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Abstract: The purpose of this work is to develop a reliable deep-learning-based method that is
capable of synthesizing needed CT from MRI for radiotherapy treatment planning. Simultaneously,
we try to enhance the resolution of synthetic CT. We adopted pix2pix with a 3D framework, which is
a conditional generative adversarial network, to map the MRI data domain into the CT data domain
of our dataset. The original dataset contains paired MRI and CT images of 31 subjects; 26 pairs were
used for model training and 5 were used for model validation. To identify the correctness of the
synthetic CT of models, all of the synthetic CTs were calculated by the quantized image similarity
formulas: cosine angle distance, Euclidean distance, mean square error, peak signal-to-noise ratio, and
mean structural similarity. Two radiologists independently evaluated the satisfaction score, including
spatial, detail, contrast, noise, and artifacts, for each imaging attribute. The mean (±standard
deviation) of the structural similarity indices (CAD, L2 norm, MSE, PSNR, and MSSIM) between
five real CT scans and the synthetic CT scans were 0.96 ± 0.015, 76.83 ± 12.06, 0.00118 ± 0.00037,
29.47 ± 1.35, and 0.84± 0.036, respectively. For synthetic CT, radiologists rated the results as evincing
excellent satisfaction in spatial geometry and noise level, good satisfaction in contrast and artifacts,
and fair imaging details. The similarity index and clinical evaluation results between synthetic CT
and original CT guarantee the usability of the proposed method.

Keywords: deep learning; generative adversarial net (GAN); attenuation correction; MR-only simu-
lation; radiotherapy planning; brain tumor

1. Introduction

Computed tomography (CT) simulation is a necessary procedure performed after mold
customization for every patient who will undergo radiation therapy. It provides information
on electron density and geometry. Radiotherapy treatment planning, image reconstruction,
and daily treatment guidance are all based on electron density and geometric information
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provided by CT. Daily treatment is also based on the CT simulation image for image
guidance and positioning error correction. Therefore, the most critical issue of MR-only
simulation workflows is retrieving this information only through MRI. It can be done by
rigid or deformable registration, but errors are inevitable, so high-quality results cannot be
expected. Therefore, a CT-independent method should be developed as a better solution.

Magnetic resonance imaging (MR) and CT are both important medical imaging sys-
tems for radiotherapy treatment planning. MR is used to segment the tumor contour and
volume in radiotherapy treatment planning, and CT is used to calculate the radiation dose.
MR imaging-only radiotherapy planning is a novel application. Electron density informa-
tion typically acquired from CT images is a prerequisite for attenuation correction and
radiotherapy treatment planning. However, MR images represent only longitudinal tissue,
transverse relaxation times, and proton-density information. To solve this problem, several
methods have been developed to produce synthetic CT images for both MRI-only radiother-
apy treatment planning and MRI-based attenuation correction (MRAC) [1–4]. Therefore,
the methods that produce accurate attenuation correction on PET–MRI could potentially be
applied in MRI-only radiotherapy treatment planning and vice versa. Furthermore, if a
single synthetic CT generation method could be used in both applications, there would be
no need to use independent sequences or processing pipelines for producing synthetic CT
between different systems and modalities. However, a thorough evaluation of the method’s
robustness in patients with brain tumors should be performed [5].

MR simulation can provide better sensitivity, specificity, and contrast in soft tissue
for image-guided radiation therapy (IGRT) treatment planning. However, a remaining
challenge lies in obtaining a reliable X-ray attenuation correction map, which is crucial for
the calculation of treatment planning. Many novel strategies [6–8] have been introduced to
directly estimate bone information for MR imaging-based attenuation correction, including
atlas-based methods and image-segmentation-based methods, particularly those using
ultrashort echo time and zero echo time (ZTE) approaches [6]. Zero echo time pulse
sequences have been used to successfully generate synthetic CT images that can be used for
accurate MRAC and MRI-only radiotherapy treatment planning of the brain [9]. Methods
based on deep learning have been successfully used to generate synthetic CTs from contrast-
enhanced images [10]; however, the effect of contrast agents in synthetic CT generation and
their effects on radiation therapy (RT) plan quality have not been studied extensively in an
individual study. Although each of these proposed solutions has specific advantages and
limitations, the development of rapid and robust MRAC is still currently an unmet need.

