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’ INTRODUCTION

A number of bioactive compounds of current interest are
discovered by phenotypic screening,1,2 most of which are func-
tional in nature through analyzing the compound-induced effects
in cells, tissues, andmodel organisms. These assays, however, can
hardly provide immediate target information for tested com-
pounds, imposing grand challenges on follow-up target identifi-
cation for drug discovery.3�5 The recent findings that many drugs
act on multiple physiological targets to exert therapeutic effects
and/or side effects have attracted intensive interest in exploring the
promiscuity and polypharmacology of drugs,6,7 in which identify-
ing compound-target associations is a premise.

Experimentally, two major techniques are used for target
identification.3Direct techniques, such as affinity chromatography8,9

and proteinmicroarray,10 detect the binding of a compound to its
target. Their applications are often hampered by the need to label
a compound without affecting its functionality. Indirect tech-
niques infer targets from the compound-induced cellular or physio-
logical patterns through genomics,11,12 proteomics,13 metabolite
profiling,14 and other technologies. However, genome-wide or
proteome-wide data could be very difficult and expensive to
obtain.

Moreover, wet-lab experiments for target identification are
often slow, whereas computational approaches can be efficient

complements.15 For example, molecular modeling studies have
been reported for target prediction by virtually docking a
compound of interest to a list of potential targets with known
three-dimensional (3D) structures.16,17 The primary limitation
of this method is the need for high-resolution 3D structures of
targets as well as accurate docking/scoring algorithms.18,19

Statistical models also have been built for target prediction
employing various machine learning methods including Bayesian
analysis20,21 and Support Vector Machines.22 The common
drawbacks of these models are that the real predictability beyond
training space cannot always be guaranteed. In addition, the
similarity principle,23,24 despite its exceptions,25 has been the
basis for target identification using similarity metrics such as
ligand chemical similarity5,7,26 and drug side effects similarity.4

On the other hand, with the rapid growth of public biological
databases, such as the Protein Data Bank27 (PDB), PubChem,28

ChEMBL (http://www.ebi.ac.uk/chembl), DrugBank,29,30 and
Therapeutic Targets Database31,32 (TTD), abundant bioactivity
data of small molecules and their targets are now available to the
entire research community. It is thus getting critical to develop
in silico methods to identify compound-target associations and
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ABSTRACT: Molecular target identification is of central im-
portance to drug discovery. Here, we developed a computa-
tional approach, named bioactivity profile similarity search
(BASS), for associating targets to small molecules by using
the known target annotations of related compounds from public
databases. To evaluate BASS, a bioactivity profile database was
constructed using 4296 compounds that were commonly tested
in the US National Cancer Institute 60 human tumor cell line
anticancer drug screen (NCI-60). Each compoundwas used as a
query to search against the entire bioactivity profile database,
and reference compounds with similar bioactivity profiles above
a threshold of 0.75 were considered as neighbor compounds of
the query. Potential targets were subsequently linked to the
identified neighbor compounds by using the known targets of
the query compound. About 45% of the predicted compound-
target associations were successfully verified retrospectively, suggesting the possible application of BASS in identifying the targets of
uncharacterized compounds and thus providing insight into the study of promiscuity and polypharmacology. Furthermore, BASS
identified a significant fraction of structurally diverse compounds with similar bioactivities, indicating its feasibility of “scaffold
hopping” in searching novel molecules against the target of interest.
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infer targets for drugs and bioactive compounds by aggregating
and integrating valuable target information from multiple
resources.

End points of bioactivity data obtained from a panel of assays
(i.e., bioactivity profile) may provide distinct insight to the
biological function of compounds and their targets. For example,
the COMPARE algorithm,33 by the Developmental Therapeu-
tics Program (DTP) of the US National Cancer Institute (NCI),
could be used to suggest possible mechanism of action for a
respective compound from related compounds or identify novel
compounds that act by a similar mechanism of interest.34�36 This
tool compares the bioactivity patterns derived from the anti-
cancer drug screening data across 60 human tumor cell lines
(commonly known as the NCI-60 data set). By incorporating
additional gene expression data, target information may be
inferred.34

The NCI-60 data set was also used in our previous work,37

where we observed in a few model systems that the target
networks of small molecules were well-correlated with their
bioactivity profiles. Here, given the rapid growth in available
compound-target annotations in several public databases, we
further investigated whether such correlations could be utilized
to benefit the identification of new targets for drugs and bioactive
compounds on a larger scale. To this end, we first constructed a
database of bioactivity profiles for 4296 compounds tested in the
NCI-60 data set. Second, we used each compound as a query to
search against the entire bioactivity profile database to identify
neighbor compounds with similar bioactivity profiles. Third, we
collected target information from four public databases (DrugBank,
TTD, ChEMBL and PubChem) for both query compounds and
their neighbor compounds to evaluate our approach for predict-
ing compound-target associations. The underlying assumption is
that compounds with similar bioactivity profiles may share
common targets. We were able to verify a remarkable portion
of our predictions retrospectively.

