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Abstract: The influence of Ag and Au nanoparticles and reduced graphene oxide (RGO) sheets on the
photodegradation of α-lipoic acid (ALA) was determined by UV-VIS spectroscopy. The ALA
photodegradation was explained by considering the affinity of thiol groups for the metallic
nanoparticles synthesized in the presence of trisodium citrate. The presence of excipients did
not induce further changes when ALA interacts with Ag and Au nanoparticles with sizes of 5 and
10 nm by exposure to UV light. Compared to the Raman spectrum of ALA powder, changes in
Raman lines’ position and relative intensities when ALA has interacted with films obtained from
Au nanoparticles with sizes between 5 and 50 nm were significant. These changes were explained
by considering the chemical mechanism of surface-enhanced Raman scattering (SERS) spectroscopy.
The photodegradation of ALA that had interacted with metallic nanoparticles was inhibited in the
presence of RGO sheets.
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1. Introduction

α-Lipoic acid (ALA) is present in various organisms of the human body, e.g., the kidney, heart,
liver, and foods such as broccoli, spinach, and yeast extract [1]. The molecular structure of ALA contains
both a carboxylic group and a dithiolane ring, and, depending on the chirality of the substituted carbon
atom of the dithiolane ring, two enantiomers are known at present for this compound, i.e., RLA and
SLA. ALA is used as a drug in diabetic neuropathy [2], as a dietary supplement to slow down the
aging process of the body [3], and in obesity treatment [4]. The most important effect of ALA is its
antioxidative capacity [5]. An improvement in ALA’s antioxidative effects has been reported in the
presence of the Coenzyme Q10 (CQ10) [5]. Pharmaceutical compounds containing ALA are marketed
under the name Alpha Lipoic Sustain, Tiolin, Alanerv, Alasod 600, and Cerebinox, the last of which
also contains CQ10.
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Until now, the main methods used in the characterization of ALA were (i) FTIR spectroscopy [6];
(ii) Raman scattering [6], (iii) UV-VIS spectroscopy [7], and (iv) cyclic voltammetry or square-wave
voltammetry [8]. The detection of ALA was achieved using (i) electrochemistry methods [9], (ii) liquid
chromatography [10], (iii) mass spectrometry [11], and optical methods based on surface plasmon
resonance [12]. A recent application of metallic nanoparticles that have interacted with ALA was used
as a sensorial platform for nerve agents [13].

Considering the applications of ALA in the health domain, in this work, special attention is paid
to the photodegradation process of ALA in the absence and the presence of metallic nanoparticles.
The dependence of the photodegradation process of ALA in the presence of Ag and Au nanoparticles
with various sizes is studied, too. The photodegradation process is also analyzed in pharmaceutical
compounds such as Alpha Lipoic Sustain and Cerebinox. Using UV-VIS spectroscopy, we demonstrate
that inhibition of ALA’s photodegradation that has interacted with Ag and Au nanoparticles can
be induced in the presence of reduced graphene oxide (RGO) sheets. The differences between the
Raman spectrum of ALA in the powder state and the surface-enhanced Raman scattering (SERS)
spectrum of ALA as a thin layer deposited on rough films, obtained from the colloidal solutions of
Au nanoparticles with sizes of 5, 10, and 50 nm, are also reported. A sustained effort was made to
develop SERS supports by various methods such as (i) the oxidation/electrochemical reduction of metal
electrodes, (ii) evaporation by the vacuum deposition of shaved metal films, (iii) lithography, and (iv)
synthesis of colloidal metallic structures [14,15]. The two mechanisms that underlie the SERS effect,
i.e., electromagnetic and chemical mechanisms, allow us to understand these differences. As is well
known, the electromagnetic enhancement process of the Raman spectra is induced by the excitation
of localized or delocalized surface plasmons generated at the dielectric/metal interface, while the
chemical process involves the generation of new chemical bonds at the adsorbed molecule/metal
interface [14]. Generally, SERS supports are characterized by rough structures with sizes in the range
of 10–100 nm [15]. In order to highlight this property for the films obtained from the colloidal solution
of Au nanoparticles, atomic force microscopy (AFM) studies are reported. The changes induced on the
roughness parameters by the adsorption of RGO sheets onto Au films are also shown.