Radiotherapy for brain tumors starts at the time of simulation, and the simulation
procedure retrieves three-dimensional (3D) images for target delineation and treatment
planning. Therefore, magnetic resonance imaging (MRI) has superior soft tissue contrast
and improves the target delineation of radiotherapy for brain tumors. Using CT imaging
alone, the segmentation of the brain tumor may overestimate the tumor volume. If over-
estimation can be corrected by MRI, normal tissue damage will be reduced in the future.
Unfortunately, MRI cannot be used for radiotherapy planning directly since it lacks electron
density information for radiation dose calculation. Although MRI can be registered with
CT images and incorporated into radiotherapy planning, this approach is not accurate
enough due to misregistration or image distortions [11]. Redundant imaging also increases
costs and consumes more time in clinical practice. Developing an MR-only simulation
workflow can significantly improve the quality of radiotherapy treatment planning, and
time and cost can also be saved.

U-net is proposed by Ronneberger et al. for biomedical image segmentation, named
after is the architecture of the model [12]. The structure of u-net is similar to an alphabet
“U”. The input side is mainly several layers of CNN-base encoder which can reduce
dimensions of input data. On the contrary, the output side is a decoder for expending
dimensions. The outstanding design of shortcut connection between encoder and decoder
transfer information greatly enhances the performance. Owing to its powerful capacity, the
usage of u-net extends further to image translation.
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PatchGAN is a classifier for classification tasks [13]. Traditional classifiers present
the judgment of input images with a single number, whereas patchGAN does not. The
output of patchGAN is a matrix. Each element inside the matrix is the judgment of the
corresponding receptive field. That is to say, the mechanism of patchGAN is to separate
the original image into different patches and utilize the distinguishing characteristics of all
the patches within a matrix.

Generative adversarial networks (GANs) [14], which are made of MLPs, have achieved
great success and have spread explosively since being proposed in 2014. The GAN approach
in the method of competition constantly modified the parameters of its MLP. There are
many GAN extensions and applications currently, and pix2pix [13] is one of them. U-
net [12] of pix2pix has shortcut structures that make information pass through from the
encoder to the decoder, producing a more precise pattern. At the same time, the patchGAN
of pix2pix forces u-net to its limit on generating pseudoimages.

Currently, many researchers try to solve biomedical imaging issues with deep-learning-
based approaches. The latest studies have proven that deep-learning methods are able
to learn the nonlinear mapping relationship of the MR domain and CT domain in a two-
dimensional framework. Now the issue is pushed to a 3D framework. Dong et al. presented
a 3D fully convolutional network to estimate pelvic CT images from MRI data. Liu Y et al.
took advantage of 3D-based cycleGAN to convert MR to CT [15–17], achieving a great result
on 3D-based MRI to CT translation. The advantage of unsupervised-learning cycleGAN
is that the dataset where images from two domains are not necessarily paired is easier to
prepare. These studies take advantage of a single model to manage their dataset, which
is separated into several patches in common. The model of these studies convert a single
patch at a time, and all patched predictions are merged at the final stage. The usage of
these methodologies is analogous taking a microscope to see a huge object. However, a
model has limited capacity to learn all features from a complex 3D-based dataset, and the
important features vary from the location of the body. The content of the dataset should be
based on the location of the body and each location should have its own corresponding
model to deal with. In this paper, we propose a new approach that is expandable to prevent
limitations from the model’s learning capacity and to enlarge the image size (resolution) of
synthetic CT.

2. Methods
2.1. Prepare MR–CT Paired Dataset

This study was approved by the Institutional Review Board of Chang Gung Memorial
Hospital at Linkou, Taoyuan, Taiwan (No. 202002387B0). All methods were carried
out in accordance with relevant guidelines and regulations. Both MRI and CT scans of
each participant were acquired at Chang Gung Memorial Hospital at LinKou, Taoyuan,
Taiwan. Multimodal MRI examinations were performed on a 1.5T MRI scanner (GE, Boston,
MA, USA) with a standard head coil. The three-dimensional T1-weighted gradient-echo
sequence (MPRAGE) was obtained with repetition time (TR)/echo time (TE)/inversion time
(TI)/flip angle (FA) = 7.91 ms/3.27 ms/450 ms/12◦; voxel size = 0.39 × 0.39 × 1.0 mm3,
and number of average = 2. CT examinations were performed on a GE Light Speed RT16
with a standard brain protocol. Scan parameters were as follows: slice thickness = 1.25 mm
of slice thickness, 120 kV of slice thickness, 300 mA of tube current, and 1071 msec of
exposure time.

