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The role of microglia in controlling synapse homeostasis is becoming increasingly

recognized by the scientific community. In particular, the microglia-mediated elimination

of supernumerary synapses during development lays the basis for the correct formation

of neuronal circuits in adulthood, while the possible reactivation of this process in

pathological conditions, such as schizophrenia or Alzheimer’s Disease, provides a

promising target for future therapeutic strategies. The methodological approaches

to investigate microglial synaptic engulfment include different in vitro and in vivo

settings. Basic in vitro assays, employing isolated microglia and microbeads, apoptotic

membranes, liposomes or synaptosomes allow the quantification of the microglia

phagocytic abilities, while co-cultures of microglia and neurons, deriving from either

WT or genetically modified mice models, provide a relatively manageable setting to

investigate the involvement of specific molecular pathways. Further detailed analysis in

mice brain is then mandatory to validate the in vitro assays as representative for the

in vivo situation. The present review aims to dissect the main technical approaches

to investigate microglia-mediated phagocytosis of neuronal and synaptic substrates in

critical developmental time windows.

Keywords: microglia, synaptic pruning, phagocytosis, confocal microscopy, flow cytometry

INTRODUCTION

Synapse formation is a critical step in the assembly of neuronal circuits. Both secreted and
membrane-associated proteins contribute to the formation and maturation of synapses. The
process of synaptogenesis is started when initial contacts between synaptic partners are established
through filopodia, which lose their motility and become stabilized, to transform into synaptic
structures. Synaptic contacts are generated in excess during the early phases of development and
therefore, at subsequent stages, the redundant, weak synapses are eliminated, while the more
active are strengthened. This selective loss of synapses during a critical period is responsible for
structuring neuronal circuits for the remainder of life. In the last years, microglia have emerged as
a key player in the process of synapse formation as well as in synapse elimination (1, 2).

Microglia, which derive from myeloid progenitors in the yolk sac, invade the brain
around embryonic day 9 in mice (3). As development proceeds, microglia acquire a highly
ramified morphology with multiple, motile processes that continuously monitor the brain
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microenvironment and supervise the neuronal health state.
The functional interactions of microglia with neurons
are spatially and temporally controlled and comprise
several processes including phagocytosis of apoptotic cells,
modulation of neurogenesis and regulation of myelin
formation (4). Furthermore, microglia have a key role in
synapse surveillance, which occurs through the frequent,
transient physical interactions between these cells and
synapses (5, 6). Short contacts of dendrites by microglia in
the somatosensory cortex during the synaptogenesis period
were shown to induce filopodia and dendritic spines, via
calcium-, actin- and neurotrophin-mediated mechanisms (7, 8),
while microglia–spine contacts were associated to the ability
of microglia to phagocytose and eliminate synaptic material.
To carry out these critical, diverse tasks, microglia assume
distinctive states that change over time and which are defined by
unique molecular signatures over the course of development (9).

Since the 1970s, neuroscientists have known that synaptic
density in the brain changes with age. In 1983, the psychiatrist
Irwin Feinberg, at the University of California in San Francisco,
described the reduction in spine density as synaptic “pruning”
(10, 11). In this process, the removal of weaker structures
reallocates resources to those remaining, allowing them to grow
stronger and more stable (12, 13). With the clear evidence that
synaptic activity guides proper pruning (14, 15), researchers’
attention turned to uncovering the cellular mechanisms that
might regulate the remodeling. In 2007, Stevens et al. identified
an unexpected role for the classical complement cascade in
CNS synapses elimination. In particular, they showed that
complement proteins opsonize or “tag” synapses in the brain
during a discrete window of postnatal development and that
the complement proteins C1q and C3 were required for synapse
elimination in the developing retinogeniculate pathway (16).
These data, combined with the already described phagocytic
capacity of myeloid cells, led to the hypothesis that microglia
may have a role in phagocytic elimination of synapses as part of
the widespread pruning of supernumerary synaptic connections
during development.

Consistent with their selective elimination, synaptic
components were detected inside microglial phagocytic

Abbreviations: Atg7, Autophagy Related 7; C1q, Complement Component 1q;

C3, Complement Component 3; CD11b, Cluster of Differentiation 11b; CD200,

Cluster of Differentiation 200; CD206, Cluster of Differentiation 206; CD45,

Cluster of Differentiation 45; CD47, Cluster of Differentiation 47; CD68, Cluster

of Differentiation 68; CD86, Cluster of Differentiation 86; CSF-1, macrophage

colony-stimulating factor 1; CX3CL1, CX3C- chemokine ligand 1; Cx3CR1, C-X3-

C Motif Chemokine Receptor 1; EZH2, Enhancer of Zeste Homolog 2; FBS, Fetal

Bovine Serum; GM-CSF, macrophage colony-stimulating factor 1; GRN, Granulin;

IBA1, Ionized Calcium-Binding Adapter 1; IFNγ, Interferon γ; IGF-1, Insulin Like

Growth Factor 1; IL- 10, Interleukin 10; IL-1β, Interleukin 1 β; IL-34, Interleukin-

34; IL-4, Interleukin 4; iNOS, Cytokine-inducible Nitric Oxidase Synthase; LPS,

Lipopolysaccharide; PPARγ, Peroxisome Proliferator-activated receptor γ; PRC2,

Polycomb Repressive Complex 2; PSD-95, Post synaptic Density Protein 95; PTEN,

Phosphatase and Tensin Homolog; SIRPα, Signal Regulatory Protein α; SNAP25,

Synaptosomal Associated Protein; SZ, Schizophrenia; TDP-43, TAR DNA-binding

Protein; Tgfbr1, Transforming Growth Factor β receptor 1; Tgfbr2, Transforming

Growth Factor β receptor 2; TNFα, Tumor Necrosis Factor α; TREM2, Triggering

Receptor Expressed on Myeloid Cells 2; TTX, Tetrodotoxin; vGLUT1, Vescicular

Glutamate Transporter 1; SR-A, Scavenger Receptor A.

