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Abstract
The poor prognosis of pancreatic ductal adenocarcinoma (PDAC) is associated
with the tumour heterogeneity. To explore intra- and inter-tumoural hetero-
geneity in PDAC, we analysed the multi-omics profiles of 61 PDAC lesion sam-
ples, along with the matched pancreatic normal tissue samples, from 19 PDAC
patients. Haematoxylin and Eosin (H&E) staining revealed that diversely dif-
ferentiated lesions coexisted both within and across individual tumours. Whole
exome sequencing (WES) of samples frommulti-region revealed diverse types of
mutations in diverse genes between cancer cells within a tumour and between
tumours from different individuals. The copy number variation (CNV) analy-
sis also showed that PDAC exhibited intra- and inter-tumoural heterogeneity
in CNV and that high average CNV burden was associated poor prognosis of
the patients. Phylogenetic tree analysis and clonality/timing analysis of muta-
tions displayed diverse evolutionary pathways and spatiotemporal characteris-
tics of genomic alterations between different lesions from the same or different
tumours. Hierarchical clustering analysis illustrated higher inter-tumoural het-
erogeneity than intra-tumoural heterogeneity of PDAC at the transcriptional lev-
els as lesions from the same patients are grouped into a single cluster. Immune
marker genes are differentially expressed in different regions and tumour sam-
ples as shown by tumour microenvironment (TME) analysis. TME appeared to
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Numbers: 82072747, 82072749 be more heterogeneous than tumour cells in the same patient. Lesion-specific

differentially methylated regions (DMRs) were identified by methylated DNA
immunoprecipitation sequencing (MeDIP-seq). Furthermore, the integration
analysis of multi-omics data showed that the mRNA levels of some genes, such
as PLCB4, were significantly correlated with the gene copy numbers. ThemRNA
expressions of potential PDAC biomarkers ZNF521 and KDM6A were correlated
with copy number alteration and methylation, respectively. Taken together, our
results provide a comprehensive view of molecular heterogeneity and evolu-
tionary trajectories of PDAC and may guide personalised treatment strategies in
PDAC therapy.

KEYWORDS
cancer evolution, heterogeneity, immunotherapy, molecular targeted therapy, multi-omics
analysis, pancreatic ductal adenocarcinoma

1 INTRODUCTION

Pancreatic ductal adenocarcinomas (PDAC) is an aggres-
sive malignancy with an overall 5-year survival rate of less
than 8%.1 Many patients develop postoperative recurrence
or metastasis, even if diagnosed early and treated timely.
Although researchers have made considerable effort to
identify biomarkers and therapeutic targets for PDAC
using high-throughput approaches,2–4 few of them have
been applied in clinical practice. Thus, it is urgently
needed to develop novel and effective therapeutic strate-
gies for PDAC treatment.
The limited success of conventional therapies for PDAC

is partly due to the tumour heterogeneity.5 Recent multi-
omics analysis, including genomics, transcriptomics, pro-
teomics and metabolomics, have highlighted the high
degree of inter-tumoural heterogeneity of PDAC between
individuals and intra-tumoural heterogeneity within the
same tumour. Both inter- and intra-tumoural heterogene-
ity may occur at the histological and molecular levels.6
At the histological level, different PDAC subtypes classi-
fied by the World Health Organization (WHO), includ-
ing ductal adenocarcinoma, adenosquamous carcinoma,
colloid carcinoma and other carcinomas, reflect the his-
tological inter-tumoural heterogeneity of PDAC.7 Differ-
ent patterns of PDAC, such as conventional ductal ade-
nocarcinomas, intestinal type adenocarcinomas and cys-
tic papillary, may coexist within the same tumour, suggest-
ing histological intra-tumoural heterogeneity of PDAC.8,9
At the molecular level, comparative genomic hybridisa-
tion has revealed the differences of genomic abnormali-
ties among multi-region samples in PDAC.10 A study in
xenografted mice has shown significant transcriptomic
differences between the central and peripheral zones of

pancreatic tumours.11 Distinct subclonal populations of
primary PDAC share identical driver mutations, suggest-
ing that intra-tumoural heterogeneity might be driven by
epigenomic reprogramming.12 Studies have also demon-
strated that intra-tumoural heterogeneity represents a
snapshot of cancer evolutionary path and may cause treat-
ment failure in clinical practice.5,13,14 Although integrated
genomics, transcriptomics and epigenomics analyses have
provided insights into potential therapeutic strategies for
PDAC, there is a lack of data regarding the heterogene-
ity analysis based on the multi-omics profiles and tumour
evolution of PDAC. Also, the association of tumour het-
erogeneity with the prognosis of PDAC patients remains
unclear.
In this study, by analysing the whole-exome sequenc-

ing (WES), RNA-sequencing (RNA-seq) and methylated
DNA immunoprecipitation sequencing (MeDIP-seq) pro-
files of the paired PDAC and normal pancreatic tissue sam-
ples from PDAC patients, we investigated intra- and inter-
tumoural heterogeneity at genomic, transcriptomic and
epigenomic levels in PDAC. We further integrated multi-
omics data to better understand the complex heterogene-
ity and identify potential biomarkers for PDAC.Our results
provide valuable information about the pathogenesis and
prognosis of PDAC.

2 RESULTS

2.1 Histological heterogeneity analysis

To explore the histological heterogeneity of PDAC, 61
lesions from 19 patients (Figure 1A) were observed under
the microscope. Haematoxylin and Eosin (H&E) staining
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HIGHLIGHTS

∙ Our results provide a comprehensive view of
molecular heterogeneity and evolutionary tra-
jectories of PDAC.

∙ The loss of copy number of KDM6A and the low
expression of ZNF521 may be the potential bio-
logical indicators of PDAC.

∙ A higher average CNV burden may be a poten-
tial prognostic factor for PDAC.

showed that well differentiated (P1–L1, P1–L3, P16–L3)
and moderately differentiated lesions (P1–L2, P16–L1,
P16–L2) coexisted within the same tumour (Figure 1B),
suggesting the histological intra-tumoural heterogeneity
of PDAC. We also observed different differentiation status
across individual tumours (supplementary Figure S1),
suggesting the histological inter-tumoural heterogeneity
of PDAC.