2.2. Data Preprocessing

The original dataset has 31 pairs in total, including 26 pairs for training and 5 pairs
for tests. To verify the algorithm and make sure the testing dataset covers symptoms in
different degrees simultaneously, the five testing pairs are selected. In comparison with
the subjects of training pairs, some subjects of the testing pair had wider tumor volumes
and others had previously undergone major surgery; they were the outliers of the full
dataset. The details of the dataset are listed in Supplementary Materials Table S1. Each
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image pair is made of an MRI and a CT of a subject. Figure 1 shows the data preprocessing
workflow diagram, and Supplementary Materials Table S2 shows the modified image
parameters after reFOV and resampling for a few more subjects from the training and test
data. MRI and CT are different imaging modalities with different voxel sizes (resolutions),
FOVs, window widths, and levels of intensity. Dataset preprocess has 3 stages. In the first
stage, we define a new FOV for each pair, and any voxels located outside the new FOV
are abandoned. In our original dataset, every MR image has a smaller FOV than CT, so
the definition of a new FOV is based on MR. After the re-FOV stage, every paired image
has the same FOV but a different number of voxels. In the second stage, we use NiBabel,
which is a Python library for medical images, for dataset resampling. The resampling
method is spline interpolation with an order of 3. Therefore, each paired image has the
same FOV, and the number of voxels of the whole dataset is 200 × 200 × 128. In the third
stage, every image was normalized and standardized by Formulas (1) and (2), respectively.
The intensity of all images are shifted to −1~1.

img′ =
img− µ(img)

σ(img)
(1)


img′′ = 2×

(
img′−m

d

)
m = max(img′)+min(img′)

2
d = max(img′)−min(img′)

(2)

J. Pers. Med. 2022, 12, x FOR PEER REVIEW 4 of 18 
 

 

different degrees simultaneously, the five testing pairs are selected. In comparison with 
the subjects of training pairs, some subjects of the testing pair had wider tumor volumes 
and others had previously undergone major surgery; they were the outliers of the full 
dataset. The details of the dataset are listed in Supplementary Materials Table S1. Each 
image pair is made of an MRI and a CT of a subject. Figure 1 shows the data preprocessing 
workflow diagram, and Supplementary Materials Table S2 shows the modified image pa-
rameters after reFOV and resampling for a few more subjects from the training and test 
data. MRI and CT are different imaging modalities with different voxel sizes (resolutions), 
FOVs, window widths, and levels of intensity. Dataset preprocess has 3 stages. In the first 
stage, we define a new FOV for each pair, and any voxels located outside the new FOV 
are abandoned. In our original dataset, every MR image has a smaller FOV than CT, so 
the definition of a new FOV is based on MR. After the re-FOV stage, every paired image 
has the same FOV but a different number of voxels. In the second stage, we use NiBabel, 
which is a Python library for medical images, for dataset resampling. The resampling 
method is spline interpolation with an order of 3. Therefore, each paired image has the 
same FOV, and the number of voxels of the whole dataset is 200 × 200 × 128. In the third 
stage, every image was normalized and standardized by Formulas (1) and (2), respec-
tively. The intensity of all images are shifted to −1~1. 𝑖𝑚𝑔ᇱ = 𝑖𝑚𝑔 − 𝜇(𝑖𝑚𝑔)𝜎(𝑖𝑚𝑔)  (1) 

⎩⎪⎨
⎪⎧ 𝑖𝑚𝑔′′ = 2 × ቆ𝑖𝑚𝑔ᇱ − 𝑚𝑑 ቇ

𝑚 = 𝑚𝑎𝑥(𝑖𝑚𝑔ᇱ) + 𝑚𝑖𝑛(𝑖𝑚𝑔ᇱ)2𝑑 = 𝑚𝑎𝑥(𝑖𝑚𝑔ᇱ) − 𝑚𝑖𝑛(𝑖𝑚𝑔ᇱ)  (2) 

 

Figure 1. The workflow of data preprocessing. The parameters in Figure 1 come from one of the real
cases in the original dataset. The workflow is applied to all pairs of original datasets.
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2.3. Patch-Based Datasets

MRI and CT are medical images with high complexity. To increase the similarity of
prediction and prevent trainable parameters from exceeding the limitation of hardware, we
obtain 5 different patched datasets, denoted as datasets p1, p2, . . . . . . and p5, respectively,
from the complete re-FOV dataset. We set the number of voxels to 128 × 128 × 128 for
every patch, such that all 3D-pix2pix models can apply with the same architecture. A
schematic diagram of patch-based datasets is shown in Figure 2. For example, dataset p1
contains the upper left corner cubes of all subjects in the re-FOV dataset.
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Figure 2. The correlation between five patch and re-FOV image. Patches p1~p5 have their own
spatial locations at the coordinates of the re-FOV image. In this paper, we call the collection of the
same patch from all subjects the patched dataset.

