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Abstract: Hepatic stellate cells (HSCs) play a vital role in liver fibrosis, and a greater understanding
of their regulation is required. Recent studies have focused on relationships between extracellular
matrix (ECM) stiffness and gene expression or cellular metabolism, but none have provided a
detailed metabolic analysis of HSC changes in spheroid cultures. Accordingly, in the present study,
we created an HSC spheroid culture and analyzed changes in gene expression and metabolism.
Expression of α-smooth muscle actin (α-SMA) decreased in the spheroids, suppressing proliferation.
Gene expression analysis revealed the cell cycle, sirtuin signaling, mitochondrial dysfunction, and the
Hippo pathway to be canonical pathways, believed to result from decreased proliferative ability or
mitochondrial suppression. In the Hippo pathway, nuclear translocation of the yes-associated protein
(YAP) was decreased in the spheroid, which was associated with the stiffness of the ECM. Metabolome
analysis showed glucose metabolism changes in the spheroid, including glutathione pathway
upregulation and increased lipid synthesis. Addition of the glycolytic product phosphoenolpyruvate
(PEP) led to increased spheroid size, with increased expression of proteins such as α-SMA and
S6 ribosomal protein (RPS6) phosphorylation, which was attributed to decreased suppression of
translation. The results of our study contribute to the understanding of metabolic changes in HSCs
and the progression of hepatic fibrosis.
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1. Introduction

Among liver cells, hepatic stellate cells (HSCs) are intralobular connective tissue cells that express
surface structures of myofibroblasts or lipocytes, playing roles in homeostasis of the liver’s extracellular
matrix (ECM), repair, regeneration, retinol metabolism, storage, and excretion [1]. Following liver
damage, HSCs transform into myofibroblasts and become the main source of collagen, which is
necessary for liver fibrosis, thereby contributing to intrahepatic portal hypertension [2]. Proliferation
and migration of HSCs, as well as chemokine expression, play a role in the pathogenesis of hepatic
inflammation and fibrosis; an improved understanding of the regulation of HSC activation may lead to
a decreased burden of chronic liver damage and decreased mortality rate.
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Recent studies have focused on the relationship between the extracellular environment and
metabolism, finding that mechanical signals promote oncogenesis and change cellular metabolism,
and that in epithelial cells [3], placement in a stiff matrix upregulates the key glycolytic protein
phosphofructokinase, thereby increasing glycolysis [4]. It is reported that the Hippo pathway and
its effector yes-associated protein (YAP) are important for stellate cell activation [5]. Further, it is
known that the activity level of yes-associated protein/transcriptional coactivator with PSD95, DLG1,
ZO-1 (PDZ)-binding motif (YAP/TAZ) differs according to the stiffness of the ECM, and to the cellular
morphology, and that stiffness of the ECM can cause YAP/TAZ to translocate to the nucleus and
cause changes in the expression of various genes [6]. Cysteine-rich angiogenic inducer 61 (Cyr61)
is a target gene product of the Hippo-YAP/TAZ transcription pathway, and Cyr61 is a member of
CCN (Cysteine-rich 61(Cyr61), connective tissue growth factor (CTGF), nephroblastoma overexpressed
(NOV)) family that contains 6 highly homologous extracellular matrix (ECM) proteins involved in cell
adhesion signaling [7].

