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Abstract: The traditional infectious disease detection process is cumbersome, and there is only a
single application scenario. In recent years, with the development of the medical industry and the
impact of the epidemic situation, the number of infectious disease detection instruments based on
nursing point detection has been increasing. Due to this trend, many detection instruments and
massive detection data urgently need to be managed. In addition, the experiment failed due to
the abnormal fluorescence curve generated by a human operator or sample impurities. Finally, the
geographic information system has also played an active role in spreading and preventing infectious
diseases; this paper designs a “detection-service-mobile” three-terminal system to realize the control
of diagnostic instruments and the comprehensive management of data. Machine learning is used to
classify the enlarged curve and calculate the cycle threshold of the positive curve; combined with
a geographic information system, the detection results are marked on the mobile terminal map to
realize the visual display of the positive results of nucleic acid amplification detection and the early
warning of infectious diseases. In the research, applying this system to portable field pathogen
detection is feasible and practical.

Keywords: point-of-care testing; three-terminal software; geographic information system; infectious
disease warning; machine learning

1. Introduction

Common strategies for clinical diagnosis of infectious diseases depend on: (1) cul-
ture, identification, or observation of pathogens [1–4]; (2) detection of specific antigens
and antibodies of pathogens [5–7]; (3) enzyme-linked immunosorbent assay (ELISA) [8];
(4) systematic evolution of ligands by exponential enrichment (SELEX) [9–11]; (5) nucleic
acid testing (NAT) [12–15]. These approaches often rely on specialized medical facilities
and the testing process is cumbersome, requiring professionals to operate special testing
instruments to complete the relevant testing. Point-of-care testing (POCT) refers to clinical
and bedside tests conducted near patients, which usually do not need to be undertaken by
clinical doctors. Instruments based on POCT [16–19] overcome the limitations of dedicated
laboratories, and can meet the needs for timely and local testing in hospital emergencies,
epidemic sites, port quarantine, and other scenarios in regards to grassroots health institu-
tions. With the development of POCT, the number of in vitro diagnostic instruments and
testing data has also increased [20–22]. However, the data management mode of traditional
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in vitro diagnostic instruments has not entirely separated from the manual state, affecting
the staff’s work efficiency. It is urgent to develop a data management platform based on
infectious disease detection to provide laboratory personnel with an intelligent, paperless,
standardized working environment. In addition, abnormal curves can be generated due to
human operation, hardware interference, or sample impurities, resulting in experimental
failure. Traditional manual review of nucleic acid amplification curves is time-consuming
and laborious. It is only suitable for small batch inspection, cannot process massive data,
and is affected by human judgment [23]. Therefore, there is an urgent need for application
software that can automatically interpret the cause classification of abnormal results for
users. Machine learning can solve classification problems, and many researchers have
used it to classify physiological signals [24–26]. Finally, geoinformation technology has
played an active role in transmitting and preventing infectious diseases, providing a basis
for epidemic prevention, control, and management [27–29].

This paper expounds and summarizes some existing relevant and excellent network
platforms. The LinRegPCR application [30] for the web developed by Andreas Untergasse
enables the running of quantitative real-time polymerase chain reaction (qPCR) experiments
and visual analysis of data, showing the results of amplification curve analysis and melting
curve analysis in tables and graphs. In the early stage, our research group [31] developed
a software control system suitable for on-site pathogen detection equipment. Based on
small nucleic acid detection equipment, this system studied a software system that could
realize on-site automatic detection and data cloud storage. The system collects the data
of the qPCR instrument through the computer, performs preprocessing, fitting, abnormal
analysis, cycle threshold (Ct) value solution, and other operations on the data, and can
upload the data for online analysis through the web end.

