and discussion

Experimental data

We performed experiments based on Saccharomyces cerevisiae data because its PPI and biolog-

ical information data were more reliable and complete compared to those of other species, and

it has also been widely used in the study of discovering essential proteins. We selected four dif-

ferent datasets from the DIP database [30], the MIPS database (Mammalian Protein-Protein

Interaction Database) [31], and the website of the Mark Gerstein Lab (gersteinlab.org), which

were denoted as YDIP (S1 Text), YMIPS (S2 Text), YMBD (S3 Text) and YHQ (S4 Text),

respectively. The datasets of essential proteins (S1 Excel) were collected from the databases of

DEG (Database of Essential Genes) [32], MIPS [31], SGD (Saccharomyces Genome Database)

[33], and SGDP (Saccharomyces Genome Deletion Project) [34]. The datasets of protein

Table 1. Information of the YDIP, YMIPS, YMBD, and YHQ datasets.

Dataset Proteins Interactions Essential proteins

YDIP 5093 24743 1167

YMIPS 4546 12319 1016

YMBD 2559 11835 763

YHQ 4743 23294 1108

https://doi.org/10.1371/journal.pone.0182031.t001

Fig 1. The number of essential proteins predicted by CoTB and the other nine methods at six levels for the YDIP network.

https://doi.org/10.1371/journal.pone.0182031.g001
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complexes (S2 Excel) were collected from CM425 [35], CM270 [31], CYC428 and CYC408

[36, 37].

The YDIP dataset contains a total of 5093 proteins, 24743 edges and 1167 essential proteins.

The YMIPS dataset contains 4546 proteins, 12319 edges and 1016 essential proteins. YMBD,

which was collected from MIPS, BIND and DIP, includes 2559 proteins, 11835 interactions,

and 763 essential proteins. The YHQ dataset was constructed by Yu et al. [38], and it contains

4743 proteins, 23294 interactions and 1108 essential proteins. The detailed information of the

YDIP, YMIPS, YMBD and YHQ datasets are presented in Table 1.

The dataset of orthologous proteins was downloaded from the InParanoid database [39],

and it contains 99 reference organisms of Saccharomyces cerevisiae. The subcellular localization

dataset of Saccharomyces cerevisiae was downloaded from the COMPARTMENTS database

[40]. After preprocessing, a total of 4849 different proteins remained, in which there were 1140

essential proteins and 11 different localizations, including cell wall, plasma membrane, cytosol,

cytoskeleton, vacuole, peroxisome, Golgi apparatus, endosome, endoplasmic reticulum,

nucleus, and mitochondrion.

Comparison with other prediction measures

In this section, we compare CoTB with several existing methods on the four datasets men-

tioned in the Experimental data section. The algorithms for LIDC, LBCC and SON were

implemented according to [16, 17] and [23], respectively, and the other algorithms were

Fig 2. The number of essential proteins predicted by CoTB and the other eight methods at six levels for the YMIPS network.

https://doi.org/10.1371/journal.pone.0182031.g002
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implemented using CytoNCA [41], which is a Cytoscape plugin for centrality analysis of bio-

logical networks. We selected three of the four datasets as the training set and the remaining

one as the testing set, and we selected six levels from the top 100 to top 600 as candidate essen-

tial proteins.

The prediction results are shown in Fig 1 for when YDIP was considered as the testing set

and the other three datasets were considered as the training set. CoTB improved the prediction

precisions to approximately 89, 85, 82, 77, 74, and 71 percent at six levels. CoTB exhibited

superior performance compared with the other methods, and it increased the prediction preci-

sions by more than 20, 25, 19, 16, 19, and 16 percent at six levels compared with LBCC. More-

over, CoTB improved the prediction precisions by more than 9, 10, 8, 8, 7, and 8 percent at six

levels compared to the most recently developed method, SON.

The prediction results are shown in Fig 2 for when YMIPS was considered as the testing set

and the other three datasets were considered as the training set. CoTB improved the prediction

precisions to approximately 78, 78, 74, 74, 70, and 67 percent at the six levels. CoTB achieved

the best results compared to the other methods, and it increased the prediction precisions by

more than 4, 6, 11, 18, 14, and 16 percent at the six levels compared to LBCC, which obtained

the best results except for CoTB.