2.2 Mutational and CNV heterogeneity
analysis

To explore the heterogeneity of PDAC at the molecu-
lar level, we performed multi-omics analysis to obtain
genomic, transcriptomic and epigenomic profiles of the
lesion samples following theworkflow shown in Figure 1C.
To explore the mutational heterogeneity, we performed

multi-region WES to identify somatic mutations and
driver gene mutations in the lesion samples. A total of
12 974 nonsynonymous somatic mutations were identi-
fied in 7377 genes, and 5451 synonymous somatic muta-
tions were identified in 3740 genes (supplementary Table
S1). Somatic mutations differed between lesions from the
same tumours, with missense mutations being dominant
mutations (91.8%), followed by nonsense mutations (5.1%)
and splice site mutations (2.4%). These data suggest intra-
tumoural heterogeneity of mutation type in PDAC. For
example, P6 had multi-hit CDKN2A mutation in L1 and
missense CDKN2Amutations in L2 and L3.
The most common driver gene mutations occurred

in KRAS (77.0%), TP53 (59.0%) and CDKN2A (23.0%)

F IGURE 1 Specimens and workflow. (A) The locations of samples acquired from each patient. A total of 61 lesion samples, together
with the matched normal pancreatic tissue samples, were obtained from 19 patients with pancreatic ductal adenocarcinoma (PDAC). (B) The
morphological heterogeneity of representative samples. P, patient, L, lesion and N, matched normal tissue. Scale bar = 600 μm. (C) A
schematic diagram of multi-omics analysis
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F IGURE 2 Somatic mutations of driver genes and copy number variations (CNVs) in PDAC. (A) The classification of somatic mutations.
(B, C) Comparison of TMB and CNV burden within and across individual tumours. TMB, tumour mutation burden

(Figure 2A). Mutation frequencies for all the other driver
genes were provided in supplementary Table S2.
Regarding the tumour mutational burden (TMB), we

found that themean value of TMB of all the lesionswas 1.11
mutations/MB, ranging from 0.37 to 6.29 mutations/MB
(Figure 2B). Except for P7–L1 (6.29 mutations/MB), all
other lesions showed low TMB values (≤5 mutations/MB).
These results also suggest that PDACpatients exhibit inter-
tumoural heterogeneity of TMB.
We further analysed the copy number variation (CNV)

heterogeneity. Gain of chromosomes 8q24.22, 16p11.2, 9p12,
9p11.2 and 3q29 and loss of chromosomes 4p13, 21q22.11,
18p11.23, 7q36.3 and 13q12.12 were the most common CNVs
(supplementary Figure S2A). Some chromosomes with
CNVs carry PDAC driver genes, for example, driver gene

U2AF1 is located in 21q22.3 and CDKN2A in 9p24.2 (sup-
plementary Table S3). The degree of CNV,CNVburden and
genome instability index (wGII) varied within or across
individual tumours (supplementary Figure S2B and S2C
and Figure 2C).

2.3 Spatiotemporal heterogeneity
analysis of genomic alterations

To study spatial and temporal heterogeneity of genomic
alterations in PDAC, we performed phylogenetic tree anal-
ysis. As shown in Figure 3A and supplementary Figure
S3, different lesions within or across individual tumours
exhibited different evolutionary paths. Each patient had
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F IGURE 3 Tumour evolution analysis. (A) Phylogenetic trees were plotted to show the clonal evolution of each sample using Revolver.
The grey circle denotes the cluster without driver gene mutations. The coloured circle denotes the cluster with one or more driver gene
mutations. The number in the circle represents the quantity of single nucleotide variants. (B) The proportion of trunk/branch mutations in
each patient based on phylogenetic trees. (C) The probability density of driver gene fold enrichment among trunk and branch mutations in
pan-cancer and PDAC driver genes. (D) Distribution of most frequently mutated driver genes on phylogenetic trees. GL, germline

6–10 clusters in the phylogenetic tree, and the number
of SNVs in the trunk varied from 3 to 63. Branch vari-
ants (median, 91.9%; range, 76.05%–99.78%) were domi-
nant in all patients compared with trunk variants (Fig-
ure 3B). Of note, although SNVs located in the trunk were

significantly less than those located in the branch, pan-
cancer (trunk 95% CI: 4.474011–4.704836, branch 95% CI:
3.358584–3.439444) and PDACdrivermutations (trunk 95%
CI: 2.619689–2.769267, branch 95% CI: 0.307896–0.3251047)
were more likely located in the trunk of the phylogenetic
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F IGURE 4 Timing of somatic events in PDAC evolution. The somatic mutations and chromosome-arms are represented by bars
indicating whether the events are clonal or subclonal. Clonal somatic mutations, chromosome-arms and mutational signatures are further
classified as early (before genome duplication) or late (after genome duplication). The frequency of somatic mutations and chromosome-arm
calculated by (late clonal + subclonal)/total are indicated on the right side of the bars. The pie charts show the proportion of each signature.
GD, genome doubling

tree (Figure 3C). Specifically, KRAS, TP53 and CDKN2A
mutations were more likely located in the trunk compared
with other driver mutations (Figure 3D).
To investigate the temporal heterogeneity of genomic

alterations, we evaluated the clonality and timing of
somatic mutations, chromosome arms and mutational
signature of the lesions. As shown in Figure 4, some

alterations, such as BCL11A mutation, KIF5B mutation
and chromosome-arm 11q loss, were completely or pre-
dominantly classified as early-clonal and occurred before
genome duplication, suggesting that these alterations
were initial genomic events. Some alterations, such as
CEBPA and CACNA1Amutations, were completely or pre-
dominantly late-clonal and often occurred after genome
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duplication, suggesting that these alterations contribute to
tumour maintenance and progression. Other alterations,
such as SMAD4, KRAS and TP53mutations, were predom-
inantly clonal events in both early and late stages, sug-
gesting that these alterations play important roles across
tumour initiation and progression. The mutations in some
driver genes, such as ATF71P, CHEK2 and CBFA2T3, were
classified as subclonal. We also observed temporal intra-
tumoural heterogeneity in KRAS, CDKN2A, SMAD4 and
TP53 mutations. For example, the KRAS mutations were
classified as early-clonal, late-clonal and subclonal, in
P12–L3, P12–L2 and P12–L4, respectively (supplementary
Table S4). Taken together, these data suggest that genomic
alterations exhibit spatial and temporal heterogeneities
within and across individual tumours in PDAC.

2.4 Transcriptional heterogeneity
analysis

To evaluate transcriptional heterogeneity of PDAC,we per-
formed RNA-seq in 40 lesion samples, together with the
matched normal tissue samples, from randomly selected
12 PDAC patients. The number of differentially expressed
genes (DEGs) varied among the lesion samples within or
across individual tumours (Figure 5A), suggesting tran-
scriptional inter- and intra-tumoural heterogeneity in
PDAC. Hierarchical clustering analysis was performed on
all downregulated and upregulated DEGs from each lesion
sample. Samples from the same patients displayed shorter
distance between each other than their distances to sam-
ples from other patients and are clustered together except
P8–L1 and P12–L1 (Figure 5B). We further found that
shared DEGs accounted for a small proportion of all DEGs
(supplementary Figure S4A), and even the most frequent
DEGs were only shared by a maximum of five patients
(supplementary Table S5). In addition, PCA cluster anal-
ysis was also performed using the fold-change of gene
expression as input, and the results showed that sam-
ples from each individual tend to form a single cluster
(supplementary Figure S5A). These data indicated that
PDAC exhibits a lower degree of intra-tumoural hetero-
geneity than inter-tumoural heterogeneity at the transcrip-
tional level. Kyoto Encyclopaedia of Genes and Genomes
(KEGG) pathway enrichment analysis ofDEGs showeddif-
ferences among the lesions within the same tumour, sug-
gesting an intra-tumoural heterogeneity of the signalling
pathways (supplementary Figure S6A). The shared DEGs
were enriched in important tumour onset and metastasis
pathways, such as focal adhesion, cell adhesion molecules
and transcriptional mis-regulation in cancer endoplasmic
reticulum (Figure 5C).