The network platform of the infectious disease detection instrument constructed by
the above work only includes the detection and service end. The data of the detection
instrument requires the user to manually input the website on the browser for viewing,
which is not convenient enough. Previous work has not classified the abnormal fluo-
rescence amplification curve, or the analysis is not comprehensive enough. There is no
exploration of the early warning of infectious diseases by using the geographical location
information of detection instruments. Given this situation, this paper develops a detection-
service-mobile three-terminal software program for a portable on-site pathogen detection
system independently researched by our research group. The detection and the mobile
terminals are based on the Android system and are integrated with the Baidu map software
development kit (SDK), and the service end uses the Django framework. This paper has
achieved the following:

1. The automatic process control of “sample in, result out” can classify the fluorescence
amplification curve to realize abnormal curve recognition, calculate the Ct value of
the positive curve, and generate the detection report.

2. We solved the problem of real-time collection, sharing, management, and analysis of
the data generated by the system.

3. With mobile internet, database and geographic information system (GIS) technology
provides users with an infectious disease distribution map display, early warning,
and other functions.

In the remaining part of this paper, we first briefly introduce the overall architecture
and workflow of the three-terminal system built in this paper. Then, the flow of fluorescence
curve analysis algorithm is introduced in detail. The basis of selecting the classifier, the
process of training the classifier, and the method of solving the Ct value are described,
respectively. The next part presents the user interface of the detection and mobile software,
the evaluation results of the classifier, and the experimental results when comparing the
proposed Ct algorithm with commercial instruments. Finally, the full text is summarized.
In addition, limitations and areas for improvement are described.
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2. Materials and Methods
2.1. Architecture and Workflow of the System

This paper proposes the three-terminal software architecture, which is the detection-
service-mobile. The overall architecture of the three-terminal software is shown in Figure 1.
The functions of each part are described below.
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Figure 1. The overall architecture of the three-terminal software. The detection terminal can be used
in different scenarios, and the data can be synchronized to the server so that the mobile terminal
can view the data and address the location of the instrument anytime and anywhere and display
this visually.

The detection software is based on the Android system, and a touch screen embedded
in the instrument is used as the carrier, which realizes the integration of the instrument
and control software, solves the pain point of space limitation of large-scale medical equip-
ment, and causes the application scenarios of in vitro diagnosis to develop in a diversified
direction. Rapid detection can be conducted in hospitals, communities, outdoors, and in
families. It is developed on Android Studio by Java. Model–View–Control (MVC) [32]
software design model separates business logic, data, and interface display. The principle
of “high cohesion, low coupling” is divided into modular design and implementation.
On the one hand, the detection terminal sends instructions to control the operation of the
lower machine through the controller area network (CAN) protocol to realize the automatic
operation of nucleic acid extraction, qPCR reaction, and fluorescence detection. On the
other hand, the detection end integrates the Baidu map SDK to realize the geographic
information positioning of the instrument. At the same time, when the network is available,
the testing end collaborates with the server to complete user login, synchronous update,
data upload, and other operations during the instrument use.

The server uses the Django framework and MySQL database to manage detection
instruments and detection data. At the same time, the server is deployed to the cloud to
realize the “cloud storage” of all kinds of data and facilitate the mobile terminal to access
data anytime and anywhere.

The mobile terminal is based on Android and uses the mobile phone as the carrier to
access server data through the hypertext transfer protocol (HTTP). The mobile terminal
also integrates the Baidu map SDK, which can mark positive results on the map. It breaks
down the number of positive results detected by each instrument into four risk levels and
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visualizes them using different colors on a map. Users can use the system to accurately
and quickly access the epidemic information on infectious diseases and can play a role in
monitoring infectious diseases.