The prediction results are shown in Fig 3 for when YMBD was considered as the testing set

and the other three datasets were considered as the training set. CoTB improved the prediction

precisions to approximately 79, 75, 76, 74, 72, and 69 percent at six levels from the top 100 to

Fig 3. The number of essential proteins predicted by CoTB and the other eight methods at six levels for the YMBD network.

https://doi.org/10.1371/journal.pone.0182031.g003
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top 600, respectively. CoTB obtained the best results, and it increased the prediction precisions

by more than 21, 25, 29, 26, 29, and 30 percent at six levels compared to LBCC.

The prediction results are shown in Fig 4 for when YHQ was considered as the testing set

and the other three datasets were considered as the training set. CoTB improved the prediction

precisions to approximately 85, 84, 83, 80, 76, and 72 percent at six levels. Except for CoTB,

the largest numbers of true essential proteins predicted at six levels from the top 100 to top 600

were 46 (BC), 104 (SC, EC), 169 (LBCC), 241 (LBCC), 296 (LBCC), and 348 (LBCC). CoTB

increased the prediction precisions by more than 84, 61, 46, 32, 28, and 24 percent compared

to the largest numbers at the six levels from the top 100 to top 600, respectively.

Validation using six statistical measures and precision-recall curves

In this section, we compare CoTB with the other methods using six statistical measures: sensi-

tivity (SN), specificity (SP), positive predictive value (PPV), negative predictive value (NPV),

F-measure, and accuracy (ACC) (see references [13, 16]). Let TP be the number of essential

proteins predicted as essential proteins, FP be the number of nonessential proteins predicted

as essential proteins, TN be the number of nonessential proteins predicted as nonessential pro-

teins, and FN be the number of essential proteins predicted as nonessential proteins. Then, the

Fig 4. The number of essential proteins predicted by CoTB and the other eight methods at six levels for the YHQ network.

https://doi.org/10.1371/journal.pone.0182031.g004
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six statistical measures are defined as follows:

SN ¼
TP

TPþ FN
;

SP ¼
TN

TN þ FP
;

Table 2. Comparative analysis of CoTB and the other methods in terms of SN, SP, PPV, NPV, F-measure, and ACC with four different testing

datasets.