2.4. Data Augmentation

To overcome the problem of lacking training data, we adopt a data augmentation tech-
nique in the training process. Many studies have proven that adopting data augmentation
is effective for improving model accuracy for classification tasks [18–20]. We rotate the
voxel coordinate of every image, and the rotation angle is different at each epoch. The rotate
angle along 3 axes is shown in (3) and denoted as (θx, θy, θz). A rotation angle contains a
fixed part and a random part. The fixed part is denoted as θ f , and the subscript f means
fixed. The random part is denoted as θr, and subscript r means random. As the iteration
increases, the value of θ f is chosen from 1, −1, 3, −3, 5, −5, 7, and −7, in order. The total
512 combinations are listed as follows:

(1 + θr , 1 + θr, 1 + θr), (1 + θr , 1 + θr,−1 + θr), (1 + θr , 1 + θr , 3 + θr),
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(1 + θr , 1 + θr,−7 + θr), (1 + θr ,−1 + θr, 1 + θr), (1 + θr ,−1 + θr ,−1 + θr),

(1 + θr ,−1 + θr,−7 + θr), (1 + θr , 3 + θr, 1 + θr), · · · · · ·, (1 + θr ,−7 + θr ,−7 + θr),

(−1 + θr , 1 + θr, 1 + θr), · · · · · ·, (−7 + θr ,−7 + θr,−7 + θr), and (−7 + θr ,−7 + θr ,−7 + θr).


(
θx, θy, θz

)
=
(

θ f [i] + θr, θ f [j] + θr, θ f [k] + θr

)
, where i, j, k = 0, 1, 2, · · · , 7

θ f = {1,−1, 3,−3, 5,−5, 7,−7}
θr = {θ|−1 < θ < 1}

(3)

2.5. Generative Adversarial Nets

Since being proposed by Ian Goodfellow, generative adversarial nets (GANs) have
become prosperous in many fields, especially in computer vision (CV). A well-trained GAN
is capable of generating pseudoimages that are extremely similar to real images. A GAN
is composed of a discriminator and a generator. The task of a discriminator is to judge
whether an image is real or not. On the other hand, the generator has entirely opposite
goals to the goal of the discriminator. The generator tries to deceive the discriminator such
that the discriminator makes the wrong judgment. As the number of iterations increases,
the discriminator becomes more capable at judgment, and the generator becomes better at
forging. The GANs objective function is shown in (4):

min
G

max
D

V(D, G) = Ex∼pdata(x)[log D(x)] +Ez∼pz(z)[log(1− D(G(z)))] (4)

where the data from the real world are denoted as x; the random noise is denoted as z; the
discriminator and generator are denoted as D and G, respectively, and the synthetic data are
denoted as G(z). The distributions of real-world data and random variables are denoted
as pdata(x) and pz(z), respectively. The meaning of subscript x ∼ pdata is that x belongs to
pdata(x), and the meaning of subscript z ∼ pz(z) is that z belongs to pz(z). The symbol E
represents the expected value. The output range of the discriminator is designed to be in the
range 0~1. According to the loss function, the parameters of the discriminator are modified
to distinguish real data x and synthetic data G(z), and, to deceive the discriminator, the
parameters of the generator are modified to forge data G(z) that appear real.

2.6. Pix2pix

Pix2pix is one of the most powerful deep-learning models on image translation for
two different styles of images. It is an extended topology of GANs but has a more complex
structure. A pix2pix contains a PatchGAN classifier and u-net. The functions of the
PatchGAN classifier and u-net are similar to the discriminator and generator, respectively.
A normal (or traditional) classifier maps an image onto a single number. In contrast to
the normal classifier, the PatchGAN classifier maps an input image onto a M×M patch,
and every element in this patch has its own receptive field from the input image. To do
so, the weight number of the classifier can be reduced. It is not necessary to consider the
whole input image at a time. The topology of u-net is similar to an autoencoder. The major
difference in topology is that u-net has a shortcut between the encoder and decoder but an
autoencoder does not. The feature map of the encoder is passed through the shortcut and
then concatenated to the feature map of the decoder. Both of them have a bottleneck in the
middle of the structure. From the category aspect, pix2pix belongs to a kind of conditional
GAN (cGAN) [21] that needs to be provided an extra condition. According to the original
paper, the condition can be any type of data, such as a label of class or image data of a
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certain modality. The training process restricts the output distribution of the u-net and
PatchGAN classifiers. Formula (5) is the loss function of cGAN:

LcGAN(G, D) = Ec,x[log D(c, x)] +Ec,z[log(1− D(c, G(c, z)))] (5)

where we set the MRI as c and CT as x. An additional loss function (6) is applied to the
algorithm to enhance sharpness:

LL1(G) = Ec,x,z[‖ x− G(c, z) ‖1] (6)

Therefore, the goal of the algorithm is shown in (7):

G∗ = arg min
G

max
D
LcGAN(G, D) + λLL1(G) (7)

where we set the value of λ to 100. We modified the framework from 2D to 3D to prevent
slices from forming discontinuities on pseudoimages. In addition, we also modified
hyperparameters for the PatchGAN classifier and u-net, such as the learning rate, to match
our dataset.