’METHODS

Construction of Bioactivity Profile Database. The NCI-60
data set contains anticancer screening results for more than
40,000 compounds. It is publicly available in the PubChem
BioAssay database38 as 73 bioassays with the name of “NCI
human tumor cell line growth inhibition assay” under the “DTP/NCI”
data source. In this work, only the top 60 bioassays (referred
hereafter as NCI-60) with the largest number of tested com-
pounds were selected (Supporting Information, Table S1).
Relevant bioactivity data were downloaded at the PubChem
FTP site (ftp://ftp.ncbi.nlm.nih.gov/pubchem/Bioassay, ac-
cessed on December 9, 2010). A total of 5083 compounds were
found commonly tested in all of the 60 bioassays. The bioactivity
profile of each compound was derived by extracting the
log(GI50) values obtained from the NCI-60 cell lines, where
GI50 is the concentration required for the 50% growth inhibition
of tumor cells. 631 compounds with missing log(GI50) value in
one or more of the NCI-60 cell lines were discarded. Additionally,
156 compounds were further discarded, because they exhibited
identical bioactivity in all NCI-60 cell lines, which made them
less informative and unsuitable for bioactivity profile similarity
calculation (see below). As a result, 4296 compounds were
collected and used for constructing the bioactivity profile data-
base. The original bioactivity profile data for these compounds
are available in Supporting Information, Table S2. Additional

data set characteristics are summarized in Supporting Informa-
tion, Figure S1 with respect to six physiochemical properties:
molecular weight, octanol�water partition coefficient,23 number
of hydrogen bond donors, number of hydrogen bond acceptors,
number of rotatable bonds, and topological polar surface area.
BioActivity Profile Similarity Search (BASS). The BASS

approach consists of three major steps (Figure 1). For a given
query compound in the NCI-60 data set, we first searched against
the entire bioactivity profile database and calculated pairwise
bioactivity profile similarity for each reference compound in the
data set and the query compound. Second, a neighbor compound
was identified if its bioactivity profile similarity is above a selected
threshold. Finally, the known target of the query compound is
predicted as the potential target of its neighbor compounds or
vice versa. A critical step of BASS is to identify the neighbor
compounds for a given query compound based on the similarity
of bioactivity profiles (Simbio), which is defined as Pearson cor-
relation coefficient (Rp)

Simbio ¼ Rp ¼
∑
N

i¼ 1
ðxi � x̅Þðyi � y̅Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
N

i¼ 1
ðxi � x̅Þ2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

i¼ 1
ðyi � y̅Þ2

s ð1Þ

whereN equals 60, and xi and yi are the log(GI50) values of the i
th

NCI-60 cell line for compoundQ and compound S, respectively.
In this work, S is considered as a neighbor compound of Q when
Simbio is above 0.75. This similarity threshold was chosen based
on a statistical test, which was carried out by randomly selecting
two compounds from the entire bioactivity profile database for
100,000 times and recording each time the bioactivity profile
similarity. A probability (p-value) was subsequently calculated
for obtaining a bioactivity profile similarity above a certain
threshold. For the similarity threshold of 0.75 (p-value = 2.28e-3),
we found a good balance between prediction accuracy and the
number of predictions.
Compilation of Target Information. Target annotations for

all the compounds in the bioactivity profile database were primarily
collected from four public databases: DrugBank, TTD, ChEMBL,
and PubChem. For DrugBank (http://www.drugbank.ca) and
TTD (http://bidd.nus.edu.sg/group/cjttd/TTD_HOME.asp),