2.5 PDACmicroenvironmental
heterogeneity analysis

Samples with tumour microenvironment (TME) expres-
sion profiles were divided into two clusters by unsuper-
vised clustering analysis using CIBERSORT, an analyti-
cal tool from the Alizadeh Lab developed by Newman
et al. using gene expression data to provide an estima-
tion of the abundances of member cell types in a mixed
cell population15 (Figure 5D). The two clusters presented
different immune cell profiles. Briefly, the proportions
of CD4 naive T cells and T follicular helper cells were
significantly higher in cluster 2 than those in cluster 1
(p = 1.9e-9 and p = 4.9e-4, respectively). This finding was
further verified by immunohistochemical (IHC) and mul-
tiplex immunofluorescence (IF) staining (supplementary
Figure S5B–D). The results showed that the cluster 2 sam-
ples were characterised by higher density or proportion of
T follicular helper cells using IHC (p = .0253) and mul-
tiplex IF (p = .005) staining, respectively. TME cluster-
ing showed the differential expression of immune mark-
ers within and across individual tumours. Lesions from
the same tumour did not cluster together, suggesting that
TME is more heterogeneous than tumour cells in the same
patient.

2.6 DNAmethylation heterogeneity
analysis

Considering that genomic and transcriptomic heterogene-
ity are insufficient to explain the phenotypic diversity of
tumours, we performed MeDIP-seq to investigate the het-
erogeneity of PDAC at the epigenetic level. Figure 5E illus-
trates the phyloepigenetic trees of seven randomly selected
PDAC patients. We found that differentially methylated
regions (DMRs) differ substantially between lesions from
the same patients, reflecting intra-tumoural heterogeneity
of PDAC (Figure 5F). These DMRs were further divided
into shared DMRs and private DMRs. The number of
shared DMRs (median, 11 193; range, 546–20 736) was
less than that of private DMRs (median, 167 910; range,
95 907–219 063) (supplementary Figure S4B). Analysis of
the hypermethylated areas in the tumour further demon-
strated intra-tumoural heterogeneity, and intra-tumoural
heterogeneity was lower than that of inter-tumoural
heterogeneity (Figure 5G). KEGG analysis showed that
the genes with shared DMRs were enriched in cancer-
related pathways, such as Receptor Tyrosine Kinases, Rho
GTPases and Neuronal System (supplementary Figure
S6B). However, the shared DMRs were mainly located
in introns, and no invariably-hypermethylated promoters



8 of 21 LIU et al.

F IGURE 5 Transcriptional and epigenetic heterogeneities of PDAC. (A) The number of differentially expressed genes (DEGs), which
were defined as genes with an absolute GFOLD value greater than 2. The matched normal tissues were used as control. (B) A heatmap of all
the downregulated and upregulated DEGs. Red represents upregulated DEG, and blue represents downregulated DEG. (C) KEGG pathway
enrichment analysis of the shared DEGs. The DEGs shared by all the lesions within the same tumour were defined as shared DEGs. (D) The
heatmap of 22 differentially expressed TME-related immune markers. Absolute immune cell abundance was calculated using a set of 22
immune cell reference profiles (LM22) on CIBERSORT website to analyse the heterogeneity of the immune microenvironment in each
tumour sample. TME, tumour microenvironment. (E) Phyloepigenetic trees. (F) A heatmap of differentially methylated regions in 26 lesions
from 7 patients with PDAC. Blue represents hypomethylation, and red represents hypermethylation. (G) Heatmaps show the heterogeneity
with the top 2000 hypermethylated regions in the tumour. Yellow represents high similarity. Blue represents low similarity

were enriched in theKEGGpathway. Taken together, these
data suggest that PDAC exhibits intra- and inter-tumoural
heterogeneity at the epigenetic level.

2.7 Multi-omics integration analysis

To better understand the complex heterogeneity in PDAC,
we integrated multiple omics data, including the muta-

tion types, copy number alterations, mRNA expression
and methylation status. As shown in Figure 6A and B,
the mRNA levels of some genes were significantly corre-
lated with the copy numbers, including PDAC driver gene
PLCB4. Figure 6C shows the integration of multi-omics
data within and across individual tumours. We observed
that, of the four lesions of P14, the mutation status, CNV
and methylation of KRAS remained unchanged, whereas
the mRNA expression of KRAS was different. The same
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F IGURE 6 The association of genomic alterations with RNA expression. (A) Correlation between CNV and mRNA expression in all
samples. (B) The RNA expressions of some genes were significantly correlated with the gene copy numbers. Blue dot represents driver gene,
and red dot represents non-driver gene. (C) A heatmap of mutations, CNV and their associations with RNA expression of the most frequently
mutated PDAC driver genes

trend was observed in TP53 within the tumour of P11.
These results suggest that, in addition to mutation status,
CNVandDNAmethylation, other factorsmay affect PDAC
driver gene expression.
We further found that ZNF521 expression was posi-

tively correlated with copy number alterations (p = .0068;
Figure 7A) and that KDM6A expression was negatively
correlated with DNA methylation (p = .05; Figure 7B).
ZNF521 has consistently lower expression in all the sam-
ples from tumours P8–P19, except P9–T4 (Figure 7C,
upper panel). Similarly, the loss of KDM6A copy num-

ber was also detected in all samples (Figure 7C, lower
panel), despite KDM6A’s diverse expression and methy-
lation status within and across individual tumours from
P8 to P19. These findings suggested that low expression of
ZNF521 and the loss of KDM6A copy number may work as
biomarkers for PDAC.
In addition to ZNF521 and KDM6A, we performed a