2.7. Implementation

We use an open source API, TensorFlow 2.4.1, for deep-learning model-building
training and testing. The algorithm is deployed on and executed by the server ESC8000
G4 with a GeForce 1080 Ti (Nvidia, Santa Clara, CA, USA). Figure 3 shows the main
architecture of a single model used for every patched dataset. The kernel size is denoted as
ky, which means that the kernel size is y × y × y. The base number of filters (or kernel) is
denoted as fz, which means that the base number of filters is z. We have three combinations
of the number of filters and kernel size, which are denoted as k4_f80, k6_f60, and k8_f30.
Consequently, we have 15 (5 patches × 3 filter numbers and kernel size) specific models.
For example, the model that has an 80 base filter number and 4 × 4 × 4 kernel size, being
trained by the p1 dataset, is denoted as the p1_k4_f80 model. In the algorithm, the stride of
3D convolution and transpose convolution is (2, 2, 2), and the batch size is 1.
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Figure 3. The structure of 3D pix2pix model. A single pix2pix model contains the (A) u-net and a
(B) PatchGAN classifier. The task of u-net is to learn the relationship between “source” and “target”
and make the distribution of “prediction” approach the distribution of “target” as similarly as possible.
In contrast to u-net, the PatchGAN classifier needs to learn how to cause a high score for the real pair
of “target” and “source” rather than the pseudopair of “target” and “prediction”.
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2.8. Merge Prediction from the k4_f80/k6_f60/k8_f80 Model

The kernel size is an important factor in convolutional neural networks [22–24]. In
general, a model with a small kernel is more efficient, and a large kernel is more accurate.
The element in the feature map has its own receptive field, which is related to kernel size.
That is, if we choose different kernel sizes, it results in obtaining different feature maps.
Although a larger kernel considers more information from the former layer to produce
feature maps at a time, a larger kernel does not present better performance as long as the
kernel size is over a certain number. As shown in Figure 4, we mixed 3 outputs of well-
trained models for a single patched dataset. The base kernel sizes of these 3 well-trained
models are 4 × 4 × 4, 6 × 6 × 6, and 8 × 8 × 8. The proportion of ingredients of the mixed
image is 1:1:1.
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2.9. Merge Prediction from the p1~p5 Model

To eliminate discontinuous boundaries that appear at the merged prediction, the center
locations of each patch in the re-FOV image are designed such that there is overlap among
these patches. We build and train 5 specific models, and each model is specialized for the
corresponding patched dataset. After the training process, we create an all-zero image,
called the base map, with a size of 200 × 200 × 128. The output value of all patched models
is linearly converted to the same output range as the p3 model. Then, based on the location
of each specific patch at the re-FOV image, the prediction of each specific model is added
back to the base map. Every voxel in the base map is divided by the number of overlapping
times. The numbered marks of the re-FOV image in Figure 2 present the amount of overlap
in each space.

2.10. Image Similarity Evaluation

The two images A and B are given and shown in (8):

A =


a1
a2
...

aN

, B =


b1
b2
...

bN

 (8)

where a1, a2, . . . . . . and aN are the voxels in image A, and b1, b2, . . . . . . and bN are the
voxels in image B. To objectively determine the difference between images A and B, we
adopt the quantized index for evaluation. Formulas (9)–(11) are used to calculate the cosine
angle distance (CAD) [25,26], L2 norm (also known as Euclidean distance) [25,27], and
mean structural similarity index (MSSIM) [28], respectively.
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CAD:
CAD(A, B) = cos(θ) =

A·B
‖ A ‖ × ‖ B ‖ (9)

L2 norm:

L2(A, B) =

√√√√ N

∑
i=1

(ai − bi)
2 (10)

MSSIM:

SSIM
(

A′i, B′i
)
=
[
l
(

A′i, B′i
)]α[c(A′i, B′i

)]β[s(A′i, B′i
)]γ

l
(

A′i, B′i
)
=

2µA′i
µB′i

+C1(
µA′i

)2
+

(
µB′i

)2
+C1

c
(

A′i, B′i
)
=

2σA′i
σB′i

+C2(
σA′i

)2
+

(
σB′i

)2
+C2

s
(

A′i, B′i
)
=

σA′i B′i
+C3

σA′iσB′i
+C3

w = {wi | i = 1, 2, . . . . . . , N}

µA′i
=

N
∑

j=1
wja′i,j, µB′i

=
N
∑

j=1
wjb′i,j

σA′i
=
√

∑N
j=1 wj

(
a′i,j − µA′i

)2
, σB′i

=

√
∑N

j=1 wj

(
b′i,j − µB′i

)2

σA′i B
′
i
=

N
∑

j=1
wj

(
a′i,j − µA′i

)(
b′i,j − µB′i

)
MSSIM(A, B) = 1

M

M
∑

i=1
SSIM

(
A′i, B′i

)