The spheroid, which is a configuration of 3D cell culture that exploits intercellular adhesion, yields
results closer to those in vivo compared to monolayer cell culture, and has potential application in
drug screening and evaluation of liver function [8]. Numerous methods exist to generate spheroid cell
cultures, including the nonadhesive surface, hanging drop, spinner flask, rotary, and centrifugation
pellet methods. Several studies have reported the use of spheroids to study hepatic cells, including
cultures of hepatocytes only, as well as coculture studies with HSCs and Kupffer cells. One study
reported the creation of a 3D hepatocyte/HSC coculture spheroid using low-adhesion poly-DL-lactide [9].
Another study reported that the coculture system suitably mimicked the in vivo environment, showing
utility for the prediction of in vivo hepatotoxicity [10]. Furthermore, organoids derived from the
coculture of hepatocytes and HSCs have facilitated the evaluation of liver fibrosis [11], and spheroids
created from cocultures of induced pluripotent stem cell-derived HSCs and hepatocytes have similarly
been useful for studying liver fibrosis [12]. However, while there are reports of cocultures with
hepatocytes, only a few studies have examined changes specifically in HSCs in spheroid cultures.
It has been demonstrated that mRNA expression of α-smooth muscle actin (α-SMA), connective tissue
growth factor (CTGF), and ankyrin repeat domain 1 (ANKRD1) decreases [5], but no other detailed
analyses have been reported. Furthermore, the study of metabolic changes in spheroid cultures has
been limited to those such as glycolytic shifts in spheroid-cultured cancer cells [13], with no reports of
detailed studies in HSCs.

In this study, we developed a novel method to create HSC spheroids that is based on monolayer
cell culture with the non-adhesive surface method [14], and analyzed gene expression and the
metabolome, thereby evaluating changes in protein synthesis and metabolism. We believe that our
findings contribute toward understanding the relationship between the extracellular environment
and metabolism in HSCs, evaluation of drugs related to hepatic fibrosis, and efficient production of
hepatic organoids.

2. Results

2.1. α-SMA Expression Decreases in Spheroid Culture

After placement in suspension culture system using a nonadhesive poly-hema-coated dish,
floating HSCs began to aggregate gradually, leading to the formation of a spheroid (Figure 1A,B). Cell
proliferation was inhibited in spheroid culture (Figure 1C). Protein was extracted from cells on Day 3
of the suspension culture, and Western blot analysis revealed a decrease in expression of the activated
HSC marker α-SMA (Figure 1D). To evaluate changes over time, Western blot analysis was performed,
and we found that α-SMA expression continued to decline with time (Figure 1E).
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Figure 1. HSC composition over time in monolayer and spheroid cultures: (A) changes over time in 
HSCs in monolayer culture, 200 μm scale. (B) Changes over time in HSCs in spheroid culture. Upper 
panel: low power, 200 μm scale. Lower panel: high power, 100 μm scale. (C) Comparison of cell 
number on Day 0 and Day 7. (D) α-SMA expression in monolayer and spheroid cultures, Day 3. (E) 
Changes in α-SMA expression over time in the spheroid culture. 

2.2. Gene Expression Analysis Results Demonstrate Changes in Metabolism 

We chose Day 1 for RNA analysis to evaluate the early change of mRNA expression, because 
the protein expression of alpha-SMA decreased from Day1 (Figure 1E). Monolayer cells on Day 1 
and spheroid cells on Day 1 were analyzed for gene expression using serial analysis of gene 
expression (SAGE), followed by ingenuity pathway analysis (IPA). Enriched canonical pathways 
included cell cycle pathways, the sirtuin pathway, eukaryotic translation initiation factor 2 (EIF2) 
signaling, mitochondrial dysfunction, epithelial adherence junction signaling, and Hippo signaling 
(Figure 2A). Genes with major changes in expression are shown in Figure 2B, and include the 
increased expression of the transmembrane protein, vascular cell adhesion molecule-1, and the 
glucose metabolism regulator, PDK4, as well as downregulation of ANKRD1, which is a 
downstream gene of YAP. Genes thought to be upstream regulators are shown in Figure 2C, and 
included increased activity of the vitamin A derivative all-trans retinoic acid (a form of retinoic acid 

Figure 1. HSC composition over time in monolayer and spheroid cultures: (A) changes over time
in HSCs in monolayer culture, 200 µm scale. (B) Changes over time in HSCs in spheroid culture.
Upper panel: low power, 200 µm scale. Lower panel: high power, 100 µm scale. (C) Comparison of
cell number on Day 0 and Day 7. (D) α-SMA expression in monolayer and spheroid cultures, Day 3.
(E) Changes in α-SMA expression over time in the spheroid culture.