systematic analysis to identify non-varying genes at the
three omics levels through the same approach. Signifi-
cant correlations between themRNA expressions and copy
number alterations of MDM4, RRAGC, HERC2, BIRC3
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F IGURE 7 Correlation of mRNA expression of some genes with CNV or methylation status. (A) Correlation between mRNA expression
and methylation status of ZNF521. (B) Correlation between mRNA expression and CNV of KDM6A. (C) The distribution of KDM6A and
ZNF521 expression, copy number and methylation status across samples. (D) KEGG pathway enrichment analysis of key genes. Hyper/hypo
represents the degree of methylation. –1 and 1 represent hypomethylated and hypermethylated states, respectively. 0 indicates no obvious
change in methylation state. Gain/loss represents the change of copy number, –1 and 1 represent the deletion or amplification of copy number
respectively, and 0 represents the insignificant change of copy number
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and TSC2 were observed as well (supplementary Figure
S7A). KEGG analysis showed that these genes (supple-
mentary Table S6) were enriched in metabolism-related
pathways such as ‘insulin signalling pathway’, ‘glycol-
ysis/glucogeogenesis’ and ‘propanoate metabolism’ sig-
nalling pathways (Figure 7D). However, the gene-level
integrated analysis revealed heterogeneity in expression,
copy number variation and methylation status of MDM4,
RRAGC,HERC2, BIRC3 and TSC2 genes within and across
individual tumours (supplementary Figure S7B), suggest-
ing that they may not be ideal biomarkers for PDAC.
ActivePathways16 was utilised to identify significantly

altered pathways frommultiple-omics data. All genes iden-
tified in RNAseq, WES or MEDIP data analyses (supple-
mentary Table S7) were used as inputs for the integrative
analysis. The results highlighted 43 genes that were sig-
nificantly enriched in 13 KEGG pathways. Based on the
KEGG database annotation, 10 out of the 13 pathways were
found to be frequently enriched inmultiple types of cancer.
The other three enriched pathways were TP53, cytokine–
cytokine receptor interaction and GAP Junction signalling
pathway. ActivePathways also identified 26 significantly
enriched GO biological processes; 17 of them were sup-
ported by all the three types of data (mutation, expression
and methylation) (supplementary Figure S8).

2.8 Correlation analysis of prognosis in
PDAC

With the median 14.4 months post-surgery follow-up, 6/19
(31.6%) patients were found to have disease relapse and/or
metastasis. Liver metastases occurred in 4 patients (P1–3,
P11), and disease-specific death occurred in 10/19 (52.6%)
patients (P1–4, P6, P9, P11 and P13-P15). The patients with
livermetastases had significantly higher average CNV bur-
den than other patients (21.12 vs. 6.17, p = .033; Table 1).
Patients were further stratified by CNV burden quartiles
for survival analysis. Patients with CNV burden in the
top quartile had significantly shorter survival compared to
patients in the other three quartiles [disease-free survival
(DFS), p = .0462 and overall survival (OS), p = .1884; Fig-
ure 8A and B].
Data of patients with pancreatic adenocarcinoma from

The Cancer Genome Atlas (TCGA) database were anal-
ysed as well for comparison. The results of TCGA database
showed that the expression of ZNF521 was decreased
in 178 primary tumours compared with 4 normal tissue
samples (Figure 8C), and its promoter methylation levels
were increased in 184 primary tumours compared with
10 normal tissue samples (Figure 8D), which supported
the results of our cohort study that ZNF521 was under-
expressed in 39 tumour samples from 12 patients. However,

TABLE 1 Associations between clinicopathological parameters
and average CNV burden in 19 PDAC patients

Average CNV burden
n (%)

Parameter Low High p Value
Total 10 (52.6) 9 (47.4)
Age(y/o) .303
≥60 9 (47.4) 6 (31.6)
<60 1 (5.3) 3 (15.8)
Gender .999
Male 5 (26.3) 4 (21.1)
Female 5 (26.3) 5 (26.3)
Tumour location .650
Head 7 (36.8) 5 (26.3)
Body/Tail 3 (15.8) 4 (21.1)
Tumour size .656
>3 cm 6 (31.6) 4 (21.1)
≤3 cm 4 (21.1) 5 (26.3)
Lymph node
metastasis

.656

Yes 4 (21.1) 5 (26.3)
No 6 (31.6) 4 (21.1)
Disease relapse
and/or metastasis

.350

Yes 2 (10.5) 4 (21.1)
No 8 (42.1) 5 (26.3)
Liver metastasis .033*

Yes 0 (0.0) 4 (21.1)
No 10 (52.6) 5 (26.3)
Clinical staging .999
I 2 (10.5) 1 (5.3)
II 8 (42.1) 8 (42.1)

*Means statistically significant.

no significant correlation was observed between ZNF521
expression and prognosis of patients (Figure 8E and F).
Similar results were observed in the transcription and pro-
moter methylation of KDM6A (Figure 8G and H), which
showed KDM6A expression was not significantly corre-
lated with patient prognosis (Figure 8I and J). We further
analysed the association of ZNF521 or KDM6A expression
with the prognosis of the patients in our cohort. We found
that although patients with low ZNF521 expression tended
to show poor prognosis (supplementary Figure S9), the
results were not statistically significant.

3 DISCUSSION

Studies on PDAC heterogeneity have mainly focused on
WES data,17–19 and a multi-omics analysis is lacking. In this
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F IGURE 8 Correlations of CNV burden with patients’ survival and characterisation of KDM6A and ZNF521 in PDAC patients from the
The Cancer Genome Atlas (TCGA) database. (A, B) Kaplan–Meier survival curves of patients with low or high average CNV burden. Patients
with average CNV burden in the top quartile and the rest were segregated into high and low CNV burden groups, respectively. Disease-free
survival (DFS) was defined as the time from surgery to locoregional recurrence or distant metastasis. Overall survival (OS) was defined as the
time from surgery to death from any cause or last follow-up (censored patient). (C, D) mRNA expression and promoter methylation of ZNF521
in normal tissue and primary tumour tissue from TCGA database. (E and F) Correlations of ZNF521 mRNA expression with disease-free
survival and overall survival of patients from TCGA database. (G, H) mRNA expression and promoter methylation of KDM6A in normal
tissue and primary tumour tissue from TCGA database. (I, J) Correlations of KDM6A mRNA expression with disease-free survival and overall
survival of patients from TCGA database. The dotted lines in E, F, I and J represent the error bars of 95% CI. PAAD, pancreatic adenocarcinoma
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study, we evaluated intra- and inter-tumoural heterogene-
ity of PDAC across genomic, transcriptomic and epige-
nomic levels and depicted the evolutionary trajectories
of the tumours to unveil the spatial and temporal occur-
rence of genomic alterations.We observed intra- and inter-
tumoural heterogeneity in tumour cells andTMEof PDAC.
The integrated multi-omics analysis revealed that despite
the heterogeneities observed in certain omics, low expres-
sion of ZNF521 and loss ofKDM6A copy number were con-
sistently presented within and across individual tumours,
serving as potential biomarkers for PDAC. In addition,
high average CNV burden may be correlated with poor
PDAC prognosis, which can be used as a potential prog-
nostic marker for PDAC.
Although the degree of intra-tumoural heterogeneity