(11)

When images A and B are the same, the values of the CAD, L2 norm, and MSSIM are
1, 0, and 1, respectively. These similarity indices provide quantized values and different
aspects to evaluate two images. Images A and B are treated as two vectors when the value
of CAD is calculated. The angle between these two vectors shows whether image A is
similar to image B. The value of the L2 norm value represents the accumulation comparison
for voxelwise differences of images A and B. The MSSIM considers three important factors:
luminance, contrast, and structure. In Formula (11), M is the number of local patches in
full image A. The i-th patch A′i of image A contains voxels a′i,1, a′i,2, . . . . . . , a′i,N ; w is a
circular-symmetric Gaussian weighting function with a standard deviation of 1.5 samples,

normalized to the unit sum
(

N
∑

i=1
wi = 1

)
. We take advantage of scikit-image, which is

a collection of algorithms for image processing, to calculate MSSIM. It is the function
“skimage.metrics.structural_similarity()” that we use, leaving all the parameters as default.

2.11. Clinical Evaluation

Two radiologists independently evaluated the satisfaction score, including spatial,
detail, contrast, noise, and artifacts, and categorized them into excellent, good, fair, or
bad for each imaging attribute. Reader agreement regarding invasion depth was analyzed
using weighted kappa statistics (0.00 ≤ k < 0.40 indicated poor agreement; 0.40 ≤ k ≤ 0.70
indicated fair agreement; k > 0.70 indicated excellent agreement). The Mann–Whitney U
test was used to compare the clinical satisfaction scores between the bone and soft tissue
window images from the synthetic CT.

3. Result

Figure 5 shows the first two testing pairs and their synthetic CT. Each merged predic-
tion is composed of outputs from 15 models. The models of participation are p1_k4_f80,
p2_k4_f80, p3_k4_f80, p4_k4_f80, p5_k4_f80, p1_k6_f50, p2_k6_f50, p3_k6_f50, p4_k6_f50,
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p5_k6_f50, p1_k8_f30, p2_k8_f30, p3_k8_f30, p4_k8_f30, and p5_k8_f30. Because the al-
gorithm is based on a 3D framework, we plot axial, coronal, and sagittal views for each
sample. The similarity indices for all tested CT scans and their corresponding synthetic
CT scans are shown in Figure 6. The additional two similarity indices, MSE and PSNR,
of CT vs. synthetic CT before and after merging were calculated to evaluate the model
performance (Supplementary Materials Table S3).
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Figure 6. The individual similarity indices before and after merging. To compare the contributions of
different kernel sizes, the calculations of similarity indices are performed according to kernel size.
The entire synthetic CT evaluated by the indices is made of outputs of p1~p5 models.

For synthetic CT, radiologists valued excellent satisfaction in spatial geometry and
noise level, good satisfaction in contrast and artifacts, and fair imaging details for the
bone and soft tissue window images (Supplementary Materials Tables S4 and S5). Higher
satisfaction scores were observed on the bone window images than on the soft tissue
window images for evaluation of the details, contrast, and artifact (Table 1). There was no
statistically significant difference in synthetic CT on axial, coronal, or sagittal planes. The
reader agreement rate was excellent in terms of spatial, detail, contrast, noise, and artifact
in axial, coronal, and sagittal planes for both the bone and soft tissue window images
from the synthetic CT. Interestingly, the metallic artifact was reduced, and the air density
of the paranasal sinuses and mastoid air cells were well preserved on the bone window
images of the synthetic CT (Figure 7a,b). Of note, perifocal hyperdensities on the soft
tissue window images of the synthetic CT might lead to a false impression of intracranial
hemorrhage, which should have been postoperative encephalomalacia and white matter
edema (Figure 7c).
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Table 1. Clinical satisfaction score based on the bone and soft tissue window synthetic CT.

Case Bone Soft
Tissue p

Median Range Median Range

AXL

spatial 4 3–4 4 3–4 0.71
detail 2 2–3 1 1–2 <0.001
contrast 4 2–4 3 3–4 <0.001
noise 4 3–4 4 3–4 0.88
artifact 3 1–4 3 2–4 <0.001

COR

spatial 4 3–4 4 3–4 1.00
detail 2 2–3 2 1–2 <0.001
contrast 4 2–4 3 3–4 <0.001
noise 4 4–4 4 3–4 0.32
artifact 4 3–4 4 2–4 <0.001

SAG

spatial 4 3–4 4 3–4 1.00
detail 2 2–3 2 1–2 <0.001
contrast 4 3–4 3 3–4 <0.001
noise 4 3–4 4 3–4 1.00
artifact 4 3–4 3 2–4 <0.001J. Pers. Med. 2022, 12, x FOR PEER REVIEW 12 of 18 

 

 

 
Figure 7. (A) The metallic artifact was reduced (arrows), and (B) the air density of the paranasal 
sinuses (asterisks) and mastoid air cells (arrows) were well preserved on the bone window images 
of the synthetic CT. (C) Perifocal hyperdensities (arrows) on the soft tissue window images of the 
synthetic CT might lead to a false impression of intracranial hemorrhage, which should have been 
postoperative encephalomalacia and white matter edema. 