compartments. However, whether significant portions of
synapses are engulfed or small (<1 um) synaptic membrane
components are rapidly captured through a process named
trogocytosis, is still debated (17). As expected, an excess of
immature synapses was detected in mice lacking either the
fractalkine receptor Cx3cr1, a chemokine receptor expressed by
microglia in the brain (18), or complement components (15).
The occurrence of supernumerary synapses was also detected
recently in mice genetically lacking TREM2, an innate immune
receptor of the immunoglobulin superfamily, expressed by
microglia in the central nervous system (CNS), and playing a
pivotal role in microglial cell activation, phagocytosis, survival,
clustering to amyloid beta (Aβ) plaques [reviewed in (19)]. These
recent findings, therefore unveiled TREM2 as a key microglial
phagocytic receptor mediating the process of synapse elimination
during neurodevelopment (20, 21). The presence of multiple tags
seems therefore to be required in order to univocally mark the
synapse to be eliminated, while additional protective molecules
avoid the inappropriate synapse removal. Among the latter, the
“don’t eat me” signal CD47 and its receptor, signal regulatory
protein α (SIRPα), were found to represent molecular brakes for
excessive pruning in the developing retinogeniculate system (22).

In the last years, evidence emerged that the mechanisms
of synapse elimination, operating during development, can
become aberrantly “reactivated,” and may possibly contribute
to pathological synapse loss occurring in neurodegenerative
diseases (23). Consistent with this view, both the complement
cascade and TREM2 were found as implicated in Alzheimer
Disease, with synaptic C1q being aberrantly elevated and
contributing to synapse loss (24, 25) and several TREM2
variants being associated to the disease [reviewed in (26)].
Also, a reduction in the synapse-protecting molecule CD47
has been reported in patients with multiple sclerosis (27).
Furthermore, several studies described an altered phagocytic
function of microglia in Parkinson’s Disease [reviewed in (28)].
The occurrence of a concomitant increase of “eat me” signals
and decrease of “don’t eat me” signals in these diseases, leading
to an aberrant microglial phagocytosis and producing synaptic
alterations, is becoming therefore a realistic possibility.

Based on these considerations and on the emerging role of
abnormal synapse elimination in neurodegenerative processes,
we expect that this process will be an increasingly important
area of future investigation, also as a potential therapeutic target
for reducing excessive phagocytosis in pathological conditions.
In this review, we intend to provide a survey of the different
technical approaches for studying, both in vitro and in vivo, the
phagocytosis of neuronal and synaptic substrates by microglia.
For each of these strategies, strengths and weaknesses will be
evidenced, and possible resolution approaches will be proposed.

MICROGLIA SOURCES

Microglial Cell Lines
Despite in vitro conditions clearly represent an over-simplified
scenario, microglial cultures are doubtless a very useful tool to
study phagocytosis, thanks to the possibility to control almost
all the experimental settings. Immortalized cell lines are often

Frontiers in Immunology | www.frontiersin.org 2 February 2021 | Volume 12 | Article 640937

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Morini et al. Tools for Studying Synaptic Elimination

chosen, due to their ability to proliferate and provide abundant
material when the use of animal models is not possible. One
of the most frequently adopted cell line are BV2 cells, an
immortalized murine cell line obtained by infecting primary
microglia with J2 retrovirus carrying v-raf/v-myc oncogene (29).
Transformed cells express several macrophage markers, as MAC-
1, MAC-2 and IBA1 (30), and are able to develop an adequate
response to classical stimuli. For example, LPS stimulates the
release of IL1β in BV2 cells (29) and Aβ fibrils promote
phagocytosis (31–34). In addition to BV2, the most implemented
mouse cell line is N9, which was developed by immortalizing
mouse primary microglia with the v-myc or v-mil oncogenes
of the avian retrovirus MH2. N9 cells share many phenotypical
features with primary microglia cultures. Indeed, N9 cells express
the microglial markers FcR, Mac-1, and F4/80 (35) and two
purinergic receptor subtypes, metabotropic (P2Y) and ionotropic
(P2Z) (36). As for primary microglial cultures, they respond to
TNFα stimulation with a reduction of the expression of the SR-A
and CD36 and also in Aβ uptake (37). Moreover, LPS stimulation
induces the release of IL-6, TNFα, and IL-1β in N9 cell line
(35). Further additional cell lines include the colony stimulating
factor-1 dependent EOC cells (38), C8-B4 and RA2 cell line
which are not genetically modified (39–42). Although these cells
have been widely adopted in several studies, related in particular
to inflammation (43), it is increasingly clear that data obtained
from cell lines need to be compared to results from primary
microglia and in vivo models, to be considered as reliable (44).
Indeed, prolonged culturing of cell lines can negatively influence
their characteristics. After many generations, immortalized cell
lines can suffer of duplications or chromosomes rearrangement,
therefore, mutations and epigenetic changes risk to accumulate
over time (45, 46). Das et al. adopted an RNA-seq approach
to finely distinguish the differences in gene expression between
primary cultured microglia cells and BV2 after LPS treatment
(47). Primary microglia had a stronger response to the stimulus
and the expression of numerous cytokines, chemokines and
interferon regulated genes was uniquely affected, for example
IL12 and CCL5, whose increased levels have been associated to
neuroinflammation [(48, 49) for a more detailed list, see (47)].
A few years later, Butovsky et al., showed that the microglial cell
lines N9 and BV2 do not express any of the genes characteristic
of the TGF-β–dependent adult microglia signature (50).