was less than that of inter-tumoural heterogeneity, the dis-
tinct genomic profiles of different lesions within a sin-
gle tumour highlighted the presence of intra-tumoural
heterogeneity in PDAC. Consistent with that reported by
Makohon-Moore et al.,17 our phylogenetic tree analysis
demonstrated that branch variants were dominant in all
lesions, whereas trunk variants were enriched in driver
genes of pan-cancer and PDAC, suggesting that intra-
tumoural genomic heterogeneity is more likely caused by
passenger gene mutations. Although it is more likely that
intra-tumoural heterogeneity is contributed to passenger
genemutations, driver genemutation is also remarkable in
PDAC’s heterogeneity. Driver gene mutations, which con-
fer selective growth advantages to cancer cells, are critical
in tumour evolution, while passenger mutations tend to
be random mutations accumulated in cells with no seri-
ous functional consequences.20 To better understand the
role of driver gene mutations in the occurrence and pro-
gression of PDAC, we explored the spatial and temporal
heterogeneities of PDAC driver gene mutations. In a con-
siderable proportion of the patients, the same driver genes,
includingKRAS,TP53, SMAD4 andCDKN2A, have diverse
genotypes and mutation types between lesions from one
individual tumour. This suggests the intra-tumoural spa-
tial heterogeneity of driver gene mutations. Although the
clonal status of driver gene mutations has drawn the
attention of PDAC researches, little is known about the
clonal/subclonal frequency and the timing of mutation
during tumour evolution.21 In this study, temporal clonal
clustering classified driver gene mutations into four types:
type 1 mutations were completely or predominantly clonal
and occurred before genome duplication, such as BCL11A,
KIF5B and NIPBLmutations; type 2 mutations were com-
pletely or predominantly clonal and occurred after genome
duplication; type 3 mutations were predominantly clonal
events in both early and late stages, including KRAS,
SMAD4 and TP53 mutations; type 4 mutations were clas-
sified as subclonal. Mutations of the three major PDAC

driver genes KRAS, TP53 and SMAD422 were predomi-
nantly clonal events, consistent with their critical roles
in PDAC. In terms of the timing, they might partici-
pate in both tumour initiation and progression, suggest-
ing the differential roles of these genes during tumour
evolution. The occurrence of subclonal KRAS mutations
has been reported in PDAC,23 supporting the temporal
intra-tumoural heterogeneity of PDAC driver gene muta-
tions observed in this study. The mutations in other driver
genes were mainly late and subclonal events, demonstrat-
ing a significant intra-tumoural heterogeneity. The spa-
tial and temporal intra-tumoural heterogeneity of driver
gene mutations may contribute to therapeutic resistance
in PDAC, leading to treatment failure.
In addition, following the classification criteria of TMB

levels in a large cohort study which approximately divided
∼50% of patients to low TMB (1–5 mutations/MB), ∼40%
intermediate TMB (6–19 mutations/MB) and 10% high
TMB (≥20 mutations/MB),24 almost all the lesions in our
study showed lowTMB, consistentwith the results of other
large PDAC cohort studies.22,25
In our study, although the degree of inter-tumoural het-

erogeneity was higher than that of intra-tumoural hetero-
geneity at the transcriptional level, the presence of intra-
tumoural transcriptional heterogeneity was unignorable.
Importantly, we observed that the PDAC TME was rela-
tively more heterogeneous than tumour cells, possibly due
to the complicated components in the PDAC TME. The
PDAC TME is characterised by abundant fibrotic stroma
(desmoplasia) that includes a heterogeneous mixture of
pancreatic stellate cells (PSCs), immune cells and extracel-
lular matrix (ECM). Our previous study had demonstrated
that PSCs and ECM promote cell proliferation, invasion,
migration and drug resistance of PDAC cell lines, sug-
gesting an application of targeted strategies tailored to the
PDACTME.26–30 In this study, hierarchical clustering anal-
ysis of immune cells in TME revealed all tumour sam-
ples could be clustered into two clusters, which was fur-
ther verified by IHC and multiplex IF staining, highlight-
ing the importance and potential of targeted therapy and
immunotherapy in PDAC.
We further explored potential prognostic factors for

PDAC by integrating the multi-omics data, including
copy number alterations, mRNA expression and methy-
lation status, and analysing their associations with the
prognosis of patients with PDAC. Studies have shown
that CNV burden is a potential prognostic biomarker
for human cancers.31,32 However, the prognostic value of
CNV in PDAC remains unknown. Our results showed
that the patients with liver metastases had significantly
higher average CNVburden than other patients.Moreover,
patients with high average CNV burden had significantly
shorter DFS than those with low average CNV burden.



14 of 21 LIU et al.

These results suggest that the CNV burden is associated
with the prognosis of the patients, serving as a potential
prognostic factor for PDAC.
Murphy et al have demonstrated that ZNF521 is one of

the most frequently mutated genes during PDAC progres-
sion. ZNF521 exhibits chromosomal rearrangement or loss
in 63% PDAC tumours and an overall trend of reduced
expression in PDAC tumours compared with matched
normal ductal epithelial cells.33 Consistently, we found
that ZNF521 was lowly expressed in all the samples from
tumours P8–P19, except P9–T4, suggesting that low expres-
sion of ZNF521 may serve as a biomarker for PDAC.
Although the high expression level of ZNF521 in P9–T4
seems to be unusual, this finding is perhaps not surpris-
ing given the relatively high intra-tumoural heterogene-
ity at the expression level in our PDAC cohort. It indi-
cates the complexity of intra-tumoural heterogeneity and
suggests the necessity of precision/personalised medicine
strategies to improve patients’ outcomes. Similarly, several
previous studies reported highly discordant gene expres-
sion in different areas within individual tumours due to
heterogeneity.34–37
Each gene’s copy number was calculated in this study

based on the mapped bam file of NGS reads for each sam-
ple. Since we had no access to the raw data or bam files
of samples in TCGA, it would take several months to go
through the application process even if the application
was finally granted. Alternatively, we extracted the related
information from published literatures using TCGA data.
Our results showed that KDM6A expression was positively
correlatedwithmethylation.We also noticed that although
KDM6AmRNA expression and methylation exhibited het-
erogeneitieswithin and across individual tumours, the loss
ofKDM6A copy number remained consistent. This finding
suggests that the loss ofKDM6A copy numbermay serve as
a biomarker for PDAC. This conclusion was supported by
the study of Watanabe et al., showing that loss of KDM6A
in tumour tissue is an independent prognostic factor for
recurrence-free survival and OS of patients with PDAC.38
However, we did not observe statistically significant corre-
lation of ZNF521 or KDM6A expression with the prognosis
of PDAC patients from our study or TCGA database, possi-
bly due to the small sample size, race or the heterogeneities
ofZNF521 andKDM6A expression in PDAC. Therefore, the
prognostic value of these genes needs to be further evalu-
ated with a larger sample size.
This study has several limitations. First, it is a retrospec-