Table 1. Clinical satisfaction score based on the bone and soft tissue window synthetic CT. 

 Case Bone  Soft Tissue  p 
  Median Range Median Range  

AXL 

spatial 4 3–4 4 3–4 0.71 
detail 2 2–3 1 1–2 <0.001 
contrast 4 2–4 3 3–4 <0.001 
noise 4 3–4 4 3–4 0.88 
artifact 3 1–4 3 2–4 <0.001 
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Figure 7. (A) The metallic artifact was reduced (arrows), and (B) the air density of the paranasal
sinuses (asterisks) and mastoid air cells (arrows) were well preserved on the bone window images
of the synthetic CT. (C) Perifocal hyperdensities (arrows) on the soft tissue window images of the
synthetic CT might lead to a false impression of intracranial hemorrhage, which should have been
postoperative encephalomalacia and white matter edema.
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4. Discussion
4.1. Acquiring Paired Data

Paired data are essential for training models in 3D pix2pix, and reports have shown the
feasibility of 3D pix2pix in synthetic images from multiparametric MRI. One novelty of this
study is synthetic CT from contrast-enhanced MRI is important for radiotherapy treatment
planning. However, the amount of treatment planning data cannot be comparable to
diagnostic CT or MRI. Therefore, we developed a preprocessing pipeline to overcome
different imaging modalities with different voxel sizes (resolutions), FOVs, window widths,
and levels of intensity. Furthermore, data augmentation was established to expand the
utility of sparse clinical imaging data. Our process involved little human involvement and
is believed to be scalable to a larger dataset.

4.2. Effect of Data Augmentation

Although several studies [18–20] have indicated that data augmentation is a useful
solution for limited data, none of them focused on the 3D image translation field. To ensure
the effect of data augmentation for our models, we performed two simple experiments.
A model was trained by a dataset without augmentation in Experiment 1. In Experiment
2, a model was trained by an augmented dataset wherein the voxel coordinates of all
images were rotated by a different angle once at the beginning of each epoch. All the other
conditions are the same for Experiments 1 and 2. Figure 8 shows the MSSIM trends of the
two experiments.J. Pers. Med. 2022, 12, x FOR PEER REVIEW 14 of 18 
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Figure 8. The MSSIM of training process. (A,B) show the results of Experiment 1 and Experiment 2,
respectively. The performance of the p3_k4_f80 model is validated with original training data (n = 26)
and testing data (n = 5) after 26 iterations. One epoch equivalent to 26 iterations and the period of data
augmentation is 13,312 iterations (26 × 512). The data augmentation cycles end at iterations 13,312;
26,624; 39,936; 53,248; 66,560; 79,872; and 93,184. “SD” is the abbreviation for “standard deviation”.
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The trend of Figure 8 implies that data augmentation indeed prevents a model
from overfitting. It is obvious that the model overfits seriously at the first beginning
in Experiment 1, and the growth of the mean MSSIM score of the testing data stops at
approximately 0.71. Moreover, we inspected every synthetic CT from Experiment 1, and
it is obvious that the image was blurry and unclear. On the other hand, the overfitting
phenomena of the other experiments improved quite well. The best mean MSSIM scores
are breakthroughs over 0.75. Furthermore, according to the slope of the curve, the index
is still growing after 100,000 iterations. Therefore, the data augmentation technique we
proposed does increase feature variety, which is helpful for model generalization.

4.3. The Approach Is Extendable for Higher-Resolution Datasets

In this paper, we obtain five patched datasets from the original dataset wherein each
image has a very high number of voxels. It is impossible to create a model to manage our
original dataset directly, and the number of trainable parameters is too numerous to be
affordable for hardware. Compared to the original dataset, the benefit of a patched dataset
is that it has fewer features and fewer voxels. Even if we take advantage of patched datasets
to shrink the model, the number of trainable parameters of the model is approximately
300~400 million in this work for a single model. We think MR of the same body part among
different patients has similar features, as does CT. Therefore, it is rational to build and train
a specific model for a specific patched dataset that contains the MRI and CT of the same
body part from all subjects. The solution can be adopted on any other paired dataset that
has higher resolutions as long as the dataset is patched into smaller parts.