The workflow when users use this software to realize the automatic control of the
experiment is illustrated in Figure 2. When the detection end is running, it will perform
a self-test command and shake hands with the lower machine. After the handshake is
successful, it will jump to the main page of the detection end for user login. When there is
a network, the server will obtain the user’s basic information and geographical location
and store the data in the user’s spatial information database. After successful login, the
user can delete, modify, and view the template routinely. The template data are stored in
an extensible markup language (XML) format, and the file can be uploaded to the detection
template database on the server. The user can choose to use the self-edited template or
the default template, select cassettes and channels to experiment with, and finally click
the run button to start the experiment. The animation is used to indicate the progress of
experiments, such as nucleic acid extraction, qPCR amplification, and dynamic generation
of fluorescence amplification curves. After the experiment is completed, the detection end
will immediately analyze the fluorescence data and generate the experimental report in the
hypertext markup language (HTML) format. The report includes current CT, experimental
results, and fluorescence amplification curves. Accordingly, the server will also obtain and
store the experimental report in the experimental report database. Accordingly, the server
will also obtain a synchronous experiment template and report stored in the database,
along with the user’s location and the experimental results to generate a new data table.
When the mobile terminal accesses the server, the server will be accessed according to the
geographical location of the spatial database of the user; the positive cases are marked on
the map at the location of the information.
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Figure 2. Workflow of three-terminal software. Describes the workflow when the user uses the
software to realize the automatic control of the experiment. First, the detection terminal obtains data
by controlling the automatic experiment of the lower computer and then synchronizes the data to the
server. Finally, the mobile terminal accesses the database and displays the results on the map.

2.2. Fluorescence Data Analysis

Fluorescence amplification detection refers to adding fluorophores to the nucleic acid
amplification reaction system and the real-time monitoring of the whole amplification
process by accumulating fluorescence signals. The flow chart of fluorescence curve analysis
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is shown in Figure 3. After receiving the data sent by the detection end, the server first
normalizes the data and then inputs the data into the classifier for curve classification,
which is mainly divided into three categories: positive, negative, and abnormal. For the
positive curve, one must solve the Ct value. For the abnormal curve, one must find the
corresponding reason according to the preset abnormal curve type. Finally, the curve
analysis results are integrated into an array and returned to the detection end.
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Figure 3. Flow chart of fluorescence curve analysis. It is divided into four parts: send data, curve
classification, Ct value calculation, and receive data.

Figure 4 illustrates the steps of classifier selection and training, including data set
creation, preprocessing and feature extraction, and classifier selection including Supporting
Vector Classifier (SVC), Logistic Regression Classifier (LRC), k-Nearest Neighbors (kNN),
Decision Tree Classifier (DTC), and Linear Discriminant Analysis (LDA), along with per-
formance evaluation. In this study, the Scikit-Learn tool kit in Python is used to achieve
multiple classifications of curves.
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and normalization, classifier selection, and performance evaluation.

2.2.1. Data Collection

Because machine learning needs to use a large number of data sets for training, and the
acquisition of fluorescence data is not easy, this paper simulates six types of data in Figure 5
based on the actual data obtained by the nucleic acid detection instrument developed by
our research group. Spreadsheet S1 contains simulated PCR amplification curve data used
as a dataset for machine learning training classifiers. The causes of the curve anomalies
are explained in Table 1. Each sample is a 1 * 41 vector, including 1 label and 40 features.
Each type has 100 samples, a total of 600 pieces of data. Figure 6 is the principal component
analysis diagram after reducing the 40 features to 2 dimensions. It can be seen that all
six types have good discrimination.

Table 1. Abnormal causes corresponding to six kinds of curves.

Type Curve Type Operation Abnormal Cause [23]

class_A Figure 5a positive Ct value calculation ——
class_B Figure 5b

class_C Figure 5c negative —— ——

class_D Figure 5d

abnormal warning abnormal cause

suspected cross-contamination of the template or low
sample concentration

class_E Figure 5e severe evaporation of samples or probe degradation

class_F Figure 5f slight sample evaporation

2.2.2. Feature Selection and Normalization

The characteristic value of the sample is the fluorescence value obtained at the end of
each qPCR cycle. Before the samples are input into the classifier, we need to normalize the
data to solve the comparability between the data indicators. After data standardization,
all indexes of original data are in the same order of magnitude, which is suitable for
comprehensive comparative evaluation.
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Figure 5. Six types of curves are input to the classifier. Different curve types are distinguished by the
color of dot. Positive curve, negative curve and abnormal curve use red dot, blue dot and purple
dot respectively (a) The curve was s-shaped, with an obvious exponential phase and plateau phase.
(b) The rising rate was slow at the peak stage of the amplification phase and fast at the later stage
of the amplification phase. (c) Straight line parallel to the X axis. (d) Jump at the end of the curve.
(e) The curve showed a trend of rising first and then declining. (f) Upward drift line or approximate
upward drift line.
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2.2.3. Selection of Classifiers