2. Materials and Methods

ALA (C8H14O2S2), sodium borohydride (NaBH4), trisodium citrate (Na3C6H5O7), silver nitrate
(AgNO3), sodium hydroxide (NaOH), sodium citrate (C6H5Na3O7), tannic acid (C76H52O46),
tetrachloroauric acid (HAuCl4), potassium carbonate (K2CO3), and dimethylformamide (DMF,
with 0.1% water) were purchased from the Aldrich-Sigma company (St. Louis, MO, USA).
Pharmaceutical compounds, Alpha Lipoic Sustain and Cerebinox, were purchased from a local
pharmacy (Jarrow Formulas, Inc., Los Angeles, CA, USA and Polisano Pharmaceuticals, Sibiu,
Romania). The Alpha Lipoic Sustain pharmaceutical product contains, as active compounds, 300 mg
of ALA and 333 mg of Biotin and, as additional ingredients, polyacrylic acid, Ca3(PO4)2, C18H36O2,
C36H70MgO4, SiO2, cellulose, beetroot powder (for color), natural vanilla flavor, and a food-grade
coating. The Cerebinox pharmaceutical product contains 300 mg of ALA, 10 mg of CQ10, 100 mg of
wheat germ extract, caking, and SiO2.

The Ag nanoparticles with an average size of cca. 5 and 10 nm were prepared according to
Reference [16]. Briefly, to obtain Ag nanoparticles with a size of 5 nm, mixing by vigorous stirring in
the dark of a 48 mL aqueous solution containing 2 mM NaBH4 and 4.28 mM Na3C6H5O7 at 60 ◦C,
for 30 min, was carried out. After that, 2 mL of 1 mM AgNO3 was added to the above solution. Further,
the reaction mixture was preserved at 90 ◦C for another 20 min, the pH of the reaction mixture was
adjusted to 10.5 using a 0.1 M NaOH solution. The yellow suspension of Ag nanoparticles was cooled
to 25 ◦C and then centrifuged at 12,000 rpm for 15 min in order to remove all unreacted compounds.
This step was followed by washing and redispersion in distilled water. A similar protocol was used
to obtain Ag nanoparticles with a size of 10 nm, the only difference being the addition of 2 mL of
1.17 mM AgNO3 to the 48 mL solution containing 2 mM NaBH4 and 4.28 mM Na3C6H5O7. According
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to Reference [16], the particle concentration in the colloidal solutions of Ag with particle sizes of 5 and
10 nm was equal to 1.03 × 1015 and 1.53 × 1014 particles/mL, respectively.

Au nanoparticles with average sizes of cca. 5 and 10 nm were synthesized using the protocol
described in Reference [17]. The synthesis protocol involves (i) the preparation of a solution containing
150 mL of 2.2 mM Na3C6H5O7 and 0.01 mL of 2.5 mM C76H50O46, which was heated at 70 ◦C, and (ii)
the addition of 1 mL of 25 mM HAuCl4 to the above solution, when one observes that, after cca. 10 s,
the uncolored solution becomes orange-red. The addition of 1 mL of 150 mM K2CO3 to the above
reaction mixture induced a change in pH from 10.4 to 8.3. This reaction mixture was preserved at
100 ◦C, for a period of 5 min, until a suspension of Au nanoparticles with a size of around 5 nm
resulted [17]. In order to obtain Au nanoparticles with a size of cca. 10 nm, the only difference in the
above protocol needed is the use of 0.01 mL of 2.5 mM tannic acid [17]. In the case of the colloidal
solutions of Au with particle sizes of 5 and 10 nm, the particle concentration was equal to 4.4 × 1013

and 1.2 × 1013 particles/mL [17]. In References [16] and [17], TEM studies demonstrated that these
protocols for the preparation of the metallic nanoparticles reported led to (i) Ag nanoparticles with size
ranges of 5 ± 0.7 nm and 10 ± 2.0 nm [16] and (ii) Au nanoparticles with size ranges of 5.1 ± 0.5 nm
and 10.5 ± 0.9 nm [17].