Dataset Methods SN SP PPV NPV F-measure ACC

YDIP DC 0.354 0.846 0.406 0.815 0.378 0.733

LAC 0.405 0.861 0.465 0.830 0.433 0.757

SC 0.323 0.837 0.370 0.806 0.345 0.719

EC 0.323 0.837 0.370 0.806 0.345 0.719

BC 0.308 0.832 0.354 0.802 0.330 0.712

NC 0.398 0.859 0.456 0.827 0.425 0.753

LIDC 0.446 0.873 0.511 0.841 0.476 0.775

LBCC 0.446 0.873 0.512 0.841 0.477 0.776

SON 0.497 0.888 0.570 0.856 0.531 0.799

CoTB 0.524 0.896 0.600 0.864 0.559 0.811

YMIPS DC 0.252 0.815 0.282 0.791 0.266 0.689

LAC 0.269 0.820 0.300 0.796 0.284 0.697

SC 0.139 0.782 0.155 0.759 0.146 0.639

EC 0.139 0.782 0.155 0.759 0.146 0.639

BC 0.249 0.814 0.278 0.790 0.263 0.688

NC 0.281 0.824 0.315 0.799 0.297 0.702

LIDC 0.423 0.864 0.473 0.839 0.447 0.766

LBCC 0.430 0.866 0.481 0.841 0.454 0.769

CoTB 0.552 0.901 0.617 0.875 0.583 0.823

YMBD DC 0.260 0.825 0.387 0.724 0.311 0.657

LAC 0.271 0.830 0.404 0.728 0.325 0.664

SC 0.239 0.816 0.355 0.716 0.285 0.644

EC 0.239 0.816 0.355 0.716 0.285 0.644

BC 0.283 0.835 0.422 0.733 0.339 0.671

NC 0.266 0.828 0.396 0.726 0.318 0.660

LIDC 0.308 0.846 0.459 0.742 0.369 0.685

LBCC 0.372 0.873 0.555 0.766 0.445 0.724

CoTB 0.480 0.919 0.715 0.806 0.574 0.788

YHQ DC 0.401 0.861 0.468 0.825 0.432 0.754

LAC 0.431 0.870 0.504 0.834 0.465 0.768

SC 0.326 0.838 0.380 0.803 0.351 0.719

EC 0.326 0.838 0.380 0.803 0.351 0.719

BC 0.330 0.840 0.386 0.804 0.356 0.721

NC 0.426 0.869 0.497 0.832 0.459 0.765

LIDC 0.449 0.876 0.524 0.839 0.483 0.776

LBCC 0.449 0.876 0.524 0.839 0.483 0.776

CoTB 0.520 0.897 0.607 0.860 0.560 0.809

https://doi.org/10.1371/journal.pone.0182031.t002
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PPV ¼
TP

TP þ FP
;

NPV ¼
TN

TN þ FN
;

F � measure ¼
2 � SN � PPV
SN þ PPV

;

ACC ¼
TPþ TN

TPþ TN þ FPþ FN
:

We sorted the proteins in descending order according to the values of the corresponding

measures and chose the top 20 percent proteins as essential proteins, and the other proteins

were considered to be nonessential proteins. The results are presented in Table 2, which shows

that the values of the six statistical measures for CoTB are consistently higher than those of the

other methods on four networks, and CoTB improved the values of SN, SP, PPV, NPV, F −
measure, and ACC by more than 5.4, 0.9, 5.2, 0.9, 5.2, and 1.5 percent compared to SON on the

YDIP dataset.

Fig 5. PR curves of CoTB and the other methods for the YDIP network.

https://doi.org/10.1371/journal.pone.0182031.g005
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The precision-recall curve is used for assessing the stability of the methods, and it is

obtained by plotting

PrecisionðnÞ ¼
TPðnÞ

TPðnÞ þ FPðnÞ
;

RecallðnÞ ¼
TPðnÞ

P
;

where TP(n) is the number of true essential proteins identified correctly and FP(n) is the num-

ber of true essential proteins identified incorrectly among the top n proteins, and P is the num-

ber of true essential proteins in total. The results are shown in Figs 5–8. As shown, CoTB

performed significantly better than SON, LBCC, and the other methods.

Validation using jackknife methodology

To further investigate the performance of CoTB, we used the jackknife methodology to assess

the generality of our method. The x-axis represents the number of proteins ranked in descend-

ing order according to the values computed by the corresponding methods, and the y-axis rep-

resents the cumulative count of true essential proteins. The area under the curve is always used

to measure the generality of a method. As shown in Figs 9–12, CoTB clearly performs better

than BC, DC, EC, LAC, NC, SC, LIDC and LBCC on the four datasets, and it also performs

better than SON on the YDIP dataset.

Fig 6. PR curves of CoTB and the other methods for the YMIPS network.

https://doi.org/10.1371/journal.pone.0182031.g006
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Fig 7. PR curves of CoTB and the other methods for the YMBD network.

https://doi.org/10.1371/journal.pone.0182031.g007

Fig 8. PR curves of CoTB and the other methods for the YHQ network.

https://doi.org/10.1371/journal.pone.0182031.g008
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Fig 9. Jackknife curves of CoTB and the other methods for the YDIP network.

https://doi.org/10.1371/journal.pone.0182031.g009

Fig 10. Jackknife curves of CoTB and the other methods for the YMIPS network.

https://doi.org/10.1371/journal.pone.0182031.g010
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Differences between CoTB and the other nine existing methods

To further analyse the differences between CoTB and the other nine existing methods, we

compared the performances of the methods in predicting the top 100 proteins ranked by the

corresponding methods on the YDIP dataset (see the supplementary S3 Excel). The overlap-

ping rates of proteins predicted by CoTB and the other nine methods are presented in Table 3.