Primary Newborn Microglia
Relative to cell lines, more advisable is the use of primary
microglia, that can be isolated from embryos and newborn
mouse pups in the P0–P4 time window (51, 52) (Figure 1).
Dissociated cells are collected through enzymatic digestion of
mouse brains and seeded as mixed glial culture. Microglia
growing on top of a confluent astrocyte layer, generally in 2
weeks, are next purified through mechanical tapping of mixed
glial culture [for a protocol see (53)]. After 2 h, microglia
attach to the bottom and, after replacement with fresh culture
medium, are ready to be used, starting from the next day. The
use of primary microglia allows to perform in vitro assays in
controlled conditions, with a relatively short time interval from
the cultured cell collection to their employment (39). Although
representing an advancement toward the use of immortalized

cell lines, the use of cultured primary microglia suffers of
important limitations. First, local environment is known to exert
a profound influence on microglia, and indeed it is widely
recognized that microglia quickly lose their transcriptional
phenotype after niche removal (54, 55). In addition, the use
of media containing serum, which are usually adopted to
ensure vitality and proliferation of freshly isolated microglia,
results in a low reproducibility of data, due to batch-to-batch
heterogeneity (39). Since factors required for microglia survival
can be found in media conditioned by astrocytes (56), a number
of protocols for culturing primary microglia from newborn mice
use mixed cultures composed by a confluent layer of astrocytes
on which microglia grow in semi-suspension (21, 53). Although
listing the different methods for isolating and culturing primary
microglia is not the purpose of this review, possible hints to
at least partially overcome these issues are discussed in the
relative chapter.

Primary Adult Microglia
Because of the clear evidence of the central role played by
microglia during physiological and in pathological context,
the possibility to isolate intact microglia from the adult brain
has become very appealing through the years and has been
pursued by many groups. Microglia isolation from the adult
brain presents some challenges, and several protocols have been
published and optimized along the way (Figure 2). One of
the first studies describing a successful method for isolating
microglia from human and rat brain homogenates, was carried
out by M. L. Cuzner’s group in 1988 (57), followed by another
work from Volker Ter Meulen’s group a few years later (58).
These protocols are based on an initial enzymatic digestion
followed by separation steps using a Percoll gradient of various
densities that allows separating myelin debris from nervous
cells. Over the years, this procedure has been improved and
optimized. Indeed, while until 2015, homogenization of the
whole brain or of specific brain areas was mostly performed
by enzymatic digestion (by using enzyme like Collagenase D,
Dispase, Trypsin, and or Papain) carried at 37◦ or at room
temperature (RT) (51, 59–66), more recently BenA. Barres’ group
modified the existing microglia isolation protocols in order to
minimize microglia activation during the isolation procedure.
The whole procedure is now carried out under consistently cold
conditions (on ice or at 4◦C) and the brains are mechanically
homogenized using a dounce homogenizer instead of undergoing
to enzymatic digestion. Flow cytometry and RNAseq expression
of cell-type–specific markers showed that avoiding enzymes
and maintaining cold temperatures throughout the whole
isolation process prevented transcriptional phenotypic changes
and hyper activation of isolated microglia (9, 67). Furthermore,
a reliable cell separation is now successfully obtained through
the following three approaches: (1) Fluorescence activated cell
sorting (FACS), (2) Magnetic-activated cell sorting (MACS), and
(3) Immunopanning (Figure 2).

Fluorescence Activated Cell Sorting (FACS)
This is the most widely used approach where microglia are
sorted with a high cell purity from other major CNS cell types
through immune cell markers. CD45 and CD11b, which are
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FIGURE 1 | Primary microglia culture and main usages to assess the phagocytic process. Schematic figure depicting newborn mice (P0–P4) from pregnant female

used to obtain primary microglia culture. After dissection and enzymatic digestion of cortices and hippocampi, cells are resuspended in growth medium (usually

composed by either DMEM or EMEM with 10 to 20% of FBS), to sustain microglial growth. Cells are plated in T75 flasks and cultured for at least 10 days at 37◦C.

Microglia are subsequently collected either by vigorously tapping the flasks, by agitation at 230–245 rpm for 45min or through mild trypsinization. In some assays,

microglia are cultured alone or co-cultured with neurons and the cells are analyzed by fluorescent microscopy (e.g. to quantify neuronal spine number) or by

electrophysiology (top panel); in other assays, microglia phagocytic properties are assessed by feeding the cells with specific substrates: fluorescent beads,

synaptosomes, liposomes, or apoptotic neurons (bottom panel).

not present on the surface of other glial cells or neurons,
are commonly used to identify microglia (20, 59, 60, 68–
70). Microglia are CD45lowCD11b+ and can be therefore
distinguished from monocyte and macrophage populations
(CD45highCD11b+) (58). However, since the separation based
on CD45 expression levels is not sufficient to cleanly separate
microglia from all the other myeloid populations, such as
neutrophils or choroid plexus macrophages, many groups
recently invested increasing efforts in order to identify unique
and highly specific markers to selectively distinguish microglia.
The Transmembrane Protein 119 (tmem119) and the Purinergic
Receptor P2y12 have been shown to be exclusively expressed
by microglia and have been added to the sorting procedure
(50, 67, 71). More recently, the hexosaminidase subunit beta
(Hexb) has been described as a stably expressed microglia core
gene, with a rather stable expression also during inflammation
and neurodegeneration (72).

Magnetic-Activated Cell Sorting (MACS)
This approach is based on the use of anti-CD11b
immunomagnetic beads. The anti-CD11b antibodies recognize
CD11b surface antigens on microglia by positive selection. Since
these antibodies are conjugated to magnetic beads, they allow
the retention of labeled cells in a magnetic field. Therefore,
this strategy efficiently selects CD11b+ cells over other major
CNS cell types, and the large majority of CD11b+ cells from
the uninjured CNS are in fact microglia (63, 73). Myelin debris
can also be removed using the same immunomagnetic beads
approach, instead of using Percoll gradient.