The Au nanoparticles with a size of cca. 50 nm were synthesized by the addition of 1 mL of
1wt.% HAuCl4 to 47 mL of water, and the mixture was heated to 100 ◦C when 1.5 mL of Na3C6H5O7

were injected [18,19]. The reaction mixture was preserved at 100 ◦C for 45 min, until its color became
red, and was then cooled at 25 ◦C [18,19]. The colloidal solution of Au, with a particle size of 50 nm,
had a particle concentration equal to 1.05 × 1011 particles/mL [19]. For the SERS studies, the rough Au
films were obtained by the evaporation of a 0.12 mL colloidal solution of Au with a particle size of
50 nm. The roughness parameters of these Au films before and after the deposition of RGO sheets
were evaluated by atomic force microscopy (AFM).

The AFM images were collected (in phase feedback) with a Nanonics Multiview 4000 microscope
(Nanonics Imaging Ltd., Jerusalem, Israel) working in tapping mode. We used a cantilever with a
20 nm diameter, a 1730 factor of merit, and a 34.7 kHz vibration frequency.

The photodegradation processes were monitored by UV-VIS spectroscopy. In this order, solutions
of ALA in (i) DMF, (ii) a stabilized suspension in a citrate buffer of Au nanoparticles with diameters
equal to 5 and 10 nm, respectively, and (iii) the dispersions of the citrate functionalized Ag nanospheres
with sizes equal to 5 and 10 nm, respectively, in aqueous sodium citrate, were used. The solutions of
ALA or pharmaceutical products used in the UV-VIS spectroscopy studies had a 1 mg/mL concentration.
All spectra were recorded with a Perkin Elmer UV-VIS-NIR spectrophotometer, Lambda 950 model
(PerkinElmer, Inc., Waltham, MA, USA), in the 200–600 nm spectral range, the scan rate being 96 nm/min.
The UV-VIS spectra of each sample were recorded at intervals of 5 min of UV irradiation for a period
of 60 min. UV irradiation was performed using a Hg-vapors lamp with a power of 350 W.

The Raman spectra of ALA were recorded with an FT Raman spectrophotometer, model RFS100S
(Bruker Optik GmbH, Ettlingen, Germany). The concentration of ALA solutions was 10−2 M for the
Raman scattering studies. The films obtained from the colloidal solution of Au, with a particle size of
50 nm, were prepared on quartz substrates with an area of 1 cm2.

Samples for transmission electron microscopy (TEM) and high-resolution transmission electron
microscopy (HRTEM) were prepared by suspending them in ethanol and transferring them to a copper
grid coated with amorphous carbon support. TEM and HRTEM images were recorded with a JEOL
JEM ARM 200 F electron microscope (JEOL (Europe) SAS) operated at 200 keV.

A solution consisting of 0.5 mg of RGO in 1 mL of DMF was prepared to highlight the influence of
the RGO sheets on the roughness parameters of Au films.
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3. Results and Discussion

3.1. The Photodegradation of ALA Highlighted by UV-VIS Spectroscopy

Figure 1a shows the UV-VIS spectrum of ALA in DMF in the initial state (black curve), characterized
by a band with a maximum at 338 nm. The exposure of the sample at the UV light led to a decrease
in the absorbance of this band, simultaneous with the appearance and the increase in the band’s
absorbance at 272 nm, a modification that involved the appearance of an isosbestic point at 300 nm.
This suggests that new chemical compounds are generated under UV light in a solution of ALA in
DMF containing 0.1 wt.% water, according to Scheme 1. In the case of a semi-aqueous ALA solution,
the exposure to UV light induced only a decrease in the band’s absorbance at 335 nm (Figure 1b).
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Ag nanoparticles with sizes of 5 nm and 10 nm peaked at 398 nm (Figure 2a) and 400 nm (Figure 2b), 
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Figure 1. UV-VIS spectra of α-lipoic acid (ALA) in dimethyl formamide (DMF) (a) and in the mixture of
DMF–H2O with the volume ratio equal to 1:1 (b). The concentration of ALA is 1 mg/mL. The two samples’
UV-VIS spectra were recorded at intervals of 5 min of exposure to UV light, for 60 min.
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Scheme 1. The photochemical reaction of ALA in the presence of DMF and H2O.