Figure 1. Schematic overview of the bioactivity profile similarity search
(BASS) strategy. Target prediction can be bidirectional, that is, the
known targets of a query compound can be predicted as the potential
targets of its neighbor compound, or vice versa.
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compound-target associations were downloaded from original
Web sites (both accessed on December 9, 2010). For ChEMBL,
the mirrored version of ChEMBL_08 in PubChem was used
(http://pubchem.ncbi.nlm.nih.gov, accessed on December 9,
2010), and we considered a compound-target association when a
respective compound exhibited an effective activity concentra-
tione1 μMagainst its directly assigned target. For PubChem, the
bioactivity outcome specifications from original bioassay deposi-
tors were adopted to establish compound-target associations.
Additionally, we also manually collected the target annotations
for a number of compounds from precedent literatures using the
‘Literature KeywordMining Tool’ provided at PubChem. From a
list of MeSH terms (http://www.ncbi.nlm.nih.gov/mesh) re-
turned by this tool, we looked into the most relevant ones to the
compound and/or target of interest and then followed the links
to full-text literature and extracted evidence therein whenever
possible. All protein targets were uniformly stored as UniProtKB
identifiers (http://www.uniprot.org, accessed on February 4,
2011). Other molecular targets, such as DNA and RNA, were
stored as target names. As a result, 237 compounds with known
target annotations in one or more of the above four databases
were identified (Table 1).

’RESULTS

Evaluation of BASS for Target Identification. Using the
above 237 compounds with known target annotations as queries,
BASS predicted a total of 4693 compound-target associations for
neighbor compounds, i.e., the known targets of a respective
query compound were considered as the potential targets of its
neighbor compounds. In this work, if at least one potential target
was also annotated in any of the above four databases, a successful
prediction of the compound-target association was counted. It
should be noted that only a part of such predictions could be
evaluated when both query compound and neighbor compound
had target annotations available. 634 out of the 4693 compound-
target associations turned out to be verifiable. For a systematic
evaluation of the predicted associations, a stringent criterion was
first used by checking the identity of targets of the query
compound and its neighbor compound. As a result, a success
rate of 44.8% (284 successful predictions) was achieved, which
accounted for 103 out of the 237 query compounds. When the
identified targets were proteins and there was no exact match
among that of a respective compound and its neighbor com-
pound, a less stringent criterion of target identity was applied
if protein target sequences were significantly related. In this
work, two protein targets that showed an E-value <1e-12 in the
BLAST39 protein�protein sequence alignment were considered
as biologically related. Under these conditions, the performance
was further improved to 48.6% (308 predictions in total), which
accounted for 108 out of the 237 query compounds. The above
evaluation suggested that BASS, when combined with searching
target information using public databases, may be used to identify
targets for biological neighbor compounds with similar bioactivity

profiles to a query compound. Detailed results are described for
the following examples, with the complete results provided in
Supporting Information, Table S3.
Microtubule as aNewTarget.Microtubules are composed of

R- and β-tubulin heterodimers. They are cytoskeletal elements
involved in many cellular processes, such as mitosis, cytokinesis,
and vesicular transport.40�42 Small molecules that bind to tubulin
can interfere with microtubule dynamics, resulting in microtubule
stabilization or destabilization, which induces cell cycle arrest and
ultimately leads to apoptosis. Out of the 15 newmolecular entities
approved by FDA in 2010, two are targeting microtubule.43

Considering its key roles in mitosis and cell division, microtubule
continues to be a very important chemotherapeutic target of
anticancer drugs.44

According to DrugBank (primary accession number, PAN:
DB01229), Paclitaxel (PubChem Compound identifier, CID:
36314) is an FDA-approved drug to treat various cancers, including
ovarian cancer and breast cancer. It promotes the assembly of
microtubules from tubulin dimers and stabilizes them by pre-
venting depolymerization. In this work, using Paclitaxel as a query
for BASS retrieved seven neighbor compounds (Figure 2A). These
included five closely related analogues of Paclitaxel, showing
an average two-dimensional chemical similarity (Simchem) of
0.924 as characterized by PubChem fingerprint (ftp://ftp.ncbi.
nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.txt)
and Tanimoto score.45 This is consistent with previous observa-
tions that structurally similar compoundmay exhibit comparative
bioactivities.46,47 However, due to limited target annotations
available to us at the time, we were not able to verify tubulin as a
target for these structural analogs.
On the other hand, tubulin was verified as a target for one