Immunopanning
In this strategy, antibodies recognizing CD11b surface antigens
are immobilized on a Petri dish and used to retain microglia from
brain single-cell suspensions. Panning is trivial, involving only
three steps: (1) enzymatic preparation of a cell suspension, (2)
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FIGURE 2 | Schematic figure depicting current methods adopted to obtain freshly isolated microglia. Brains from adult mice are (1) homogenized with a dounce

homogenizer at 4◦C to avoid microglia activation or (2) enzymatically digested at 37◦C in the water bath, and filtered through a 70µm cell strainer. Myelin is removed

either by centrifugation with a Percoll gradient or by using anti-myelin magnetic cell sorting (MACS) antibodies. Then, microglia are sorted from other CNS cell types by

FACS through specific cell markers. Otherwise, microglia are isolated by MACS anti-CD11b antibodies. Microglia can also be isolated by immunopanning. In this

approach, the cells suspension is passed over a series of antibody coated dishes in order to remove contaminating cell types. Then, microglia are positively isolated in

the last coated dish.

passing this suspension over a series of antibody-coated dishes,
and (3) removing the purified cells from the final dish. This
protocol has been less commonly used (74–76).

After isolation, fresh microglia from adult mice can be
cultured in vitro or directly assayed for their functional and
phagocytic properties. Many protocols have been developed to
maintain adult microglia in culture for several days. Some groups
showed the generation of pure microglia from adult mice and
their maintenance in culture for more than 60 days starting
from a mixed glial population treated with GM-CSF (77). Yet,
these cultures maintain a high proliferative capacity, whichmight
be due to an immature phenotype of these cells, since adult
microglia is not mitotically active nor proliferate in response to
GM-CSF or M-CSF (50, 59, 78).

More recently, Bohlen et al., shed a clearer light on previous
procedures and proposed a new method to maintain adult
microglia in culture. They were able to successfully culture
microglia from juvenile or adult rat brains, but they observed

that microglia cultures from old mice (>P14) were not viable.
Cultures from mice younger than <P14 were viable, although
the yields and survival rates were lower if compared to rat tissue.
So, the authors concluded that microglia cultures from rat and
mice should be performed starting from young animals since cell
yield and viability drop with increasing animal age. Once isolated,
microglia were maintained in culture in the presence of TGF-β2
and IL-34 orM-CSF of absence of FBS (75). Due to the challenges
of maintaining adult microglia in vitro and after the discovery
that microglia lose many of the core signature genes such as
Tmem119 and P2ry12 only after a few days in vitro (50, 56, 79),
a limited number of studies have performed phagocytic assays on
adult microglia cultures. Indeed, most of the phagocytic assays
currently described in literature are performed using microglia
prepared from newborn mice as we described in the first section.
This is still a reliable and useful system, in which the cells are
easier to obtain and can be cultured for a longer period of time
(20, 21).
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Human Microglia-Like Cells
Recently, different groups demonstrated the existence of
significant differences between murine and human microglia
(79–81). This further highlighted the importance of finding new
models to better understand the genetics and function of human
microglia. With this purpose, a large effort has been done by
the scientific community to generate human microglia-like cells
(iMGLs) from human embryonic stem cells (ESCs) or by the
reprogramming of adult cells (i.e., fibroblast or blood cells) into
induced pluripotent stem cells (iPSCs) via the overexpression of
specific transcription factors.

Several detailed methods for the generation of iMGLs have
been published in the past 4–5 years (82–87). The common
thread of these new generation protocols is that the specific steps
through which iPSCs are differentiated into microglia-like cells,
seek to mimic microglia ontogeny.

Indeed, developmental ontogeny studies showed
that microglia are of mesodermal origin, deriving from
erythromyeloid progenitor (EMP), that arise from the yolk-sac
(3, 88, 89). Therefore, the new methods generate cells that
transition from iPSCs to primitive hematopoietic precursor cells
(HPCs), EMPs, and, ultimately, microglia.

iMGLs phenotype has been shown to be induced by
incubation of human iPSC-derived microglial and/or
macrophage progenitors with various combinations of cytokines,
including high levels of CSF-1 and IL-34 (85); IL-34 and
GM-CSF (83); and IL-3, IL-34 and GM- CSF (86). In order to
recreate the brain environment, and to push iMGLs maturation
further, some of these protocols also proposed to co-culture
iMGLs with neurons (84, 87) or to add further cytokines such as
TGF-β1, CX3CL1 (also known as fractalkine), and CD200 which
are critical for microglia homeostasis and to mimic neuronal
proximity (82) [reviewed in (90)].

Moreover, microglia-like cells from iPSCs allows the
comparison between healthy donors and patients with
neurological disorders. This aspect is of primary interest
and, together with further recent improvements, such as the
addition of iMGLs to iPSC-derived brain organoids or the
xenotransplantation of HPCs/ iMGLs into mouse brain, makes
iMGLs a powerful system to study properties and dysfunctions
of human microglia [reviewed in (91)].

Pitfalls and Hints
Although primary microglia isolated from embryonic (92) or
neonatal mice and rats are widely used as in vitro models,
recently it has become evident that the tissue environment
has a major impact on microglia transcriptome (50, 56, 79).
Despite the important advances that have been made to improve
culture conditions of microglia and iPSCs-derived microglial
cells (39), in vitro microglia, although being informative and
providing a useful setting to dissect basic mechanisms and
possible dysfunctions of phagocytic microglia (20, 21, 50), is far
from recapitulating the profile and function of microglia in their
physiological environment.

As mentioned, the main limit of microglial culturing is
the wide adoption of medium containing serum for their
maintenance. Fetal bovine serum is usually added to medium to

a final concentration of 10–20% in order to promote microglia
proliferation and survival (20, 21, 53). However, microglia are
not exposed to serum proteins in the brain and FBS perturbs
microglia phenotype in vitro (39, 56), thus increasing the risks
of in vitro artefacts. A solution to this problem has been provided
by Bohlen et al., who identified in CSF-1, TGF-β and cholesterol
the minimum supplement requirement for microglia culturing,
a condition which allows obtaining an in vitro model with a
significantly higher reproducibility (56).