The UV-VIS spectra of Ag and Au nanoparticles must be shown to assess the influence of
metallic nanoparticles on ALA. In this context, Figure 2 highlights that the plasmonic bands of the
Ag nanoparticles with sizes of 5 nm and 10 nm peaked at 398 nm (Figure 2a) and 400 nm (Figure 2b),
while those of the Au nanoparticles with sizes of 5 nm and 10 nm were situated at 522 nm (Figure 2c)
and 524 nm (Figure 2d). Figure 3 shows the HRTEM images of the metallic nanoparticles. According
to Figure 3, regardless of the Ag and Au nanoparticles’ size, they show a spherical shape. The UV-VIS
spectra show relatively broad bands, which indicates a broad size distribution. This fact is confirmed
by the TEM images shown in Figure 3.
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Figure 2. UV-VIS spectra of nanoparticles: (a) Ag with a particle size of 5 nm, (b) Ag with a particle
size of 10 nm, (c) Au with a particle size of 5 nm, and (d) Au with a particle size of 10 nm.

Figure 4 shows the UV-VIS spectra of ALA that has interacted with Au and Ag nanoparticles,
both with sizes of 5 and 10 nm, the ALA concentration in the aqueous solution of metallic nanoparticles
being equal to 1 mg/mL. According to Figure 4 (red curves), in the initial state, i.e., before exposure to UV
light, the UV-VIS spectra were characterized by absorption bands with maxima at 322 nm and 542 nm in
the case of ALA that has interacted with Au nanoparticles with a size of 10 nm (Figure 4d). These bands
were situated at 320 nm and 530 nm in the case of ALA that has interacted with Au nanoparticles with a
size of 5 nm (Figure 4c). In the case of ALA that has interacted with Ag nanoparticles with sizes of 10 nm
and 5 nm, the UV-VIS spectra show absorption bands with maxima at 424 nm (Figure 4b) and 401 nm
(Figure 4a), respectively. The exposure of these samples to UV light for 60 min led to a gradual decrease
in the absorbance of the band localized in the spectral range 300–700 nm (Figure 4). Supplementarily,
in the case of ALA that has interacted with Ag nanoparticles with sizes of 10 and 5 nm, one observes
the following: (i) an up-shift of the absorption band at 454 nm (Figure 4b) and 431 nm (Figure 4a),
respectively; (ii) the appearance of isosbestic points at 339 nm and 568 nm in the case of ALA that has
interacted with Ag nanoparticles with a size of 10 nm (Figure 4b); and (iii) the appearance of isosbestic
points at 335 nm and 512 nm in the case of ALA that has interacted with Ag nanoparticles with a
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size of 5 nm (Figure 4a). Regardless of the type of nanoparticles, i.e., Ag or Au, these results suggest
development of photochemical reactions between ALA and metallic nanostructures. Considering the
decreased absorbance of UV-VIS spectra, the photochemical processes between ALA and metallic
nanoparticles were more intense in Ag nanoparticles, compared to Au nanoparticles. The more
pronounced shift of the absorption band in the case of Ag nanoparticles that have interacted with
ALA (Figure 4a,b) is believed to have its origin in the process of the chemical adsorption of ALA onto
the surface of metal particles. Such a process would involve obtaining a more stable electronic state,
i.e., the transformation of Ag into Ag+ (from [Kr] 4d105s1 to [Kr] 4d10) and of Au into Au+ (from
[Xe]4f145d10 6s1 to [Xe]4f145d10]), for which it is known that the ionization energy is equal to 7.57 eV
and 9.22 eV, respectively [20]. This fact was considered for the higher affinity of thiol groups of ALA
for Ag nanoparticles compared with that for Au nanoparticles. Ag nanoparticles’ transformation
into Ag2S was reported in 2017 when the appearance of non-stoichiometry in Ag sublattices was
envisaged [21,22]. The formation of the thiolate-gold clusters is explained by several models reported
by (i) Walter et al., who took into account the magic numbers of free valence electrons [23], and (ii)
Cheng et al., who considered the superatom network and the super valence bond mode [24].
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Figure 4. UV-VIS spectra of ALA in the presence of Ag with a particle size of 5 nm (a), Ag with a
particle size of 10 nm (b), Au with a particle size of 5 nm (c), and Au with a particle size of 10 nm (d).
The concentration of ALA is 1 mg/mL. The four samples’ UV-VIS spectra were recorded at intervals of
5 min of exposure to UV light, for 60 min.