Compared to the traditional methods that use topological features, such as BC, DC, EC, LAC,

NC and SC, the overlapping rates are less than 19 percent. Compared to LIDC, LBCC and

SON, the overlapping rates are 46, 37 and 25 percent, respectively. It is clear that CoTB signifi-

cantly differs from the traditional methods, and it takes more biological knowledge into

account, which helps locate essential proteins more accurately and stably.

Subsequently, we analysed the top 100 proteins identified by LIDC, LBCC, SON and CoTB

on the YDIP dataset. For LIDC and CoTB, 46 of the same proteins are identified by these

methods, and for the remaining 54 proteins, CoTB identified 45 true essential proteins,

whereas LIDC identified 36 true essential proteins. For LBCC and CoTB, 37 of the same

Fig 11. Jackknife curves of CoTB and the other methods for the YMBD network.

https://doi.org/10.1371/journal.pone.0182031.g011

Table 3. The overlapping rates of the proteins predicted by CoTB and the other nine methods for the YDIP network.

Method BC DC EC LAC NC SC LIDC LBCC SON

Overlapping rate 3% 4% 3% 19% 13% 3% 46% 37% 25%

https://doi.org/10.1371/journal.pone.0182031.t003
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proteins are identified by these methods, and for the remaining 63 proteins, CoTB identified

54 true essential proteins, whereas LBCC identified 39 true essential proteins. For SON and

CoTB, 25 of the same proteins are identified by these methods, and for the remaining 75 pro-

teins, CoTB identified 66 true essential proteins, whereas SON identified 58 true essential

proteins.

Therefore, the comparative results demonstrate that CoTB is distinctly different from the

other methods, and it can identify more true essential proteins.

Moreover, we also conducted experiments on each of the four datasets (YDIP, YMIPS,

YMBD, and YHQ) through 10-fold cross-validation. The average AUC values are listed in

Table 4. For the YDIP dataset, we have listed the AUC values of GEP and Acencio as

Fig 12. Jackknife curves of CoTB and the other methods for the YHQ network.

https://doi.org/10.1371/journal.pone.0182031.g012

Table 4. Comparison of CoTB with other methods.

Dataset Methods AUC

YDIP CoTB 0.788

GEP 0.773

Acencio 0.778

YMIPS CoTB 0.808

YMBD CoTB 0.788

YHQ CoTB 0.802

https://doi.org/10.1371/journal.pone.0182031.t004
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mentioned in the paper [42]. CoTB obtains the best performance among GEP and Acencio.

For the other datasets, we have listed the average AUC of CoTB. The results further demon-

strate that CoTB is an effective method for identifying essential proteins.

Results on human PPI network

To further assess the performance of the CoTB method, we also conducted experiments on a

human PPI network. The human PPI network data, denoted HDIP, were downloaded from

the DIP database [30]. The protein complex set, denoted HCOM, was downloaded from

CORUM [43]. The essential proteins were downloaded from DEG [32]. The dataset of ortho-

logous proteins was downloaded from the InParanoid database [39] containing 71 reference

organisms. Finally, the subcellular localization information was downloaded from the COM-

PARTMENTS database [40]. HDIP consists of 4647 interactions and 2914 proteins, including

1887 essential proteins, and HCOM contains 1283 protein complexes.

We used the four different YDIP, YMIPS, YMBD and YHQ datasets as the training set and

the HDIP dataset as the testing set. First, we compared the performances of CoTB and the

other eight methods at six levels from the top 100 to top 600. As shown in Fig 13, CoTB

achieved the best results at the top 300-500 levels and exhibited performance similar to that of

the methods attaining the best results at the top 100, 200 and 600 levels.

Fig 13. The number of essential proteins predicted by CoTB and the other eight methods at six levels for the HDIP network.

https://doi.org/10.1371/journal.pone.0182031.g013
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Then, we used six statistical measures, precision-recall curves and jackknife curves to evalu-

ate the performance of the proposed CoTB method and the other eight methods. As shown in

Table 5, the values of the six statistical measures for CoTB were slightly lower than for LIDC.