The classifier is trained by dividing the training set and the test set into 7:3. We also
use the gridsearchcv function in sklearn to cross-validate the grid search and choose a
5-fold cross-validation scheme to calculate the evaluation score. This method can traverse
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all possibilities and determine the best hyper-parameters of all the above machine learning
algorithms in a short time.

2.2.4. Performance Evaluation

The confusion matrix is a standard performance evaluation index in multi-classification
problems, through which we can intuitively see the specific results of the accurate and
inaccurate model prediction. The elements on the main diagonal of the confusion matrix cor-
respond to the correct classification, while other elements tell us how many samples in one
category are incorrectly classified into other categories. The confusion matrix shows which
part of the classification model will be confused when making predictions. This decompo-
sition of the results overcomes the limitations of using only the classification accuracy.

2.2.5. Positive Curve Fitting and Ct Value Solution

For the positive curve, we use the Gauss–Newton iterative method to fit the original
data to the 5-parameter logistic model to obtain the specific functional form. Then, we
solve the Ct value, that is, the abscissa of the maximum value of the second derivative of
the fitting curve. The advantage of this method is that it automatically calculates the Ct
value through the algorithm to avoid introducing errors into the subjective selection data.

2.2.6. Algorithm Verification Experiment

In order to verify the accuracy of the algorithm for solving the Ct value in this paper,
the algorithm verification experiment was carried out. The Ct value obtained by the
algorithm in this paper is compared with the result obtained by the commercial qPCR
instrument. The specific steps are as follows:

1. The qPCR experiment was performed in StepOnePlusTM Real-Time PCR Systems
of Applied Biosystems. The instrument application software is StepOneTM software
(version 2.3). The virus used is hepatitis B virus (HBV) nucleic acid assay kit (Z-HD-
2002-02, Shanghai Zhijiang Biotechnology Co., Ltd.) with standard serum samples
from the kit with HBV concentration of 5 × 103 IU/mL~5 × 108 IU/mL.

2. After the experiment, we exported the original data of the StepOneTM software. The
raw data is shown in Spreadsheets S2.

3. We used the instrument’s original fluorescence data and this paper’s algorithm pro-
gram to calculate the Ct value.

4. We sorted out the results and performed a comparative analysis.

3. Results
3.1. User Interface
3.1.1. The User Interface of the Detection Software

After using the prototype design platform to design the interface and specific functions,
we then used Java to design the software and used Photoshop to make materials needed by
the software. The user interface of the detection software is shown in Figure 7, which was
achieved: Figure 7a is the main page. There are six modules on the main page: running,
new template, existing template, report, and log in. The main page is the function selection
entrance of the full software. Figure 7b,c show the new template page, where the parameters
of the experiment template are configured. Figure 7b illustrates the configuration page
of nucleic acid extraction parameters, mainly configuring the time and temperature of
nucleic acid lysis and elution. The qPCR parameter configuration page in the new template
mainly configures the time and temperature of each qPCR step (such as hot start, pre-
denaturation, denaturation, etc.); the number of qPCR cycles or some steps are added or
not added according to the specific experiment, as shown in Figure 7c. In addition, some
fixed parameters on the settings page will not be covered here. Figure 7d shows the page
for selecting card boxes and channels before the experiment. There are altogether four
card boxes, and each card box has two channels to choose from. All channels use the same
template for the experiment at the same time. Figure 7e shows the page on nucleic acid
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extraction. There are six steps in nucleic acid extraction by magnetic beads, including
cracking, washing A, washing B, alcohol removal, and elution. Each step has three states,
done, unfinished, and running, and uses the graphics interchange format (GIF) to indicate
the run phase. Figure 7f is the page for qPCR, showing the current number of qPCR cycles
and the current stage.
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3.1.2. The User Interface of the Mobile Software