2.2. Gene Expression Analysis Results Demonstrate Changes in Metabolism

We chose Day 1 for RNA analysis to evaluate the early change of mRNA expression, because the
protein expression of alpha-SMA decreased from Day1 (Figure 1E). Monolayer cells on Day 1 and
spheroid cells on Day 1 were analyzed for gene expression using serial analysis of gene expression
(SAGE), followed by ingenuity pathway analysis (IPA). Enriched canonical pathways included cell cycle
pathways, the sirtuin pathway, eukaryotic translation initiation factor 2 (EIF2) signaling, mitochondrial
dysfunction, epithelial adherence junction signaling, and Hippo signaling (Figure 2A). Genes with
major changes in expression are shown in Figure 2B, and include the increased expression of the
transmembrane protein, vascular cell adhesion molecule-1, and the glucose metabolism regulator,
PDK4, as well as downregulation of ANKRD1, which is a downstream gene of YAP. Genes thought
to be upstream regulators are shown in Figure 2C, and included increased activity of the vitamin A
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derivative all-trans retinoic acid (a form of retinoic acid in which all double bonds are in the trans
configuration), as well as suppression of myelocytomatosis oncogene cellular homolog (MYC), which
is thought to be involved in changes in mitochondrial metabolism. To evaluate the Hippo pathway,
we used Western blotting to study nuclear translocation of YAP, and found that YAP and p-YAP, and
nuclear YAP in particular, were decreased in the spheroid. Cyr61, which is downstream of YAP, also
showed decreased expression in the spheroid (Figure 2D).
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Figure 2. Gene expression analysis using serial analysis of gene expression (SAGE): (A) selected
significantly enriched canonical pathways identified by ingenuity pathway analysis (IPA). The diagram
shows significantly overrepresented canonical pathways. A multiple-testing corrected p-value was
calculated using the Benjamini–Hochberg method to control the rate of false discoveries in statistical
hypothesis testing. The ratio value represents the number of molecules in a given pathway that meet
the cut-off criteria, divided by the total number of molecules that belong to the function. The brown bar
indicates positive z-score, blue bar indicates negative z-score, and grey bar indicates no activity pattern
available. (B) Top 10 and bottom 10 list of genes with major changes in expression, with increased
expression shown in red and decreased expression shown in blue. (C) Among upstream regulators
identified by IPA, the top five and bottom five expected activators are shown in red and expected
inhibitors are shown in blue. (D) (Left) Protein expression by nuclear and cytosolic compartments.
Cyr61 is a downstream gene of YAP. Lamin A/C is a nuclear marker and fibrillarin is a nucleolus marker.
(Right) Ratio of nuclear YAP/Cytosolic YAP (yes-associated protein), ** p ≤ 0.01.
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2.3. Glucose Metabolism Undergoes Changes with Upregulation of the Glutathione Pathway in
Spheroid Culture