Figures 5 and 6 show the influence of the additional active compounds to ALA and excipients.
In this context, Figure 5 highlights the influence of the pharmaceutical compound concentration and
the Ag nanoparticle size on the photochemical processes found in UV-VIS spectroscopy studies.

Figure 5b highlights that, in the case of the Cerebinox solution with a concentration of 1 mg/mL,
prepared in the presence of Ag nanoparticles with a size of 5 nm, the UV-VIS spectrum shows an
intense band with a maximum at 401 nm, whose absorbance decreases as the time of exposure to UV
light increases, up to 60 min. This change was accompanied by the appearance of isosbestic points at
344 and 635 nm. The decrease in the concentration of Cerebinox in the solution of Ag nanoparticles
with a size of 5 nm, at 0.25 mg/mL, induced an up-shift of the absorption band from 401 nm to 419 nm
and the presence of isosbestic points situated at 329 and 566 nm (Figure 5a). The exposure of the
Cerebinox solution with a concentration of 1 mg/mL to UV light for 60 min, prepared in the presence of
Ag nanoparticles with a size of 10 nm, induced a shift in the band from 431 nm to 443 nm, which was
simultaneous with the appearance of isosbestic points at 371 and 533 nm (Figure 5c). Similar behavior
is evidenced in the pharmaceutical compound marketed under the name of Alpha Lipoic Sustain
(Figure 6).
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Figure 5. UV-VIS spectra of the ALA solution in the presence of excipients (commercial product
marketed under the name Cerebinox) and Ag nanoparticles with a size of 5 nm, having an analyte
concentration equal to 0.25 mg/mL (a) and 1 mg/mL (b), and their changes at exposure to UV light.
Figure (c) shows the UV-VIS spectra of the Cerebinox solution with a concentration of 1 mg/mL in
the presence of Ag nanoparticles with a size 10 nm and its change at exposure to UV light. The three
samples’ UV-VIS spectra were recorded at intervals of 5 min of exposure to UV light, for 60 min.
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Figure 6. UV-VIS spectra of the ALA solution in the presence of excipients (commercial product
marketed under the name of Alpha Lipoic Sustain) in the presence of Ag nanoparticles with sizes of
5 nm (a) and 10 nm (b), with a concentration of 1 mg/mL, and their changes at the exposure to UV light.
The two samples’ UV-VIS spectra were recorded at intervals of 5 min of exposure to UV light for 60 min.
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Thus, in the case of Alpha Lipoic Sustain solution, with a concentration of 1 mg/mL, (i) the
exposure to UV light in the presence of Ag nanoparticles with a size of 5 nm induced a shift of the band
from 398 nm to 419 nm, which was simultaneous with its decrease in absorbance and the appearance
of isosbestic points at 338 nm and 515 nm. (ii) The exposure to UV light in Ag nanoparticles’ presence
with a size of 10 nm led to a more significant decrease in the absorbance of the UV-VIS spectrum
accompanied by a shift from 398 nm to 443 nm and the presence of isosbestic points at 341 nm and
533 nm. The results shown in Figures 5 and 6 demonstrate that the presence of additional active
compounds to ALA and the excipients do not influence the photochemical reaction of ALA with
metallic (Me) nanoparticles. The origin of these spectral variations can be explained by taking into
account the formation of new compounds in the presence of UV light, according to Scheme 2.
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Scheme 2. The photochemical reaction of ALA in the presence of metallic (Me) nanoparticles.

3.2. The RGO Sheets as Inhibitors of the ALA Photodegradation Highlighted by UV-VIS Spectroscopy

Figures 7 and 8 highlight the influence of RGO sheets on ALA’s photochemical reactions in the
presence of metallic nanoparticles. According to Figure 7, the absorption band of the RGO sheets
decorated with Ag nanoparticles with a size of 5 nm has a maximum at 407 nm. The UV-VIS spectrum
of ALA in the presence of 0.5 mg RGO sheets in 1 mL of DMF and 1 mL of Ag nanoparticles with
a size of 5 nm, before exposure to UV light, is characterized by a band with a maximum at 389 nm.
According to Figure 7a, the exposure to UV light induced the following: (i) in the first 5 min, a shift
of the band from 389 nm to 398 nm and the appearance of a new band observed as a shoulder at
338 nm; (ii) a gradual shift of the bands from 398 nm and 338 nm to 425 nm and 323 nm, respectively,
when the time of UV irradiation varied from 5 min to 60 min; (iii) a decrease in the absorbance of the
two bands at 398–425 nm and 338 nm, which involved a change in the ratio between their absorbance
(A398–425/A338) from 1.05 to 0.83, when the exposure time at UV light increases from 5 to 60 min; and (iv)
the appearance of an isosbestic point at 512 nm.