The authors purified microglial cells from postnatal rat
brain by immunopanning, and quantified their viability 5 days
after plating. As expected, microglia showed a high mortality
when serum was removed from the medium, but a robust
pro-survival rate was reached by culturing microglial cell in
a medium preconditioned by astrocytes. As CSF-1 and TGF-β
were not sufficient to promote microglia viability, they cleverly
dissected the conditioned medium and added cholesterol as
the third key element, obtaining the so-called TIC medium
(TGF-β2 2 ng/mL, IL-34 100 ng/mL, and cholesterol 1.5 mg/mL)
(56). More recently, the Seker’s group established an innovative
tri-culture of neurons, astrocytes and microglia adopting the
same cocktail used in TIC medium. Under these conditions,
microglia showed a neuroprotective role when neurons were
exposed to excitotoxic events, and the response to external
stimuli mimicked neuroinflammatory responses better than
classical co-cultures (93). Nevertheless, in contrast with Bohlen’s
results, cytokines detected in unstimulated TICmedium reflected
slightly inflamed state and microglia exhibited an amoeboid
morphology. As suggested by the authors, it should be considered
that the two systems differ in the age of mice from which cultures
were obtained. Moreover, the tri-culture medium includes also
B27 supplement, whose elements could influence microglial cell
phenotype (56, 93).

Another critical issue in microglia culturing resides in the
process of cells collection after in vitro maintenance. Microglia
proliferate in semi-suspension, above a layer of astrocyte and
shaking of the culture support (flask or petri-dish) for a defined
time and speed is sufficient to detach microglia from the
astrocytes layer, re-suspending them in the medium (20, 21, 53).
After 10–15 days, the shaken culture will be re-populated by
new microglia that could in principle be employed for a new
cell collection, the so-called “second-shaking.” A main pitfall
in this process is the clonal-selection of a sub-population from
the original culture, that makes it only partially comparable
to a fresh culture (94). Moreover, the shaking process can
stress the cells, inducing phenotypic variations in primary
microglia. For these reasons, a mild trypsinization protocol has
been adopted as an alternative. Lin et al., compared shaking
vs. mild trypsinization (95), demonstrating that microglial
morphology and cytokine expression vary depending on the
methodology of isolation. Indeed, the shaking protocol induced
a higher expression of microglia activation markers, iNOS,
CD86, CD206, and arginase 1, together with pro-inflammatory
cytokines, TNFα, IL-1β, IL-10, and IGF-1 (95), although both
conditions fully maintained microglia ability to respond to
classic stimuli, such as IL-4, LPS, and IFNγ (95). Interestingly,
by analyzing a panel of genes commonly upregulated during
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aging or after LPS or Aβ stimulation, it was found that CD11b
magnetic-associated cell sorting (MACS) guarantees the highest
expression of Tgfbr1 and Tgfbr2 genes, and results in a “more
quiescent” microglia phenotype, as compared to cells obtained
by mild trypsinization and shaking (96). Thus, cell manipulation
can heavily influence the microglia condition. Caution should
therefore be applied when performing experiments and well-
defined control conditions are mandatory to be applied.

Moreover, as already mentioned, the microenvironment
exerts a strong effect on the microglia transcriptome (50, 56,
79). In particular, human and mouse microglia in vitro cultures
exhibit down-regulation of genes characteristic of the core
transcriptome signature of microglia and, on the other side,
upregulate genes typically only observed in vivo in the context
of disease or injury (56, 70, 79).

Microglia isolation from the adult brain also presents several
challenges. This is primarily due to the fact that microglia are
highly responsive to CNS tissue damage, which is inevitable
during their isolation, and easily undergo hyper-activation and
gene transcription changes after manipulation (9, 67). Another
reason is that the final yield obtained after isolation is very low
since microglia only account for 5–12% of the total cells in the
brain (97–99) [the total yield per brain expected after isolation
ranges between 5 and 10× 104 cell from mice between postnatal
(P) days 10 to P21] (75).

Furthermore, the procedures used to isolate and select
microglia from adult brain have some disadvantages that need to
be considered, especially depending on the use to be done with
microglia after their sorting. FACS, the first-choice procedure,
allows to obtain a very high cell purity and it is widely and
successfully used. Yet, it requires specific and very well-organized
FACS facilities, instrumentations that need to be always up
to date, and specialized technicians able to manage and use
sorters optimally. Another caveat of cell sorting is that the
detection antibodies remain bound to the cells at the end of
the process, blocking the epitopes and potentially impacting cell
function. Also, sorting procedures cause hydrodynamic stress
to the cells, even though it has been demonstrated that this
does not affect cell structure or function. The second method,
based on positive selection of CD11b+ cells through magnetic
beads, is in fact highly effective but requires significant upfront
investment in reagents and equipment that are particularly
expensive. A disadvantage of this approach is that positive
selection utilizes cell receptor antibodies to target the specific
cell type of interest and may potentially turn on activation
cascades through these receptors or cause receptor blockade and
inhibit the downstream functions of the isolated cells. Moreover,
these protocols do not separate microglia from barrier-associated
macrophages, monocytes, neutrophils, or certain B cells also
present in the tissue. The third strategy, immunopanning,
requires minimal reagent investment or specialized equipment
but does not provide a high specificity. Indeed, separation of
different myeloid populations is unlikely to be achievable using
immunopanning due to the propensity of various myeloid cell
populations to adhere to the panning dish, even dishes not
coated with antibodies. Moreover, this protocol requires cells
trypsinization but on the other side, avoids introduction of

magnetic particles in downstream applications. Therefore, this
approach is not preferable if the final goal is to isolate a pure and
homogeneous microglia population.