neighbor compound Vinblastine (CID: 241902; Simbio = 0.785;
p-value = 1.31e-3) which was structurally unrelated to Paclitaxel
(Simchem = 0.560, Figure 2A). Vinblastine is an approved anti-
cancer drug (PAN: DB00570) which is thought to play a key role
in mitosis inhibition at metaphase via its interaction with tubulin.
The crystal structure of Vinblastine-tubulin complex reveals
that Vinblastine binds at the interface between two tubulin
heterodimers,40 in contrast to Paclitaxel which binds at the taxol
site of β-tubulin.42 Furthermore, using Vinblastine as a query,
BASS identified a number of neighbor compounds that were
common to those of Paclitaxel. Interestingly, this second search
identified two additional neighbor compounds which were
previously reported as tubulin inhibitors (CID: 24933248,49

and 347381;50 Simbio = 0.753 and 0.756; p-value = 2.25e-3 and
2.12e-3; Simchem = 0.984 and 0.526, respectively). In addition,
BASS identified another non-Paclitaxel neighbor compound
NSC355256 (CID: 434718; Simbio = 0.789; p-value =1.14e-3;
Simchem = 0.671) using Paclitaxel as a query (Figure 2A). Due to
limited target annotation available to us, we were unable to
verify tubulin as a target for this compound. However, we
noticed that it shared the chemical scaffold of an approved drug
Colchicine (PAN: DB01394; CID: 6167) with a significant
structural similarity (Simchem = 0.878). As indicated by the
crystal structure of Colchicine-tubulin complex, Colchicine
binds to the β-tubulin subunit of microtubule at the interface
with R-tubulin.41 This example indicated that BASS had the
potential to discover novel inhibitors and explore new starting
points for lead optimization, demonstrating the advantage of
BASS for identifying compounds with various chemical scaf-
folds, which may provide insight to ‘scaffold hopping’ against
the target of interest.51,52

Table 1. Summary of the 237 Compounds with Target
Annotations in Relevant Public Databases

DrugBank TTD ChEMBL PubChem

no. of compounds 28 33 23 215

no. of target annotations 44 50 67 1046
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Dihydrofolate Reductase As a New Target. In the above
example, we demonstrated that the targets of biological neighbor
compounds could be inferred from the known targets of a drug
molecule. It would be more practical and interesting to investi-
gate, from a reverse perspective, whether BASS could be used to
suggest new targets for a drug molecule by gathering known
target information from its neighbor compounds (Figure 1).
Dihydrofolate reductase (DHFR) converts dihydrofolate into
tetrahydrofolate. The latter is a methyl group shuttle required for
the de novo biosynthesis of purines, thymidylates, and certain
amino acids, which are essential for DNA synthesis and cell
multiplication.53

In this example, we used the experimental drugMetoprine (CID:
24466) as a query. According to DrugBank (PAN: DB04655), its
annotated target is Histamine N-methyltransferase (HNMT).54

For its 13 neighbor compounds identified by BASS (Figure 2B),
none was found targeting HNMT according to the available
target annotations. On the other hand, further investigation
indicated that three neighbor compounds, Pyrimethamine
(CID: 4993), NSC302325 (CID: 327404), and Methylbenzo-
prim (CID: 7243855,56) had been previously reported targeting
DHFR. According to DrugBank (PAN: DB00205), Pyrimetha-
mine was an FDA-approved antimalarial drug through a mode of
action by inhibiting DHFR.53 Based on ChEMBL annotation

(PubChem BioAssay identifier, AID: 55830), NSC302325 was a
DHFR inhibitor with an IC50 of 0.85 μM.57 The direct annota-
tion of DHFR as a target of Methylbenzoprim was not available
in any of the above four databases. However, its annotated target
in ChEMBL (AID: 56179 and 56314), bifunctional dihydrofo-
late reductase-thymidylate synthase (DHFR-TS), was found to
be closely related with DHFR (BLAST E-value = 6e-136). The
binding of Methylbenzoprim to DHFR was further supported by
previous NMR experiments55 as well as molecular modeling
studies.56 Using either one of the three compounds Pyrimetha-
mine, NSC302325 andMethylbenzoprim as a query, BASS could
identify Metoprine as a neighbor compound (Simbio = 0.800,
0.845, and 0.829; p-value =9.4e-4, 3.7e-4, and 4.8e-4, respectively).
Moreover, all three compounds were structurally related to the
queryMetoprine (Simchem = 0.950, 0.707, and 0.848, respectively).
Therefore, it is natural to consider DHFR as a potential target of
Metoprine, which was confirmed by further investigation into
the target annotation in TTD (DrugID: DCL000304) and
precedent literatures.58�60