Cells from Day 3 of the spheroid, as well as monolayer culture cells, were evaluated for metabolic
products using metabolome analysis. All metabolites evaluated in this study were listed in Table S1.
PCA analysis showed clear differences between the two groups (Figure 3A). Next, we examined changes
in metabolic products within the glycolysis pathway and found that the levels of 3-phosphoglycerate
(3-PG), phosphoenolpyruvate (PEP), and pyruvate were increased (Figure 3B). Among metabolic
products of the tricarboxylic acid (TCA) cycle, citrate and aconitate levels were increased, while the
levels α-ketoglutarate (αKG), succinate, fumarate, and malate were decreased (Figure 3C).
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Figure 3. Assessment of metabolic changes using metabolome analysis: (A) principal component
analysis of normalized metabolic data. Percentage values indicated on the axes represent the contribution
rate of the first (PC1) and second (PC2) principal components to the total amount of variation.
(B) Changes in metabolic products related to the glycolysis pathway. The y-axis represents relative
intensity. (C) Changes in metabolic products related to the TCA cycle. The y-axis represents relative
intensity. ** p ≤ 0.01. 3-PG: 3-phosphoglycerate, PEP: phosphoenolpyruvate, TCA: tricarboxylic acid,
αKG: α-ketoglutarate.
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Among the metabolic products of the glutathione synthesis pathway, which is related to oxidative
stress, glutamine, γ-glutamylcysteine (γGluCys), reduced glutathione (GSH), and oxidized glutathione
(GSSG) were significantly increased in the spheroid, whereas glutamic acid and αKG were significantly
decreased, suggesting upregulation of glutathione metabolism in the spheroid (Figure 4A,B). Further,
expression of superoxide dismutase 2 (SOD2), which is related to oxidative stress, was increased in the
spheroid, which suggests a reaction to greater oxidative stress in the spheroid culture (Figure 4C).
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Figure 4. Evaluation of oxidative stress: (A) changes in metabolic products related to
glutathione synthesis; the y-axis represents relative intensity. ** p ≤ 0.01. The enzymes that
catalyze reactions were listed beside the arrows. αKG: α-ketoglutarate, GSH: glutathione-SH,
GSSG: glutathione-S-S-Glutathione, γ-glu-cys: γ-glutamylcysteine, GS: glutamine synthetase,
GLS: glutaminase, GOT: glutamic oxaloacetic transaminase, GDH: glutamate dehydrogenase,
glutamate-cysteine lygase modified subunit. (B) GSSG/GSH ratio. (C) Western blot analysis of
SOD2 expression.
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2.4. Lipid Synthesis Is Upregulated in Spheroid Culture

Analysis of changes related to lipids showed that many saturated long-chain fatty acids were
increased in the spheroid (Figure 5A). Further, cell membrane lipids such as phosphatidylcholine
and phosphatidylethanolamine were also increased (Figure 5B). The expression of phosphocholine
cytidylyltransferase, the rate-limiting enzymes in the cytidine 5’-diphosphate-choline pathway for
phosphatidylcholine synthesis, tended to be upregulated in the SAGE analysis. In addition, SAGE
analysis revealed that expression of the fatty acid synthesis related gene SREBP1, a transcriptional
activator required for lipid homeostasis, was increased in the spheroid and adipogenesis pathway was
observed in canonical pathways; subsequent Western blot analysis revealed an increased tendency of
SREBP1 expression (Figure 5C).
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Figure 5. Changes in metabolic products related to lipid metabolism: (A) Changes in saturated
long-chain fatty acids. (B) Changes in phosphatidylcholine (PC) and phosphatidylethanolamine (PE).
(C) (Left) Western blot analysis of SREBP1 expression. (Right) Quantification of SREBP1 expression.
* p ≤ 0.05, compared to Day 0.
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2.5. Addition of PEP Leads to Increased Spheroid Size

After finding p70 S6 kinase pathway in canonical pathway with an inhibited z-score in the
spheroid culture (Figure 2A), we considered whether suppression of the TCA cycle may have led to
decreased ATP as well as downregulation of the pentose phosphate pathway (PPP), nicotinamide
adenine dinucleotide phosphate reduced form (NADPH) synthesis, and amino acid synthesis. This led
us to evaluate the effects of adding PEP, a high-energy metabolic product of the last step of glycolysis,
which is able to pass through the cell membrane [15]. The size of the spheroid increased compared to
the spheroid cultured without PEP (Figure 6A). Evaluation of size changes showed that, at 0.1 and
0.3 mM, the size of the spheroid grew by 1.7×; at 1.0 mM, the size grew by 2.6×; and at 3 mM, the size
grew by 5.5× (Figure 6B). Further, Western blot analysis showed that α-SMA and phosphorylated
S6 ribosomal protein expression were increased in the spheroid, suggesting upregulation of protein
translation (Figure 6C).
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Figure 6. Changes in the spheroid due to the addition of PEP: (A) changes in the spheroid due to the
addition of PEP; 200 µm scale. (B) Evaluation of spheroid surface area following the addition of PEP;
* p ≤ 0.05, and ** p ≤ 0.01. (C) (Left) Changes in α-SMA, phospho-RPS6 (S6 ribosomal protein) and
total RPS6 expression following the addition of PEP by Western blotting. (Right) Quantification of
phosphoRPS6, total RPS6, and the ratio of phosphoRPS6/total RPS6.
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3. Discussion