IN VITRO AND EX VIVO ENGULFMENT
ASSAYS

Once microglia are isolated from brain and deposited in culture,
their phagocytic properties can be evaluated using several
different substrates (Figure 1). Below we describe some of the
assays which can be used to test microglia phagocytosis. Although
the focus of this review is on microglial synapse elimination, in
this chapter the strategies and the tools that can be used to analyze
the basic phagocytic activity by microglia will be described (see
Table 1). These assays may provide suitable control conditions,
needed to complement the study of synapse elimination by
microglia. It is to be considered that the receptors and molecular
machineries that coordinate phagocytosis and digestion are
likely to differ depending on the specific substrate. Importantly,
the substrates and phagocytic events described in this section

TABLE 1 | In vitro engulfment assays.

Samples Type of cells Engulfed

substrates

Techniques

adopted

References

Cell lines Microglia cell line

BV-2

Fluorescent

beads

Fluorescent

microscopy,

Flow

cytometry

(100)

Microglial cell

line

MMGT12

Fluorescent

beads

Flow

cytometry

(101)

Microglial cell

line

BV-2

Synaptosomes Fluorescent

microscopy

(102)

iPC-derived

microglia

Induced

Microglia

Like Cells (iMGL)

Synaptosomes Fluorescent

microscopy

(103, 104)

Primary

cultures

Newborn

microglia

Fluorescent

beads and

liposomes

(DiO Labeled)

Fluorescent

microscopy

(21)

fluorescent

beads

Fluorescent

microscopy,

Flow

cytometry

(20)

Fluorescent

bioparticles

Fluorescent

microscopy

(105)

Adult microglia Ultraviolet-

irradiated (UV-irr)

dead neurons

Fluorescent

microscopy

(78)

Fluorescent

microspheres

Fluorescent

microscopy

(62)

Macrophages Bacteria and

cancer cells

CyTOF (106)

The table reports some commonly used experimental approaches to study microglial

phagocytosis in vitro.
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can only partially model the process of synapses and neurites
phagocytosis in vivo.

Fluorescent Beads
Latex beads have been widely used to analyze the basic phagocytic
process by microglia. This type of assay is advantageously used
to demonstrate that the phagocytic machinery of microglia
is properly functional, even when synapse elimination may
be defective. Further, purification of phagosomes containing
engulfed latex beads has allowed to understand the phagosome
biology on a biochemical and functional standpoint and to dissect
the sequential steps at the basis of this process (107–109).

The use of Fluorescent Latex Beads (FLB) has allowed
a fast and quantitative analysis of phagocytosis in different
cell populations either by FACS (101, 110, 111) or by a
simple count of FLB internalization by fluorescence or confocal
microscopy (112, 113). FLB, which are routinely used to calibrate
flow cytometers, may be excited by a specific wavelength or,
alternatively, contain a mixture of fluorophores that enable them
to be excited at any wavelength of UV and visible light. FLB have
a wide range of sizes (the most commonly used range from 0.5 to
6.0µm) and are inert, so they are not toxic and do not interfere
with cell viability (100, 101). FLB may be either used without
any modifications (20, 21, 100, 114, 115) or pre-opsonized with
FBS or BSA to improve phagocytosis by microglia (101, 116),
since it has been shown that the engulfment of synapses is
strictly dependent on complement proteins deposition, such as
C1q and C3, and their interaction with microglial cells (24, 103).
Moreover, beads can be also carboxylated so to add a negative
charge, a model that can be used tomimic negative surface charge
of phosphatidylserine-exposing cells (117). The engulfment rate
is dependent on FLB concentration and incubation time (115).
To precisely evaluate microglia phagocytic capacity, FLB amount
and time of incubation need to be precisely set.

Pathogen-associated molecular patterns (PAMPs), such as
LPS, significantly increase FLB internalization by microglia (101,
115). Also, in line with the observation that FLB internalization
by microglia is accompanied by an increase in TNF-α and
TGF-β production (69), MDG548, a neuroprotective PPARγ

agonist used for experimental Parkinson’s Disease treatment was
found to increase FLB engulfment, while decreasing TNFα levels,
thus providing a possible basis for PPARγ agonists protective
role (101).

Besides PAMPs, basic phagocytic activity by microglia is also
enhanced by neurodegeneration-associated molecular patterns
(NAMPs), which include the Aβ and neurofibrillary tangles (118,
119). This activation modifies microglial phenotype, turning
them into disease associated microglia (DAM) (120). In this
framework, Nagano et al., showed, by both confocal microscopy
and flow cytometry analysis, that the presence of Aβ deposits
is able to increase the engulfment rate of FLB in primary
rat microglia. This effect is reversed after the treatment with
Prostaglandin E2 (PGE2), through the involvement of microglial
E-prostanoid receptor 2 (EP2) (121). Allendorf et al., confirmed
that treatment of primary rat microglia with pro-inflammatory
stimuli such as LPS, Aβ or Tau induces an increase of FLB
phagocytic activity (100). Finally, Yin et al. (111) have shown

that the inhibition of EZH2, the catalytic subunit core PRC2, a
gene involved in silencing a number of tumor suppressor genes,
is able to increase the levels of pro-inflammatory cytokines and
the FLB phagocytic capacity of microglia, which are abundant in
the tumor environment (111, 122).

Of note, the engulfment of FLB can be also assessed in vivo.
Hughes et al. (114) injected FLB [6µm] intrahippocampally
in ME7 mice, a model of prion disease, in order to study
their engulfment capacity. They discovered that microglia in
the degenerating brain, internalize FLB and apoptotic cells,
demonstrating that the phagocytic machinery of the microglia in
ME7 mice is properly functional.

Liposomes
An additional substrate that can be successfully exploited for
phagocytosis assays are liposomes, or unilamellar vesicles (UVs)
(123), a useful tool to specifically investigate the nature of
“eat-me” signals which need to be exposed by the target
membrane to allow microglial phagocytosis (21).