tive study that there might be some bias in the selection of
cases and deficiency in some important medical informa-
tion of patients. Second, as a retrospective study, we only
collected specimens and clinical information for molecu-
lar testing and data analysis. No intervention or treatment
change was applied to the participants. Next, in prospec-
tive studies, the treatment regimens may be decided or

optimised on the basis of multi-omics analysis to achive
better outcomes. Third, the patient number of 19 appeared
scarce. In this study, we collected both tumour and the cor-
responding paracancerous tissue samples from 19 PDAC
patients to explore the intra-tumoural and inter-tumoural
heterogeneity of PDAC at three omics (i.e. genomic, tran-
scriptomic and epigenomic) levels as well as evolution-
ary trajectories. To capture the intra-tumoural heterogene-
ity, tumour tissues were sampled at multiple sites from
each sample. In addition, matched normal tissue was col-
lected >2 cm from the visible edge of the tumour and did
not contain any tumour cells by histopathologic review. It
took us 1 year and 4months (fromMarch 2018 to July 2019)
to collect these 19 samples (a total of 80 samples including
61 tumour lesions and 19 matched normal samples) quali-
fied for our analyses, and it is difficult for us to collectmore
during a limited period. Our data were from the multi-
omics analysis of the resected pancreatic cancer tissues
instead of from the existed databases. To our knowledge,
our study is the largest cohort to date utilising privatemuti-
omics data from multi-regional sampling for heterogene-
ity analysis in PDAC. Currently, in studies involvingmulti-
omics (genomic, transcriptomic and epigenomic) analysis
and large pancreatic patient number (e.g. over 100), the
data were from the TCGA and GEO databases.39–41 For
example, Kong et al. used TCGAandGEOdatabases to per-
form genomics, epigenomics and transcriptomics analysis
in 161 pancratic cancer patients to identify molecular sub-
groups and explore novel biomarkers.39 Mishra et al. com-
bined multi-omics data (including gene expression, DNA
methylation and miRNA expression data) and survival
data of 153 PDACpatients from the TCGAdatabase to iden-
tify potential prognostic markers of PDAC.40 Given the
difference in the genetic characteristics, disease subtypes
and status, etc. between the Chinese patient populations
and the analysed patients in the existed databases (TCGA,
GEO), the data from the databases might not accurately
reflect themolecular features of the Chinese PDAC patient
population. Therefore, in this study, instead of review-
ing the existed database data, we collected the tumour
and paracancerous samples from our PDAC cases to sys-
tematically explore the intra-tumoural and inter-tumoural
heterogeneity using multi-omics sequencing approaches.
Further studies with more patients and longer follow-up
period will be carried out to validate this study. Fourth, our
study lacks proteomics and single-cell analyses that may
provide more information about heterogeneity, which will
be addressed in future study.

4 CONCLUSIONS

In conclusion, our multi-omics analysis provides new
insights into the heterogeneity and tumour evolution of
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PDAC at the molecular level. We also identified high aver-
age CNV burden as a potential prognostic factor for PDAC.
These findings may facilitate clinical decision making in
PDAC therapy.

5 MATERIALS ANDMETHODS

5.1 Patients and sample collection

This study was approved by the Ethics Committee of
Peking Union Medical College Hospital (S-K1036). A total
of 19 PDAC patients (P1–19; 44–72 years old) who have
undergone pancreatic resection from March 2018 to July
2019 were recruited in this study, including 9 males and
10 females. All patients provided written informed con-
sents. The clinical characteristics of the patients were sum-
marised in Table 2. The diagnosis of PDAC was confirmed
by two experienced pathologists. The histological grade of
PDAC was classified as well, moderately and poorly differ-
entiated according to the WHO Classification of Tumours
of the Digestive System.42 Well differentiated PDAC are
composed of haphazardly arranged in filtrating duct-like
structures and medium-sized glands. Moderately differen-
tiated PDAC are characterised by abundant glands form-
ing cribriform, papillary, micropapillary and/or gyriform
patterns. Foci of smaller and more irregular glands and
some individual pleomorphic cells are often found at the
tumourmargins. And poorly differentiated PDACare com-
posed of solid or cribriform cell sheets and individual
pleomorphic cells embedded in loosely arranged stroma.
None of the patients have received chemotherapy or radio-
therapy for PDAC. For each patient, the tumour tissue
samples were collected during the surgical resection from
2–4 lesions (L1–4) that were at least 0.5 cm away from
each other. A total of 61 lesion samples were obtained
from 19 patients. The matched normal pancreatic tissue
samples and peripheral blood leukocytes were also col-
lected. Matched normal tissue was collected > 2 cm from
the visible edge of the tumour and did not contain any
tumour cells by histopathologic review. Tissue samples
wereminced on ice and digested as previously described.43
Dissociated cells were washed with phosphate-buffered
saline containing 0.04% bovine serum albumin (Sigma-
Aldrich, St. Louis, MO, USA) before RNA/DNA extraction.

5.2 Next-generation sequencing

The targeted capture pulldown and exon-wide libraries
were generated from native DNA using the xGen R© Exome
research panel (Integrated DNA Technologies, IL, USA)
and the TruePrep DNA library prep lit V2 for Illumina

(Vazyme, Nanjing, China). The paired-end sequence data
were generated using an Illumina NovaSeq 6000 machine
(Illumina, San Diego, CA, USA).

5.3 Single nucleotide variants (SNV)
calling frommulti-regionWES

Pair-end WES reads in FastQ format were aligned to
the GRCh37 human reference genome using Burrows–
Wheeler Aligner (BWA) v.7.17.44 The sequencing qual-
ity was measured by HsMetrics in Picard. Intermedi-
ate sorting and de-duplication of Sam/Bam file was per-
formed using sambamba v0.7.1. Recalibration of noniden-
tical reads were performed using bqsr. SNV and small
INDEL were called by Strelka2 and Manta with default
parameters.45 SNVs called by Strelka2 were further filtered
by the following criteria: (1) sequencing depth ≥20 at vari-
ant sites in both control and tumour samples; (2) ≤5 alter-
native reads support the variant in germline sample; (3)≥5
alternative reads support the variant in tumour sample Fil-
tered variantswere then annotated byAnnovar and further
filtered by the criteria; (4) <1% population frequency in
all of the following database: Exome Aggregation Consor-
tium (ExAC), ESP6500, the Genome Aggregation database
(gnomAD). Resulting vcf files were converted to Maf for-
mat using vcf2maf for further analysis. TMB was defined
as the total number of nonsynonymous somatic mutations
permega-base (Mb) of the genome. Itwas derived from raw
mutation count by dividing 38Mb which is the estimated
exome size.24

5.4 Germline mutation calling

Germline mutation was called using best practices with
the Genome Analysis Toolkit (GATK) HaplotypeCaller
(version 3.6) as previously described (http://gatkforums.
broadinstitute.org/gatk/discussion/1259/which-training-
sets-arguments-should-i-use-for-running-vqsr).46
Germline mutations are defined as alterations found
in both tissue and blood DNA and labelled as germline by
GATK.