According to Figure 7b, the exposure of the ALA to UV light in the presence of 0.5 mg RGO
sheets in 1.5 mL of DMF and 0.5 mL of Ag nanoparticles with a size of 5 nm induced a decrease in the
absorbance of the band at 332 nm. This was simultaneous with the increase in the absorbance of the
band at 263 nm and the appearance of an isosbestic point at 305 nm. A careful analysis of the band’s
absorbance variation in the spectral range 300–500 nm highlights a decrease from (i) 0.92 to 0.6 in
Figure 7a and (ii) 2.36 to 1.08 in Figure 3d. These results demonstrate the inhibitory role of RGO sheets
on the photochemical reactions between ALA and Ag nanoparticles. Such behavior is also shown in
the case of Au nanoparticles. Figure 8 is relevant in this context.

The black curve in Figure 8a shows the UV-VIS spectrum of the ALA solution resulting from
the dissolution of 0.5 mg of ALA in the presence of 0.5 mg RGO in 0.5 mL of DMF and 1.5 mL of Au
nanoparticles with a size of 5 nm. Three bands with maxima at 269 nm, 317 nm, and 530 nm are shown
in Figure 8a. According to Figure 8a, the exposure to UV light induced a decrease in the absorbance
of bands at (i) 269 nm, from 0.3 to 0.26, (ii) 317 nm, from 0.36 to 0.27, and (iii) 530 nm, from 0.25 to
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0.24. In the ALA solution resulting from the dissolution of 0.5 mg of ALA in the presence of 0.5 mg
RGO in 1 mL of DMF and 1 mL of Au nanoparticles with a size of 5 nm, no change was observed
in the absorbance of the band with a maximum at 515 nm (Figure 8b). The only change observed in
Figure 8b regards the band’s shift from 311 nm to 323 nm, a variation accompanied by an increase in its
absorbance from 0.41 to 0.47. An increase in the absorbance of the band at 260 nm from 0.54 to 0.62 was
also reported. These values were significantly lower than those reported in Figure 5a. These results
proved once again the inhibitory role of RGO sheets on the photochemical reaction between ALA and
Au nanoparticles. An explanation for the inhibitory role of the RGO sheets on the photochemical
reaction between ALA and Me nanoparticles is shown in Scheme 3.Nanomaterials 2020, 10, × FOR PEER REVIEW 10 of 17 
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Figure 7. The influence of the UV light on the ALA solution resulting from the dissolution of 1 mg of
ALA in the presence of (a) 0.5 mg RGO sheets in 1 mL of DMF and 1 mL of Ag nanoparticles with a
size of 5 nm and (b) 0.5 mg RGO sheets in 1.5 mL of DMF and 0.5 mL of Ag nanoparticles with a size of
5 nm. The black curve in Figure a shows the UV-VIS spectrum of 0.5 mg RGO sheets in 1 mL of DMF
and 1 mL of Ag nanoparticles with a size of 5 nm in the absence of ALA. The two samples’ UV-VIS
spectra were recorded at intervals of 5 min of exposure to UV light, for 60 min.
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Figure 8. UV-VIS spectra of the ALA solution resulting from the dissolution of 0.5 mg in the presence
of (a) 0.5 mg RGO in 0.5 mL of DMF and 1.5 mL of Au nanoparticles with a size of 5 nm and (b) 0.5 mg
RGO in 1 mL of DMF and 1 mL of Au nanoparticles with a size of 5 nm, as well as their variations at
exposure to UV light. The two samples’ UV-VIS spectra were recorded at intervals of 5 min of exposure
to UV light, for 60 min.
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3.3. Raman Scattering and SERS Spectroscopy Studies on ALA