UVs can be distinguished in three categories depending
on their size: small UVs (SUV), large UVs (LUV) and giant
UVs (GUV), having a diameter of 20–100, 100–1,000 nm,
and 1–200µm, respectively. UVs stability depends on the
experimental conditions; indeed, oxygen reactive species react
with unsaturated fatty acid chains, thus altering lipid properties
and liposomes structures (124). This responsiveness to the
environmental conditions has been exploited for improving
drug delivery, through the generation of smart vesicles able
to deliver drugs to the target and release them only after a
local stimulus-response (124). One of the biggest advantages
of this tool is that UVs with virtually any composition can be
prepared, enriching them with specific membrane proteins or
different lipids (125, 126). For example, in a recent paper, a
convenient protocol was published for the preparation of proteo-
GUVs containing functionally active neuronal SNARE (soluble
N-ethylmaleimide-sensitive factor activating protein receptor)
proteins for the study of membrane fusion in vitro (125). More
recently, the Matteoli’s group took advantage of DiO labeled
liposomes composed of variable amounts of phosphatidylserine
(PS) and cardiolipin (CL) to investigate whether exposed
PS impacts microglia ability to engulf lipidic membranes
(21). Specifically, the researchers incubated for 1 h liposomes
endowed with different lipidic composition with microglial cells
isolated from mice either WT or genetically lacking TREM2,
a receptor which shows high affinity for phospholipids as
phosphatidylcholine and PS (127). Confocal analysis of liposome
engulfment inside CD68-positive phagolysosomal organelles in
Iba1-positive microglia (15, 21) exploiting the Bitplane Imaris
software to generate a 3D reconstruction of the fluorescent
signal, allowed to demonstrate that the extent of PS positively
correlates with microglia phagocytosis (127). For this kind
of experiments, attention should be paid to the type of
solvents used for permeabilization before the staining (128).
Specifically, the use of saponin allowed to selectively create
pores the cholesterol shaft of the plasma membrane (129)
but not in liposomes, thus avoiding loss of DiO signal from
liposomes (21).
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Liposomes with similar composition have been used not
only to characterize the phagocytic properties of microglial cells
but also to assess their responsiveness to stimuli. In particular,
Hashioka et al. reported that pretreatment of microglia with
PS/PC (phosphatidylcholine) liposomes considerably inhibited
the TNF-α, NO, and radical O2- production induced by Aβ/IFN-
γ, suggesting that PS and PC-containing liposomes -after
being phagocytosed by microglia- inhibit Aβ and interferon-
γ-induced microglial activation (130). Of note, phagocytosis of
PS-containing liposome has been shown to induce the secretion
of anti-inflammatory mediators including prostaglandin E(2)
PGE(2) (131, 132).

Thanks to their high versatility, the use of liposomes can be a
very useful tool to assess microglial phagocytic functions.

Apoptotic Neurons
Apoptotic membranes are another commonly used substrate in
microglial phagocytic assays. Like in the case of beads, this type
of assay can be used to investigate whether and at which extent
the phagocytic machinery of microglia is functional even when
synapse elimination is not properly working.

Apoptotic cells exhibit specific find-me and eat-me signals that
are rapidly recognized and engulfed by phagocytes, which may or
may not overlap with signals exposed at synaptic sites. Notably,
phosphatidylserine externalization has been established as one of
the first detectable events to occur in cells undergoing apoptosis.
Clearance of apoptotic cells by phagocytes actively suppresses
the initiation of inflammatory and immune responses and it is
therefore fundamental for brain homeostasis (133). Moreover,
apoptosis-like phenomena including caspase activation has been
found locally in synapses in a process designated as “synaptic
apoptosis” (134, 135).

Several protocols have been developed to study apoptotic
membranes phagocytosis by microglia, describing the cellular
types employed, the specific stimuli used to induce cell apoptosis
and analyzing the receptors andmolecular mechanisms involved.
In the work by Nolte’s group, cerebellar granule neurons were
treated with 100 µM S-nitrosocysteine to induce apoptosis, event
that was confirmed by nuclear condensation and PS exposure.
Primary microglial cells then were added to neurons 2 h after
apoptosis induction and co-cultured for 6 h. Cultures were
stained with propidium iodide (PI) (to detect apoptotic/necrotic
neurons) and lectin to visualize microglia and analyzed by
fluorescence microscopy (136). Zhao et al. cultured rat cortical
neurons and used irradiation to induce neuronal apoptosis.
Again, after propidium iodide (PI) staining, dead neurons (DNs)
were exposed to microglia cultures. By fluorescence microscopy,
they counted the number of DNs engulfed by each microglia,
and calculated the phagocytic index, that consists in the average
number of phagocytosed dead neurons (PI-DNs) within each
microglia and gives a quantification of microglia phagocytic
efficacy (137, 138).

Using adult microglia cultures, Butovsky et al., measured
the amount of ultraviolet-irradiated (UV-irr) dead neurons
engulfed by adult microglia isolated from spinal cord and
cultured in vitro. Through IF staining they were able to quantify
fluorescent dead neurons engulfed by iba1 positive cells (78).

Apoptotic cellular debris can be also detected by using AnnexinV
(ANXV), an innate molecule that binds with high affinity to PS-
bearing membranes. As shown in a recent work performed in
Drosophila, apoptotic membranes were labeled with an ANXV-
conjugated fluorophore and apoptosis was induced using 10mM
cycloheximide (139).