The user interface of the mobile software is shown in Figure 8. Figure 8a is the home
page of the mobile terminal software, on which there are four major modules, namely, map,
template, report, and setting. Map visualization and early warning of infectious diseases
are mainly related to the map module. Figure 8b, c visualize the map. The position of the
instrument using the detection software will be marked on the map, and the color of the
mark is related to the total number of positive results detected by the instrument. One
must click the annotation to view the instrument and apparatus positioning information
and the distance between the user locations.

3.2. The Result of Fluorescence Amplification Curve Analysis
3.2.1. Classifier Selection and Performance Evaluation

We used precision, recall, accuracy, and f1 indicators to select classifiers. Table 2 shows
that all five algorithms have good results. The highest score among the four parameters is
SVC. It has two outstanding advantages compared to other statistical prediction models or
learning algorithms: (1) it has a well-researched core technology that can deal with linear
inseparable problems. (2) Combined with optimization theory, statistics, and function anal-
ysis, it has high computational efficiency and strong prediction ability and has advantages
in solving minor sample problems. Later, we determined SVC as the final classification
model. The optimized parameters are C = 0.5, kernel = RBF, and Gamma = 1.
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Table 2. Comparison of five classifiers on the accuracy, recall, precision and f1 scores.

Classifier Precision Recall Accuracy F1

SVC 0.99 0.99 0.99 0.99
LRC 0.97 0.97 0.96 0.96
kNN 0.99 0.99 0.98 0.98
DTC 0.96 0.95 0.96 0.96
LDA 0.93 0.92 0.92 0.92

The heat map form of the confusion matrix of SVC is shown in Figure 9. The sum
of each row represents the true number of samples in that category, and the sum of each
column represents the number of samples predicted to be in that category. We can see
that most of the non-zero values are on the diagonal, which means that the classification
is correct. The 3 in the second column of the first row indicates that the three instances
that belong to the first category are incorrectly predicted as the second category, which
indicates that there is still room for improvement in the classifier’s ability to distinguish
class_A from class_B.
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Machine learning technology is an application of artificial intelligence used in different
areas of human research. We used the SVC for nucleic acid detection to classify fluorescence
amplification curves. Many researchers have used different methods to classify fluorescence
amplification curves. Compared with previous studies, our analysis saves human resources
for discrimination, classifies curves in more detail, and achieves maximum accuracy. The
comparison results are given in Table 3.

Table 3. Comparison of the accuracy of curve classification between the previous research and this article.

Reference Year Sample Method Accuracy

Chen [23] 2019 fluorescence amplification curve manual 0.99
Liao [31] 2019 fluorescence amplification curve machine learning 0.94

this paper 2022 fluorescence amplification curve machine learning 0.99

3.2.2. The Solution Results of the Ct Values

The Ct values obtained using the algorithm proposed in this paper and the commercial
instrument are shown in Table 4 (two decimal places are reserved). We show the original
data of samples A, B, and C in Figure 10. The amplification area of the curve is enlarged
to compare the Ct values of the two methods. We used the Pearsonr module in Python
to show that there are no significant differences between the two methods. The Pearsonr
correlation coefficient of the two data groups in Table 4 is 0.99, and the significance value is
0.0009. That is to say, the two methods have a strong correlation and can replace each other,
which verifies that the self-developed algorithm is effective.

Biosensors 2022, 12, x FOR PEER REVIEW 13 of 15 
 

 

Figure 10. Curve fitting diagram of original data. The original data and fitted curves of HBV samples 

at three different concentrations are displayed in a graph, and the amplification area is enlarged. In 

the figure, the positions of inflection points calculated by StepOnePlusTM and the self-developed 

algorithm are marked, respectively. The abscissa of the inflection point is the Ct value. The specific 

values are shown in Table 4. 