4.4. Demand for Pair Data

The 3D pix2pix model can learn the existing relationship between two imaging modal-
ities from a training dataset as long as the relationship is certain. However, there are several
uncertain relationships within our paired dataset. The material itself is the main cause
of uncertain relationships. Some of the subjects had metal dentures, but some did not.
Both metal dentures and normal teeth form a bright area on CT images, whereas they
can hardly be seen on MR images. The shape of soft tissue and posture of a patient are
also common causes of uncertain relationships. A patient might face a different angle
when taking a brain MRI and CT exam or have a different bladder shape when taking a
pelvis MRI and CT exam. The resolution of the imaging modality itself is another cause of
uncertainty, and a medical image might be affected by the partial volume effect. In addition,
MR and CT imaging have different resolutions in our original dataset, and the information
amounts (voxel numbers) of the two modalities in space are not equal. Even if the dataset
is resampled, some information might be lost during the process or cannot reflect reality.
Some of the other uncertain relationships are caused by phantoms, noise, distortion, and
inaccurate image registration.

4.5. Effect of Multiple Kernel Sizes

In Figure 6, most indices based on models with multiple kernel sizes are higher than
the indices based on models with a single kernel size. We infer that it is helpful to improve
prediction by merging output from different models with multiple kernel sizes. The reason
why some index values are not the highest on the comparison is affected by the uncertain
relationship of testing paired data. Because of the uncertainty mentioned above, some
synthetic CT scans are more correct than the corresponding real CT scans (i.e., target or
ground truth) on the shape or the position. Therefore, the value of similarity indices
not only implies the correctness of prediction but also implicitly presents uncertainty in
paired data.

4.6. Performance Variations between Kernels

The manner of data preprocessing affects the performance variances most deeply.
For our early stage attempt, the composite image possesses mosaic style. Some predicted



J. Pers. Med. 2022, 12, 361 15 of 17

areas are bright and others are dark. The boundary between different predicted patch
areas is quite sharp. The reason for performance variation is that we split the dataset
into five patched datasets before performing normalization and standardization. The
normalization and standardization are based on every patched dataset itself. Therefore, the
five patched datasets have no common baseline. We made several tries in order to eliminate
the performance variations, such as controlling the input training data originating from
the same people for the five patched models that have the same iterations. Compared to
the previous version of the process, the final version improves the issue considerably. The
performance variations of the proposed version are tiny. The other important factor is the
native dataset itself. We found that the p3 model is the most difficult one to train and its
performance is slightly poorer than all the other models. The rational explanation is that
the image FOV in patched dataset 3 is allocated at the center of the brain. Thus, the patched
dataset 3 contains a larger number of complicated features.

4.7. Limitation

The algorithm belongs to supervised learning, and a paired dataset is needed. The
p1~p5 models are trained independently such that the phenomenon of grid-like bound-
ary or nonuniform luminance appears in the final compound image. The drawback of
expandable methodology is that cost of storage capacity and the quantities of calculation
for training and prediction are proportional to the number of patches. The data form in the
dataset makes the size of the dataset is difficult to enlarge. In the future, we hope the CT
datasets generated from diagnostic MRIs can be used directly for radiation planning. The
electron densities are the basis of the work of the irradiation planning programs. Therefore,
the comparison of calculated synthetic electron densities and electron densities of the real
CT scans will be addressed in the future.

5. Conclusions

In this paper, we propose an extensible solution for 3D image translation with a
high-resolution dataset and demonstrate the effectiveness of data augmentation under the
circumstance of insufficient training data. With the 3D image patching technique, the model
size is no longer a major obstacle for the hardware. A set of well-trained models are capable
of converting MRI to CT, which provides helpful information for clinical examination
and reduces the radiation damage of CT imaging. For synthetic CT, radiologists reported
excellent satisfaction in spatial geometry and noise level, good satisfaction in contrast
and artifacts, and fair imaging details. There was no statistically significant difference in
synthetic CT on the axial, coronal, or sagittal planes. The present project presents a pivotal
role in connecting the MRI and CT datasets, and the application could be expandable from
the cranium to other body parts. We will focus on eliminating the clinical testing difference
between synthetic CT and real CT in the future.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jpm12030361/s1, Table S1: The detail of original dataset. The
table lists the voxel numbers and voxel size for each pairs in the original dataset; Table S2: The
modified image parameters after reFOV and resampling for few more subjects from training and test
data; Table S3: The additional similarity indices for CT vs synthetic CT before and after merge. The
other two similarity indices, MSE and PSNR, are calculated for evaluation of model performance;
Table S4: Clinical satisfaction score based on the bone window synthetic CT.
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