HSCs play a key role in liver fibrosis. When inactive, they are known to express epithelial markers
and store vitamin A, whereas when active, these cells undergo epithelial-mesenchymal transition to
myofibroblast-like cells. When cultured in vitro on polystyrene plates, HSCs become active, whereas
culturing on soft support hinders activation, showing that the cellular microenvironment plays a key
role in activation [16]. In the present study, we found that expression of the activated HSC marker
α-SMA was greatly decreased with spheroid formation, suggesting suppression of activation.

It is thought that protein expression and metabolism differ greatly between monolayer and
spheroid cultures, and it has been found that cancer cells in spheroid cultures display differential gene
expression in low-oxygen environments, suggesting that oxygen concentration within the spheroid
plays a role [17]. Here, gene expression analysis similarly showed that canonical pathways included
the cell cycle, sirtuin pathway, and mitochondrial dysfunction, suggesting that proliferation was
suppressed in the spheroid, with metabolic changes including mitochondrial suppression. Further,
gene expression analysis showed increased expression of PDK4, an enzyme that regulates pyruvate
dehydrogenase (PDH), which is responsible for the conversion of pyruvate to acetyl-CoA in glycolysis.
PDK4 is thought to be a regulator controlling the balance between glycolysis and mitochondrial
respiration, playing a role in suppression of mitochondrial activity. In cancer cells, detachment
from the ECM leads to increased expression of PDK4, with PDH-mediated suppression of pyruvate
metabolism [18]; thus, it is possible that a similar metabolic shift occurs in HSCs. Among upstream
regulators, MYC level was observed to decrease, and MYC plays a role in upregulation of mitochondrial
energy through protein synthesis as well as synthesis of mitochondria. Decreases in MYC expression
have been reported to decrease cell death rates in low-oxygen or low-glucose states [19]. Furthermore,
evaluation of TCA cycle metabolic products through metabolome analysis showed decreases in the
levels of succinate, fumarate, and malate, with increases in those of citrate and aconitate. These same
changes have been reported in TCA-cycle metabolome analysis in ovarian cancer cell spheroids [20].
In addition, it has been shown that de novo synthesis of fatty acids is upregulated simultaneously,
and our study found that spheroid-cultured HSCs also showed accumulation of lipids with increased
SREBP1, thus showing increased de novo synthesis of fatty acids. Oxidation of fatty acids leads
to ATP generation, and fatty acids are also used to produce phospholipids, which compose the
cell membrane. SAGE analysis showed that expression of a positive regulator of these processes,
peroxisome proliferator-activated receptor γ, was significantly increased, as were the levels of the
cell membrane constituents phosphatidylcholine and phosphatidylethanolamine. These data suggest
increased de novo fatty acid synthesis in the spheroid for use in cell membrane maintenance.

In cancer cells, when nuclear factor erythroid 2-related factor 2 (NRF2) levels rise above those of
MYC, antioxidant processes are activated in preparation for detachment [18]. Here, in the spheroid,
Western blot analysis revealed increased SOD2 expression, and metabolome analysis revealed increased
total levels of the glutathione metabolites GSH and GSSG. These results suggest that antioxidant
changes occur in the HSC spheroid, possibly to counteract increased oxidative stress.

Activity levels of YAP/TAZ are related to the stiffness of the ECM and cell morphology; cells placed
on stiff extracellular matrices show YAP/TAZ nuclear translocation that results in gene expression and
subsequent cellular proliferation. In contrast, cells placed on soft extracellular matrices or shrunken cells
with a low surface area exhibit cytosol-localized YAP/TAZ, with the absence of cellular proliferation [6].
YAP activity is known to be an important driver of HSC activation and is considered a possible target
for suppression of hepatic fibrosis [18]. Our study also showed that spheroid cells exhibited decreased
cytoplasmic and intranuclear YAP levels, as well as decreases in the levels of the downstream gene,
Cyr61, showing increased activity of the Hippo pathway.