4. Discussion 

Based on the research in this paper, the following aspects will be further optimized 

and improved in the subsequent platform software research and development of the pro-

ject, combined with the actual application feedback of on-site pathogen detection. First, 

the qPCR amplification curve data collected by the detection terminal are stored in the 

database, not in accordance with the international standard storage, which is not condu-

cive to the sharing and exchange of experimental data. The storage format will be modi-

fied by referring to minimum information for later publication of quantitative real-time 

qPCR experiments (MIQE) [33]. Secondly, SVC was used to classify qPCR data with dif-

ferent morphologies and implement the cause of abnormal inference. However, this pro-

cess has many limitations. Data are trained classifier simulation data; the lack of actual 

experimental data and the abnormal discriminant cannot be realistic, and the abnormal 

curve classification also needs to develop in the experiment. In addition, since the classi-

fication model is deployed on the server, the entire curve analysis process is constrained 

by the network. Finally, for the early warning of infectious diseases on mobile terminals, 

the current work serves only to combine the geographical location of the instrument with 

Figure 10. Curve fitting diagram of original data. The original data and fitted curves of HBV samples
at three different concentrations are displayed in a graph, and the amplification area is enlarged. In
the figure, the positions of inflection points calculated by StepOnePlusTM and the self-developed
algorithm are marked, respectively. The abscissa of the inflection point is the Ct value. The specific
values are shown in Table 4.
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Table 4. The Ct values calculated by StepOnePlusTM and the self-developed algorithm in this paper.

Method Sample A Sample B Sample C Sample D Sample E Sample F Sample G Sample H

StepOnePlusTM 35.99 30.12 25.07 34.97 32.41 35.21 34.59 35.92
algorithm 35.70 29.71 24.52 34.53 31.61 34.50 33.96 35.25

4. Discussion

Based on the research in this paper, the following aspects will be further optimized
and improved in the subsequent platform software research and development of the
project, combined with the actual application feedback of on-site pathogen detection. First,
the qPCR amplification curve data collected by the detection terminal are stored in the
database, not in accordance with the international standard storage, which is not conducive
to the sharing and exchange of experimental data. The storage format will be modified
by referring to minimum information for later publication of quantitative real-time qPCR
experiments (MIQE) [33]. Secondly, SVC was used to classify qPCR data with different
morphologies and implement the cause of abnormal inference. However, this process has
many limitations. Data are trained classifier simulation data; the lack of actual experimental
data and the abnormal discriminant cannot be realistic, and the abnormal curve classifica-
tion also needs to develop in the experiment. In addition, since the classification model
is deployed on the server, the entire curve analysis process is constrained by the network.
Finally, for the early warning of infectious diseases on mobile terminals, the current work
serves only to combine the geographical location of the instrument with the database to
display the statistical results of multiple dimensions visually; the relationship between
geographical location and epidemic spread will be explored in the future.

5. Conclusions

This paper designs and implements a portable three-terminal system for field pathogen
detection for practical problems and completes the whole software development process,
including software requirements analysis, framework design, code implementation, soft-
ware testing, and verification. We completed the integrated nucleic acid detector’s software
system design and the data storage, management, display, analysis, and report generation
functions. We improved the integration, automation, intelligence, and simplicity of opera-
tion of the instrument. According to the qPCR curve analysis of the instrument, the machine
learning method is used to classify the qPCR data with different shapes, and the Ct value
of the positive curve is calculated. In addition, the detection results are combined with the
geographic information system to form a spatiotemporal database of an epidemic situation
with spatiotemporal information characteristics, and the positive results are marked on
the map, which provides strong support for the visual display of the positive results of
nucleic acid amplification detection and the timely early warning of infectious diseases.
The experiment proves that the system is feasible and practical when used in a portable
field pathogen detection system.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bios12090684/s1, Spreadsheet S1: Simulated PCR amplification
curve data used as a dataset for machine learning training classifiers; Spreadsheet S2: The raw data
exported from StepOneTM software.
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