Predicting Polypharmacology. Polypharmacology is receiv-
ing increasing attention in drug discovery for exploring both side
effects and new therapeutic opportunities.61 As a step forward,
BASS can be readily applied for predicting the polypharmacology
of a given compound by collecting known targets from its

Figure 2. Chemical similarity as a function of biological similarity for the neighbor compounds of (A) Paclitaxel and (B) Metoprine retrieved by
bioactivity profile similarity search, respectively. The red-labeled neighbor compounds were those verified to share the common target with Paclitaxel
(microtubule) and Metoprine (dihydrofolate reductase), respectively.
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neighbor compounds. Here, we presented such an example using
the approved drug Amsacrine (CID: 2179) as a query (Figure 3).
A total of 67 neighbor compounds were identified by BASS.
More than a dozen of them were known DNA intercalators or
cross-linkers according to DrugBank annotations and/or pre-
cedent literatures. There were also several neighbor compounds
that were previously reported as inhibitors of topoisomerase,
type II alpha (TOP2A). The two targets of DNA and TOP2A
were also annotated for Amsacrine inDrugBank (PAN:DB00276).
Additionally, Amsacrine together with one neighbor compound
(CID: 2708; PAN: DB00291) were confirmed to interact with
the enzyme glutathione S-transferase A2 (GSTA2). In a quanti-
tative high-throughput screening assay (AID: 886) launched by
the US National Institutes of Health Chemical Genomics Center
(NCGC), both Amsacrine and its neighbor compound (CID:
3246719) demonstrated inhibitory activity against hydroxyacl-
coenzyme A dehydrogenase, type II (HADH2). In another
bioassay (AID: 410) conducted by NCGC, Amsacrine and two
neighbor compounds (CID: 24360 and 148869) were both
found active against cytochrome P450, family 1, subfamily A,
polypeptide 2 (CYP1A2). Therefore, it is straightforward to
depict a polypharmacological graph of Amsacrine by gathering
available target information predicted from its neighbor com-
pounds (Figure 3).

’DISCUSSION

The promising results from the overall evaluation of the
predicted compound-target associations and those shown in
the above examples demonstrated that bioactivity profile simi-
larity search (BASS) may be applied to predict new targets for
drugs and bioactive compounds from the target annotations of
their neighbor compounds that are available in public databases.

Nevertheless, for a larger number of target predictions, we were
not able to verify them due to insufficient target annotations in
public databases or due to difficulty in literature searching. It thus
remains interesting for further (experimental) studies to verify the
targets predicted here, especially for those resulting from signifi-
cant bioactivity profile similarity. For those completely unchar-
acterized bioactive compounds, BASSmay also be helpful to target
identification by suggesting potential targets aggregated from their
biological neighbor compounds. To facilitate the readers of interest,
we included a list of query compounds which yet have no target
annotation in any of the above four public databases or precedent
literatures and their neighbor compounds with known target
annotations (Supporting Information, Table S4).

It should bementioned that the compound-target associations
identified in this work were verified retrospectively by taking
advantage of the target annotations derived from public data-
bases or by literature searching, and we emphasize that this work
could not have been done without the open access to public
databases which now contain vast amount of chemical biology
data. For a number of cases (e.g., microtubule example), the
predictions were strongly convincing as supported by the crystal
structures of ligand-target complexes. Nevertheless, for other
cases, the reported compound-target annotations in relevant
databases or literatures may require further investigation to
better understand the underlying mechanism of binding. For
example, though Paclitaxel and Vinblastine both bind to micro-
tubule, they actually bind at very different sites, which may be
responsible for their different modes of action. To address these
issues, structural biology studies, such as NMR or X-ray diffrac-
tion experiments, would be particularly persuasive. With the
growing availability of public databases containing ligand-target
annotations, such as DrugBank, TTD, ChEMBL, and PubChem,
the accuracy of BASS may be further improved.