Reportedly, compared to monolayer cell culture, the interior of the spheroid constitutes a
low-oxygen, low-glucose environment [21], leading to inefficient production of ATP at the center [22].
Accordingly, we hypothesized that increasing intracellular ATP may lead to the resumption of normal
cell activity. However, as ATP cannot cross the cell membrane, one solution is the addition of
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PEP, the final, high-energy metabolic product of glycolysis, which is able to freely pass through
the cell membrane [15]. We found that the addition of PEP led to increased spheroid size in a
concentration-dependent manner. PEP has been shown to pass through red blood cell membranes and
lead to increased ATP [23]; it is thought that addition of PEP to the spheroid may lead to increased ATP
through conversion to pyruvate, as well as upregulation of the PPP, NADPH synthesis, and amino
acid synthesis. Interestingly, inhibition of PCK, the enzyme responsible for PEP synthesis, leads to
decreased spheroid size, suggesting that PEP is used for ribose synthesis, with synthesis of NADPH
through the oxidative PPP [24].

The decrease in α-SMA expression in the spheroid is thought to be due to mechanical tension
caused by increased stiffness of the ECM [25,26] or the inhibition of translation due to the effects of
stretching forces on ER-associated protein translation pathways [27]. Our study showed markedly
decreased α-SMA expression in the spheroid compared to the monolayer culture, which was thought
to include inhibitory effects from both the stiffness of the ECM, as well as from the translational
control. We think several pathways are related to α-SMA expression, and one significant pathway
is translational control by ribosomal protein S6 kinase (p70S6K) [28]. It is reported that p-p70S6K
expression was significantly correlated with α-SMA (a hallmark of myofibroblasts) expression in
human pterygium fibroblasts (HPFs), while p70S6K knockdown reduced α-SMA protein levels in
HPFs. They also suggested that p70S6K activation contributes to fibroblast transdifferentiation and
maintains the myofibroblast phenotype in resident pterygium fibroblasts. Similar findings have been
reported in liver fibroblasts [29]. Addition of PEP to the spheroid increased the levels of α-SMA, but
not to the level of the monolayer culture; this was possibly due to the additional inhibitory effects of
the stiffness of the ECM. However, further study is needed.

4. Materials and Methods

4.1. Cells and Cell Culturing

Human hepatic stellate cells (HHSteC) were purchased from ScienCell Research Laboratories,
Inc., Carlsbad, CA, USA. Passage 3–7 cells were used for all experiments. Cells were maintained in
DMEM medium (10% FBS) supplemented with 0.1 mM of Vitamin C. For spheroid cultures, cells were
inoculated at a density of 5000 cells/cm2 on poly-hema-coated 10 cm plates. Poly-hema-coated plates
were generated by the reported methods (Shri et al., 2018). Briefly, poly-hema (poly 2-hydroxyethyl
methacrylate, P3932, Sigma, Tokyo, Japan) solution was made at a concentration of 12 mg/mL in 95%
ethanol. The solution was kept at 37 ◦C overnight in a shaking incubator to dissolve the polymer
completely. To cover the entire cell culture surface of the culture dish, the prepared poly-hema solution
was layered. After drying, the wells were washed with sterile PBS two times and further sterilized by
exposing to UV light for 30 min. Later, the culture plates were either used immediately or stored at
4 ◦C. Cell number was estimated with a DNA quantification kit (Cosmo Bio Co., Ltd. Tokyo, Japan).