In order to prove the adsorption of ALA onto metallic nanoparticles functionalized with sodium
citrate, Figure 9 shows the differences between the Raman spectra of ALA when this organic compound
is in the form of a powder (Figure 9a) and a layer deposited onto Ag and Au films resulting from
colloidal solutions of Ag and Au with particle sizes of 5 and 10 nm (Figure 9b–e). According to
Figure 9a, the main Raman lines of ALA peaked at 243, 372–418–457, 513, 565, 636, 684, 902, 1024,
1055, 1084–1230, 1307, 1442, 1649, 2846–2860, and 2916–2931–2974 cm−1, assigned to the following
vibrational modes: deformation ring, deformation CSSC, stretching S-S, stretching 1, 2-dithiolane ring,
stretching C-S out-of-phase, stretching C-S in-phase, stretching C-C in 1, 2-dithiolane ring, stretching
C-C, stretching C-C trans, in-plane deformation C-H in a heteroatomic ring, twisting of CH2 group,
deformation scissoring of CH2 group, stretching C=O in amide, and anti-symmetrical stretching CH2

in alkyl chain/anti-symmetrical stretching CH2 in a 1,2-dithiolane ring. [2,25] The values of the ratio
between Raman lines’ intensities peaked at 513, 1442, 1024, and 2916 cm−1, i.e., I513/I2916, I1442/I2916,
and I1024/I2916 are equal to 0.57, 0.35, and 0.09, respectively. In the context of the discussion concerning
the interaction of ALA with metallic nanoparticles, it is important to know that the ratio I513/I684 has a
value of 2.36. In contrast to Figure 9a, the following vibrational changes are observed in Figure 9b,d,
i.e., in the case of ALA layers deposited onto metallic films resulting from a colloidal solution of Ag
nanoparticles with sizes of 5 and 10 nm: (i) a down-shift of the Raman lines from 513, 684, 1024, 1442,
and 2916 cm−1 (Figure 9a) to 504, 684, 1018, 1430, and 2908 cm−1, respectively (Figure 9b,d); and (ii) a
change in the value of the ratios I513/I2916, I1442/I2916, I1024/I2916, and I513/I684 from 2, 0.28, 0.4, and 8.35
(Figure 9b) to 3.94, 0.56, 0.79, and 8.2, respectively (Figure 9d). The changes in the intensities and
the positions of Raman lines when the ALA layer is deposited onto metallic films resulting from the
colloidal solutions of Au nanoparticles with sizes of 5 and 10 nm are noted in Figure 9c,e as follows:
(i) the Raman lines from 513, 680, 1024, 1442, and 2916 cm−1 (Figure 9a) shifted to 504, 673, 1014, 1430,
and 2909 cm−1, respectively (Figure 9c,e); (ii) in the 3000–3500 cm−1 spectral range, a new Raman
line with a maximum at 3075 cm−1 appeared; (iii) values of the ratios I504/I2909, I1430/I2909, I1014/I2909,
and I504/I673 changed from 1.01, 0.29, 0.2, and 3.7 (Figure 9c) to 2, 0.57, 0.4 and 3.67 (Figure 9e).

The variations above indicate a chemical interaction between metallic nanoparticles functionalized
with sodium citrate and ALA, as shown in Scheme 2. Regardless of the metallic nanoparticle type, i.e.,
Ag or Au, the increase in the Raman line’s intensity with a maximum at 504 cm−1 suggests preferential
chemical adsorption of ALA onto metallic nanoparticles, as reported in the case of other thiols [25].
Evidence of the chemical adsorption of ALA onto the metallic nanoparticle surface is shown by the
Raman line with a maximum at 234 cm−1, observed in Figure 9b–e, which was assigned to the stretching
vibration mode of the metal-adsorbate bond [2]. The presence of these Raman lines in Figure 9b–e can
be explained by considering the chemical mechanism of the SERS effect that involves a charge transfer
at the metal/dielectric interface—in our case, the Ag or Au nanoparticles and ALA, when new bonds
between the metal and adsorbate of the type Ag-S or Au-S are generated [25].
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Figure 9. Raman spectra of ALA in a solid state (a) and as layers deposited onto metallic films
prepared using colloidal solutions of Au nanoparticles with sizes of 5 nm (b) and 10 nm (c) and of
Ag nanoparticles with sizes of 5 nm (d) and 10 nm (e). The ALA layers were obtained by using ALA
solutions with a concentration of 10−2 M.