Figure 3. Polypharmacology of Amsacrine. Compounds (labeled with PubChem compound identifier, CID) and targets are denoted as ellipses and
rectangles, respectively. The edge linking between indicates that there is a compound-target association. The query compoundAmsacrine (CID: 2179) is
colored with cyan. DNA: DNA; TOP2A: topoisomerase, type II alpha; HADH2: hydroxyacyl-coenzyme A dehydrogenase, type II; GSTA2: glutathione
S-transferase A2; CYP1A2: cytochrome P450, family 1, subfamily A, polypeptide 2.
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Lead optimization based on chemical scaffold has been broadly
embraced by medicinal chemists62 as a central guiding principle
to design ligands with higher potency and/or more desirable
physicochemical properties.63 It will be interesting to look
into the chemical space of the neighbor compounds identified
by BASS (Figure 4 and Supporting Information, Figure S2).
Figure 4A shows the number of neighbor compounds within
certain range of chemical similarity as a function of bioactivity
profile similarity using all query-neighbor pairs in the bioactivity
profile database. As one can see, BASS was able to identify not
only structurally similar neighbor compounds but also a con-
siderable number of structurally dissimilar ones with related
bioactivities. These may provide novel molecules or new starting
points for future ligand design, which would not have been
discovered by conventional medicinal chemistry efforts. There-
fore, BASS has the appealing capability of ‘scaffold hopping’, as
demonstrated in the above microtubule example and the data
shown in Figure 4B as a whole. It thus represents a new strategy
for identifying candidate compounds with diverse chemical

scaffolds that are biologically relevant to the aimed target. It is
worth stressing that the threshold of bioactivity profile similarity
for defining a neighbor compound is user adjustable, though
a conservative threshold of 0.75 was used in this work. In fact,
when a less stringent threshold of 0.70 (p-value = 5.22e-3) or
lower was applied in BASS, we could still verify a number of
predictions.

The idea of using bioactivity profile (pattern or fingerprint) is,
of course, not entirely new. Other similar ideas have been
proposed. Nevertheless, computational approaches making use
of different profiling data may vary, in particular, toward achiev-
ing different research goals. For example, the “ConnectivityMap”
approach developed by Lamb et al.12 employs mRNA expression
profiles to establish connections between small molecules and
with diseases. The “biospectra analysis” approach by Fliri
et al.64,65 aims to group compounds with related inhibitory
bioactivities against a panel of protein targets and correlate to
biological functions. Our specific goal in this work is to associate
compounds with targets based on the similar NCI-60 cell lines

Figure 4. The number of neighbor compounds within certain range of chemical similarity as a function of bioactivity profile similarity for the query-
neighbor pairs of (A) the 2335 query compounds and their neighbor compounds (44,368 in total) and (B) the 284 verified target predictions,
respectively. The five columns (from left to right) in each bin of bioactivity profile similarity correspond to the chemical similarity range of [0.0�0.2),
[0.2�0.4), [0.4�0.6), [0.6�0.8), and [0.8�1.0], respectively.
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bioactivity profiles of small-molecule compounds and their target
annotations in public databases. We anticipate that BASS may be
of benefit to the target identification for anticancer drug dis-
covery. Analysis using BASS could generate hypothesis to under-
stand both the mode of action and mechanism of binding for
bioactive compounds by suggesting new targets from well-
characterized neighbor compounds. Our work could contribute
to the target prediction and the state-of-art drug repositioning.
The free-of-charge screening service provided by the DTP/NCI
would make BASS more appealing. By submitting their own
compounds of interest, researchers could obtain high-quality and
confidential bioactivity profiles, which in turn can be used as
inputs for BASS to identify potential targets by consulting the
known targets of compounds in the bioactivity profile database.
Nevertheless, before additional experiments are done, it should
be mentioned that BASS may only be applicable for identifying
the targets of the compounds which can cause cellular responses
in the NCI-60 cell lines.

’CONCLUSIONS

We have presented a computational approach, BASS, for
mutually identifying compound-target associations by compar-
ing the bioactivity profiles that are derived from the NCI-60 cell
lines. When two compounds share similar bioactivity profiles, the
targets of either compound may be considered as the potential
targets for the other compound. To evaluate BASS, each
compound in the bioactivity profile database was used as a query
to search against the entire database for neighbor compounds
that may share common targets. An overall success rate of 44.8%
was achieved for the predicted compound-target associations by
using the prior knowledge of target annotations from public
databases, and it was further improved to nearly 50% when
considering related protein targets. Analysis shows that BASS not
only could identify structurally similar bioactive compounds that
are biological relevant to the target of interest but also had the
power of suggesting novel chemical scaffolds for the aimed target.
Moreover, BASS may represent an efficient strategy for integrat-
ing experimental data and target information newly emerged for
any of the neighbor compounds. Therefore, BASS may be
applied to suggest new targets for old drugs and provide insight
into anticancer drug discovery, facilitating the study of the
toxicity, promiscuity, and polypharmacology of drugs and bioac-
tive compounds.
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