4.2. Western Blot Analysis

Western blotting was conducted using standard methods. Briefly, cell lysis buffer was prepared
with 62.5 mM Tris-HCl (pH 6.8), 4% sodium dodecyl sulfate (SDS), and 200 mM dithiothreitol;
electrophoresis was performed using a 12% acrylamide gel. For electrophoresis, we used 20 µg
of sample protein. After subsequently transferring the proteins to polyvinylidene fluoride (PVDF)
membranes and applying a nonspecific epitope blocking using 5% skimmed milk, the following
antibodies were applied for 1 h or overnight. Antibodies against α-SMA, YAP, p-YAP, Cyr61, α-tubulin,
Lamin A, SOD2 and fibrillarin (Abcam, Tokyo, Japan); SREBP1, phosphoRPS6 and total RPS6 (CST,
Tokyo, Japan); and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (Sigma-Aldrich, St. Louis,
MO, USA) were used. Nuclear and cytosolic fractions were extracted using nuclear and cytoplasmic
extraction regents (NE-PER) (Thermo Scientific Rockford, IL, USA).
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4.3. Total RNA Isolation

RNA was collected and evaluated on Day 1. Total RNA was isolated from the cells using
TRIzol reagent (Life Technologies, Carlsbad, CA, USA) and purified according to the manufacturer’s
instructions. RNA samples were quantified using an ND-1000 spectrophotometer (NanoDrop
Technologies, Wilmington, DE, USA) and the quality was confirmed using the Experion System
(Bio-Rad, Hercules, CA, USA).

4.4. SAGE

The Ion AmpliSeq Transcriptome Human Gene Expression Kit (Life Technologies) was used to
construct a library. An Ion PI IC 200 Kit (Life Technologies) and Ion PI Chip Kit v2 BC were used for
sequencing, using an ion proton next-generation sequencer. The SAGE analysis was done once.

4.5. Metabolome Analysis

Metabolomic and statistical analyses were conducted at Metabolon, a commercial supplier of
metabolic analysis, which has developed a platform that integrates chemical analysis (including
identification and relative quantification), data reduction, and quality assurance. Cell pellets were
subjected to methanol extraction, and split into aliquots for analysis. To maximize compound detection
and accuracy, three separate analytical methods were utilized including ultra-high performance liquid
chromatography-tandem mass spectrometry (UHPLC-LC-MS) in both positive and negative ion
modes and gas chromatography/mass spectrometry (GC-MS) [30–32]. Metabolites were identified by
automated comparison of ion features to a reference library of chemical standards, followed by visual
inspection for quality control. The data were normalized by protein (Bradford). For statistical analyses
and data display, any missing values were assumed to be below the limit of detection; these values
were imputed with the compound minimum (minimum value imputation).

4.6. Statistical Analysis

Certain results were analyzed using Student’s t-test, and the data are presented as the mean ±
standard deviation, with significance level established at p < 0.05. One-way ANOVA followed
by Tukey’s post hoc test was used for statistical comparison between more than two groups.
To determine statistical significance of metabolomic analysis, Welsh’s two-factor t-tests were performed
in ArrayStudio (Omicsoft, Cary, NC, USA) or “R”, to compare protein-normalized data between
experimental groups; p < 0.05 was considered significant.

5. Conclusions

In conclusion, we created a spheroid culture of HSCs and analyzed changes in gene expression
and metabolism. Gene expression analysis showed a decreased proliferative ability in the spheroid,
with metabolic changes, such as mitochondrial suppression and changes in the Hippo pathway that
were related to the stiffness of the ECM. In addition, metabolome analysis showed changes in glucose
metabolism in the spheroid, with upregulation of the glutathione pathway and lipid synthesis. Further,
addition of the glycolytic metabolic product PEP led to increased spheroid size, with increased α-SMA
expression, which was thought to be related to decreased inhibition of translation. Our results play an
important role in understanding metabolic changes in HSCs and the role of these cells in hepatic fibrosis.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/10/
3451/s1. Table S1. The list of all metabolites evaluated in this study.
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α-SMA α-smooth muscle actin
ANKRD1 Ankyrin Repeat Domain 1
CYR61 cysteine-rich protein 61
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IPA Ingenuity Pathway Analysis
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SAGE serial analysis of gene expression
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