Using a protocol proposed by Laurent et al. [26] to assess the enhancement factor (EF) of the SERS
process and the experimental results shown in Figure 9, the following EFs of ALA were calculated
for the Raman line situated in the spectral range 500–520 cm−1: (i) 1.15 × 107, in the case of Ag
nanoparticles with sizes of 5 nm and 10 nm, (ii) 8.16 × 106, in the case of Au nanoparticles with a size
of 5 nm, and (iii) 1.6 × 107, in the case of Au nanoparticles with a size of 10 nm.
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Figure 10 highlights the dependence of the Raman spectrum intensity of ALA on the Au
nanoparticles weight used to prepare metallic films. According to Figure 10a, the Raman spectrum
intensity of ALA is enhanced as Au nanoparticles’ weight with a size of 50 nm increases. This fact is a
consequence of the electromagnetic mechanism of the SERS effect, when the generation of localized
surface plasmons at the metal/dielectric interface occurs [14]. According to Figure 10b, for the same
weight of Au nanoparticles, a higher Raman intensity of ALA is found when the size of metallic
nanoparticles is equal to 50 nm compared to those with a size of 10 nm. In the case of Au nanoparticles
with a size of 50 nm, the EF of the ALA Raman line intensity situated in the spectral range 500–520 cm−1

was equal to 5.18 × 107, a value superior to that reported in the case of Au nanoparticles with a size of
10 or 5 nm (Figure 9c,e).
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Figure 10. Raman spectra of the ALA layer deposited onto metallic films prepared using 1 mL (red
curve), 2 mL (blue curve), 4 mL (magenta curve), and 6 mL (green curve) colloidal solutions of Au
nanoparticles with a size of 50 nm (a). The dependence of the intensity of Raman spectra on the ALA
layers deposited onto metallic films prepared from 6 mL colloidal solutions of Au nanoparticles with
sizes of 50 nm (black curve) and 10 nm (red curve) (b). In all samples, the ALA solution concentration
was 10−2 M.

3.4. HRTEM and AFM Studies

A short characterization of the RGO sheets by HRTEM and the film of Au obtained from the
colloidal solutions of Au nanoparticles with a size of 50 nm before and after the adsorption of the RGO
sheets by AFM is shown in Figure 11. Figure 11a shows the TEM image of the RGO sheets stacked
with various folding. The HRTEM image of the RGO sheets (Figure 11b) highlights an interplanar
distance d002 equal to 3.85 Å.

The AFM image of the films obtained by the evaporation of a 0.12 mL colloidal solution of Au,
with a particle size of 50 nm, onto quartz substrates with an area of 1 cm2, are shown in Figure 11c1.
As a consequence of the agglomerate and aggregate processes of the Au nanoparticles, the AFM images
revealed that the gold nanoparticle diameter is ~60 nm (Figure 11c2). Two roughness parameters were
calculated from the AFM scans for the Au film, i.e., the root mean square (RMS) and roughness average
(Ra), with values equal to 18 nm and 13 nm, respectively. The deposition of the RGO sheets onto the
Au film induced RMS and Ra values of 91 nm and 71 nm, respectively. Ra’s higher value in the case of
the RGO sheets deposited onto the Au film caused their random orientation onto the metallic film
surface (Figure 11d).
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Figure 11. TEM (a) and HRTEM (b) images of the RGO sheets. The AFM image of the metallic film
prepared from Au nanoparticles’ colloidal solutions with a size of 50 nm before (c1, c2) and after the
deposition of the RGO sheets (d).

4. Conclusions

Using UV-VIS spectroscopy, new results are reported in this article concerning the
photodegradation of ALA in the presence of Ag and Au nanoparticles. We have demonstrated
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that (i) the presence of excipients and additional active compounds to ALA, by exposure to UV
light for 1 h, do not induce further changes once ALA has interacted with a colloidal solution of Ag
and Au nanoparticles with sizes of 5 and 10 nm. (ii) The changes reported in the position and the
relative intensities of Raman lines of ALA in the presence of Ag and Au nanoparticles with sizes
between 5 and 10 nm, in contrast to the Raman spectrum of ALA powder, are explained by taking into
account the chemical mechanism of surface-enhanced Raman scattering (SERS) spectroscopy. (iii) The
photodegradation process of ALA that has interacted with metallic nanoparticles was inhibited in the
presence of RGO sheets.
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