5.5 Somatic copy number aberration
analysis

CNV were called from aligned WES data using CNVkit.47
Tumour samples and matched normal pancreatic samples
were analysed using CNVkit ‘batch’ command. Each input
sample was median-centred, followed by read-depth bias
corrections. The scatter and heatmap plots for CNV were

http://gatkforums.broadinstitute.org/gatk/discussion/1259/which-training-sets-arguments-should-i-use-for-running-vqsr
http://gatkforums.broadinstitute.org/gatk/discussion/1259/which-training-sets-arguments-should-i-use-for-running-vqsr
http://gatkforums.broadinstitute.org/gatk/discussion/1259/which-training-sets-arguments-should-i-use-for-running-vqsr
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generated. The GISTIC2.0 was used to identify regions
of the genome that are significantly amplified or deleted
across a set of samples.48 CNV burden was calculated
based on the identified copy number variants as previously
described,49 and then the average CNV burden was esti-
mated for each patient. The wGII was calculated from the
segments results from CNVkit.50

5.6 Driver mutation definition

Driver gene set was built by combining the two driver
gene lists defined by previously studies.51,52 Mutations on
these driver genes were annotated with cosmic89_coding,
oncoKB and other information by annovar. Candidate
driver mutations included (i) nonsense, frame-shift and
splice-site mutations and (ii) missense mutations, either
with FATHMM-MKL score >0.5 in the annotation of
Catalogue of Somatic Mutation in Cancer (COSMIC) or
identified as functional damaging by two or more func-
tional analysis algorithms as follows: SIFT score = 0.0–
0.05, Polyphen2-classified ‘possibly damaging’ or ‘proba-
bly damaging’, MutationAssessor-classified ‘medium’ or
‘high’ or FATHMM-MKL predication score >0.5.

5.7 Clonal evolution analysis

Maf format mutation information was read and visu-
alised using maftools.53 SCNA and CNV information for
each sample was passed to PyClone to infer the sub-
clonal clusters.54 The phylogenic evolution relationship
among the subclones was constructed using revolver55 and
sciClone.56 Trunk and branch variants were defined by
their position in the evolutionary tree. Trunk mutations
were defined as the mutations in the first ancestor clone
of the lesions within individual tumours. The rest of the
mutations were defined as branch mutations. To estimate
the difference between trunk and branch mutations, fil-
tered mutations were divided into trunk and branch cat-
egories. The signature of mutations in the two categories
was extracted and compared with cosmic signatures using
MutationalPatterns.57 To further validate the role of driver
genes in cancer development, driver gene fold enrich-
ment was determined between trunk and branch muta-
tions as previously described.58 Briefly, enrichment odds
ratio of mutated driver gene between trunk and branch
categories52 was calculated by randomly sampling 12 out
of 19 patients for their mutated genes. After 100 times
of downsamplings, we tested the difference of odds ratio
between two groups using Wilcoxon test.

5.8 Timing of mutations and copy
number aberrations

Individual mutations were determined as clonal or sub-
clonal by the cancer cell fraction (CCF) values from
PyClone clustering results as previously described.59 Muta-
tions with CCF values close to 1 were called clonal. Other
mutations were considered subclonal. The clonal muta-
tions were classified as early or late based on the muta-
tion copy number calculated as previously described.60 A
clonal mutation was called ‘clonal early’ if it was early
across all regions or in the majority of regions. A clonal
mutation was called ‘clonal late’ if it was late across all
regions or in the majority of regions. The clonal mutations
that could not be timed were called ‘clonal untimed’.60 For
somatic copy number aberrations, chromosome arm gain
or loss was defined and classified as clonal or subclonal as
previously reported.60 In brief, copy number from facets
results for segments in each sample was divided by the
sample ploidy and log2 transformed. Gain and loss were
defined with cutoff log2 (2.5/2) and log2 (1.5/2). Chromo-
somal arm gain or loss was called when >98% of chromo-
somal arm length show gain or loss in at least one sample
of a patient. Arm gain or loss was classified as clonal when
the same chromosomal arm shows>75% gain or loss across
all the remaining samples from one patient. Otherwise,
the chromosomal arm was defined as subclonal. Clonal
chromosomal arm gain was further timed as early or late
by the mutation copy number of all mutations on a given
arm. Clonal chromosomal arm loss was further timed by
the status of loss of heterozygosity in the chromosomal
region.

5.9 RNA-seq

Total RNA was isolated from tissue samples. mRNA was
obtained from total RNA using oligo (dT) beads. The
enrichedmRNAswere fragmented and used as template to
synthesise the first strand of cDNA. cDNA libraries were
generated using Illumina TruSeq RNA Library Prepara-
tion Kit (Illumina) following the manufacturer’s instruc-
tions. Sequencing was conducted using the Illumina
NovaSeq 6000 system. Sequencing reads were qualified
and trimmed for sequencing adaptors using Trimmomatic.
Preprocessed reads were subsequently aligned to human
genome (UCSC hg19 and corresponding annotation file)
using STAR with default parameters.61 FPKM for each
gene was calculated directly from aligned bam file using
cufflinks software. Reads fell in each gene were counted
by htseq-count.62
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5.10 Identification of differentially
expressed genes

Identification of DEGs was conducted using GFOLD
software.63 DEGs were defined as genes with an absolute
GFOLD value greater than 2. The DEGs shared by all the
lesions within the same tumour were defined as shared
DEGs. Batch effects of FPKM values were removed using
the combat function in R package sva.64 The fold-change
of gene expression in tumour samples compared with the
corresponding control samples was used to visualise the
expression difference of shared DEGs. Samples and genes
were clustered using hierarchical clustering algorithm.
PCA analysis was performed using R package factoextra.
Pathway enrichment of shared DEGs was calculated using
Rpackage clusterProfilerwith top 10 significantly enriched
KEGG pathways (Benjamini adjusted p < .05).65