From the precision-recall curves shown in Fig 14, CoTB obtained better performance between

the recall levels of 0.11-0.22 and 0.38-0.82. From the jackknife curves shown in Fig 15, CoTB

exhibited performance similar to that of LIDC and LBCC before the top 280 and achieved

Fig 14. PR curves of CoTB and the other eight methods for the HDIP network.

https://doi.org/10.1371/journal.pone.0182031.g014

Table 5. Comparative analysis of CoTB and the other methods in terms of SN, SP, PPV, NPV, F-measure, and ACC on the HDIP dataset.

Dataset Methods SN SP PPV NPV F-measure ACC

HDIP DC 0.244 0.882 0.792 0.389 0.373 0.469

LAC 0.232 0.860 0.753 0.379 0.355 0.453

SC 0.230 0.856 0.746 0.377 0.352 0.451

EC 0.223 0.843 0.723 0.371 0.341 0.442

BC 0.240 0.873 0.777 0.385 0.366 0.463

NC 0.235 0.866 0.763 0.381 0.360 0.457

LIDC 0.262 0.914 0.849 0.403 0.400 0.492

LBCC 0.245 0.884 0.796 0.389 0.375 0.470

CoTB 0.257 0.906 0.833 0.399 0.393 0.486

https://doi.org/10.1371/journal.pone.0182031.t005
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better performance between the top 280 to top 530. Hence, CoTB is also an effective method

for discovering essential proteins for the human PPI network HDIP.

Conclusion

Identifying essential proteins is of great importance for understanding the molecular mecha-

nisms of cellular life. Many computational methods combined with biological information

have recently been proposed for this purpose. In 2016, Qin [17] proposed a method named

LBCC based on the combination of topological features and protein complex information.

This method improved the prediction accuracy to 74 percent on the YDIP dataset. Li [23] pro-

posed a method named SON that uses a combination of topological features and biological

information. This method improved the prediction accuracy to 81 percent on the YDIP

dataset.

In this paper, we propose a new computational strategy named CoTB to predict essential

proteins. First, we introduce several topological properties. Second, we propose new measures

of orthologous score (DOS) and subcellular localization score (SLS), as well as a new computa-

tional strategy that combines Den1, Den2, BC, IDC, LC, DOS and SLS and uses a random for-

est prediction model to obtain a probability score for the proteins being essential. Finally, we

apply CoTB on four networks of Saccharomyces cerevisiae and perform comprehensive com-

parisons of CoTB with nine other previously proposed methods. The results at six levels from

Fig 15. Jackknife curves of CoTB and the other eight methods for the HDIP network.

https://doi.org/10.1371/journal.pone.0182031.g015
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the top 100 to top 600 demonstrate that our new method, CoTB, is more accurate than the

other methods. Compared to the recently developed method SON, CoTB improves the predic-

tion precisions by more than 9, 10, 8, 8, 7, and 8 percent at six levels on the YDIP dataset.

Compared to the recently developed method LBCC, CoTB increases the prediction precisions

by more than 4, 6, 11, 18, 14, and 16 percent at six levels on the other three datasets. In particu-

lar, CoTB improves the prediction precisions to 89, 78, 79, and 85 percent at the top 100 level

on the YDIP, YMIPS, YMBD, and YHQ datasets, respectively. From the analysis of the six sta-

tistical measures, PR curves and jackknife curves, we find that CoTB is significantly superior

to the other methods. Moreover, we also applied CoTB to a human PPI network, HDIP. The

experimental results show that CoTB is also an effective method for predicting essential pro-

teins for the HDIP network. There are two reasons leading to the outstanding performance of

CoTB: the first reason is that it combines topological properties (both local and global proper-

ties) unlike SON and biological information (both subcellular localization and orthologous

proteins) unlike LBCC. The second reason is that the machine learning method, random for-

est, plays an important role in the process of using these attributes to predict essential proteins.

In conclusion, CoTB is a more effective, stable, and accurate method for predicting essential

proteins.
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