5.11 DNAmethylation analysis and
construction of phyloepigenetic trees

The DNA methylation profiles of 26 lesion samples, along
with the matched normal tissue samples, from 7 randomly
selected PDAC cases were obtained using MeDIP-seq.
Genomic DNA was isolated from the tissue samples using
a QIAamp kit (Qiagen, Valencia, CA, USA) following the
manufacturer’s protocol. The quality and quantity of DNA
were examined using a Nanodrop device (NanoDrop Tech-
nologies, Wilmington, DE, USA). After shearing the DNA
using a Bioruptor (Diagenode, Liège, Belgium), end repair
was performed using the AMPure XP Beads (Beckman
Coulter, Indianapolis, IN, USA). A 3′ adenine overhang
was added, followed by ligation with Illumina sequenc-
ing adapters and enrichment using PCR, as previously
described.66 After cBot cluster generation, MeDIP-seq was
performed on an Illumina HiSeq 2500 device.
DMRs were identified using MACS2 approach67 and

defined by false-discovery rate (FDR)-adjusted p values
greater than .01. A private DMR referred to the DMR with
the methylation peak only occurring in a single sample
(q value < .01). A shared DMR referred to the DMR with
methylation peaks appearing in multiple samples. Only
private DMRs were used to construct the phyloepigenetic
trees. For each tumour, enrichment fold-based pairwise
Euclidean distanceswere calculated using the complete set
of private DMRs.

5.12 Tumour microenvironment (TME)
analysis

TME was defined as the complicated ecosystem within
bulk tumour tissue comprising ofmulticellular and stroma

component such as immune cells (T and B lymphocytes,
dendritic cells, natural killer cells, tumour-associated
macrophages, neutrophils and myeloid-derived suppres-
sor cells) and cancer-associated fibroblasts. It is the pri-
mary site where tumour cells and the host immune cells
interact and represents an additional source of intra-
tumoural heterogeneity.68 In this study, CIBERSORT was
used to analyse the heterogeneity of the immune microen-
vironment in each tumour sample.15 Absolute immune
cell abundance was calculated using a set of 22 immune
cell reference profiles (LM22) on CIBERSORT website.
It is an annotated gene signature matrix containing 547
marker genes that define 22 human immune cell subtypes
such as T-cell types, B-cell types, plasma cells, natural
killer (NK) cells and myeloid subpopulations.15 Tumour
samples were clustered into two groups by their immune
cell composition usingRpackageConsensusClusterPlus.69
The immune cell fraction in each sample was visualised
with R package pheatmap.

5.13 Immunohistochemical analysis

Tumour tissue samples were subjected to IHC staining
for markers of T follicular helper cells (CD4 and BCL6).
The tumour tissue samples from PDAC patients were fixed
with formalin and embedded in paraffin. Serial sections
were prepared for haematoxylin-eosin (HE) staining and
IHC staining for CD4 and BCL6. And the following anti-
bodies in accordance with the manufacturers’ recommen-
dations: CD4 (PA0427, Leica Biosystems, Buffalo Grove,
USA) and BCL6 (PA0204, Leica Biosystems, Buffalo Grove,
USA). Labelled cells were incubated with horseradish
peroxidase-conjugated secondary antibody (DS9800, Leica
Biosystems, Buffalo Grove, USA), followed by DAB stain-
ing using a DAB kit (Dako, Glostrup, Denmark). The pro-
portion of positive cells in each tumour tissue sample was
evaluated by two experienced pathologists using a semi-
quantitative scoring system. The density of T follicular
helper cells was compared between two clusters according
to RNA-seq data.

5.14 Multiplex immunofluorescence
analysis

Multiplex immunofluorescence (IF) staining for mark-
ers of T follicular helper cells (CD4 and BCL6) and
tumour cells (Pan-keratin) in tumour tissue samples
was performed as described previously.70 The staining
was obtained using PANO 7-plex IHC kit (0004100100,
Panovue, Beijing, China) and tyramide signal amplifi-
cation (TSA) fluorescence kit (10021001050, Panovue,
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Beijing, China). The following primary antibodies were
sequentially applied in accordance with the manu-
facturers’ recommendations: CD4 (ZM-0418, Beijing
Zhongshan Golden Bridge Biotechnology, Beijing, China),
BCL6 (89369, Cell Signaling Technology, Massachusetts,
USA) and Pan-keratin (4545S, Cell Signaling Technology,
Massachusetts, USA), followed by polymer horseradish
peroxidase-conjugated secondary antibody (10013001050,
Panovue, Beijing, China) incubation. The nuclei staining
was incubated by 4′-6′ diamidino-2-phenylindole (DAPI,
D9542, Sigma Aldrich).
The stained slides were scanned by Mantra Sys-

tem (PerkinElmer, Waltham, Massachusetts, USA). And
the quantification of positively stained cells was per-
formed using inform image analysis software (Version 2.4,
PerkinElmer, Waltham, Massachusetts, USA).

5.15 Multi-omics integration analysis

Gene-level multi-omics integration analysis was per-
formed using CNAmet,71 a R package integrating copy
number alteration, gene expression and DNAmethylation
information together. It calculates a genewiseweight score
indicating genes alterations due to changes inDNAmethy-
lation and copy number levels. The correlation of KDM6A
andZNF521mRNAexpressionwith the copy number alter-
ation and methylation was assessed. The correlations of
mRNA expression ofMDM4, RRAGC, HERC2, BIRC3 and
TSC2 with copy number alterations were evaluated.
On the pathway level, ActivePathways16 was also utilised

to identify significantly altered pathways from multiple-
omics data. The input p values matrix was extracted from
significant mutated genes (SMG), differentially expressed
genes and differentially methylated genes. Significantly
mutated genes were calculated by MutSigCV software
on GenePattern Plateform. Differentially expressed genes
between normal and tumour samples were calculated
by DESeq2 R package. Differentially methylated genes
between normal and tumour samples were calculated by
MEDIPS R package. The pathway gmt files were down-
loaded from MsigDB database.

5.16 Statistical analysis

SPSS Statistics for Windows, version 22.0 (IBM Corp.,
Armonk, New York, USA) and ggpubr package72 in R73
were employed to analyse the correlations between clini-
cal and biological variables. Where appropriate, the Fisher
exact test or a non-parametric test was used to compare cat-
egorical data. The differences in variables were compared
using the log-rank test. Spearman’s correlation between

gene expression and copy number was calculated using
R or SPSS and visualised using the karyoploteR pack-
age in R.74 Clinical follow-up evaluation was performed
every 4 weeks, including physical examination, imaging
and routine laboratory tests. Disease-free survival (DFS)
was defined as the time from surgery to locoregional recur-
rence or distant metastasis. Overall survival (OS) defined
as the time from surgery to death from any cause or last
follow-up (censored patient). Patients who were still alive
were censored on the last follow-up date per chart review.
The cut-off date for analysis wasMay 31, 2021. TheDFS and
OS were calculated using the Kaplan–Meier method. A p
value <.05 was considered statistically significant.
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