From the point of view of the receptors or mechanisms
involved in the phagocytosis of apoptotic membranes,
Takahashi et al., analyzed phagocytosis of apoptotic neurons by
microglia after TREM2 knockdown or overexpression. In their
experimental setting, neurons were labeled by a red fluorescent
membrane dye and pretreated with okaidic acid to induce
apoptosis. After incubating apoptotic neurons with microglia
for 1 or 24 h, phagocytosis of apoptotic membrane fragments
was detected by fluorescence microscopy and flow cytometry
(20, 140, 141)). Beccari et al., provided an exhaustive protocol
(142) in which the authors describe a series of parameters
to directly quantify in more accurate and complete way than
conventionally used indirect methods, microglial apoptotic
membrane phagocytosis in vivo and in vitro. In a recent
work (143), the authors applied a xenogenic in vitro model of
apoptotic cells phagocytosis to study the mechanism by which
microglial phagocytosis regulates neurogenesis. Phagocytosis
experiments were performed in DMEM 10% FBS to ensure
the presence of complement molecules, which are related
to microglial phagocytosis in vivo (143). Primary microglia
cells were fed for different time points with SH-SY5Y cells, a
human neuroblastoma cell line derived from the bone marrow,
previously labeled with the membrane marker CM-DiI and
treated with staurosporine to induce apoptosis. Only floating
dead-cells fraction was collected from the supernatant and added
to primary microglia cultures in a proportion of 1:1. Apoptotic
cells were visualized and quantified by trypan blue in a Neubauer
chamber. By confocal analysis, the percentage of microglia
containing CM-DiI and/or DAPI inclusions along a time course
was identified as actively engulfed.

Synaptosomes
The process of synapse engulfment by microglia can be
more specifically investigated using synaptosomes (SYNs),
biochemically isolated structures consisting of pinched-off nerve
terminals and juxtaposed postsynaptic densities. Since they
maintain themolecular and biochemical features of a functioning
synapse (144, 145), SYNs have been widely used by the
neuroscientific community to study the synaptic structure and
the functional properties of neurotransmitter release (146). In
the recent years, the use of SYNs has been extended to simulate
the interactions between synapses and microglia/astrocytes and
test the phagocytic capacity of glial cells. To this aim, they may
be used indifferently either freshly prepared or maintained as
frozen (103).

To visualize their engulfment by microglia or astrocytes,
SYNs can be stained with dyes sensitive to acidic pH (102–104,
147). These dyes (one of the most widely employed is pHrodo)
show little or no fluorescent signal at neutral pH, while they
fluoresce brightly when in acidic environments, thus allowing
SYN visualization only when engulfed by acidic phagosomes.
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Sellgren et al. analyzed the engulfment of patient-derived SYNs
by iMGLs to investigate the features of synaptic pruning in
schizophrenia (SZ) patients. Phagocytosis was analyzed by both
real-time imaging upon SYN labeling with a pH sensitive
fluorescent dye (pHrodo) and confocal microscopy, combining
the staining for pH sensitive cyanine dye and the post-synaptic
marker PSD-95. Through this assay, the authors showed an
increased phagocytic capacity of iMGL cells from SZ patients
compared to healthy controls (103, 104).

Using a similar approach, Keaney et al. showed that the
blockade of Bruton’s Tyrosine Kinase (BTK), a protein involved
in different processes such as B cell receptor signaling, pro-
inflammatory cytokine release and phagocytosis, reduces the
uptake of pHrodo-labeled SYNs by microglia (102). PHrodo
labeled SYNs were also used by Madore et al., to show the
relevance of poly-unsaturated omega-3 fatty acids (n-3 PUFAs)
in controlling microglial phagocytosis in the developing brain. In
particular, exposing microglia deriving from either n-3 deficient
or n-3 sufficientmice to pHrodo labeled SYN, the authors showed
that the lack of n-3 from microglia increases the phagocytic
capacity of microglial cells, inducing an excessive synaptic loss
(148). Recently, Evans et al., exploited pHrodo labeled SYNs
in order to show that beta-adrenergic antagonists, such as
metropolol, are able to significantly increase phagocytosis of
primary microglia from rats, whereas beta-adrenergic agonists,
such as xamoterol and isoproterenol, attenuate SYNs engulfment
(149). SYNs labeled with pH sensitive dyes have been also
exploited to investigate the engulfment capacity of astrocytes
(147), which supported astrocyte critical role not only in trophic
functions and neurotransmitters recycling, but also in synapse
elimination pruning (150).

SYNs can also be stained by fluorescent dyes lacking pH
sensitivity. Among these, the FM Lipophilic Styril dyes, which
are able to emit fluorescence only when inserted in the outer
leaflet of the plasma membrane, and are mainly used to study
synaptic vesicles trafficking (103, 151). Filipello et al., exposed
Trem2 knockout (Trem2−/−) andWTprimarymicroglia to SYNs
labeled with FM1-43 dye, demonstrating a key role of TREM2
in the microglia phagocytic process. Flow cytometric analysis of
CD11b+ microglia also positive for FM1-43 dye was successfully
used to quantify SYNs engulfment (20).

Finally, SYNs can be isolated frommice expressing fluorescent
markers in neuronal cells. As an example, in a recent work,
researchers used SYNs derived from the brain of mice expressing
red fluorescent protein (RFP)-to investigate whether microglia
autophagy might be involved in synaptic pruning and be
responsible for an impaired behavior (152). Using this approach,
the authors showed that primary microglia lacking Atg7, which
is vital for autophagy, displayed impaired degradation of (RFP)-
expressing SYNs.

Pitfalls and Hints
The exploitation of assays employing LTBs, liposomes, apoptotic
membranes or synaptosomes are relatively user-friendly, yet,
some specific problems can be encountered using some of these
substrates. Technical details are reported in the papers specifically
quoted in the chapter above. Regarding the analysis of FLB

phagocytosis by microglia, it is important to precisely set both
the amount of FLB used and the incubation time. Moreover, even
though FLB are effectively employed without any modification
(20, 21, 100, 114, 115), they cannot be considered specific
phagocytic targets unless properly opsonized. Opsonization can
be carried out using FBS or BSA (101, 116). However, since the
amount of complement proteins like C1q and C3 in FBS and
BSA is not specified, it is not possible to infer the contribution
of serum to beads phagocytosis (24, 103).

Although liposomes represent a useful tool for studying
targeted phagocytosis (124), an intrinsic pitfall of their
preparation is the variability in their size, that is a striking
characteristic to consider in the context of phagocytosis. Given
UVs dimensions also influence their stability, small UVs are
a good choice (124, 153). However, SUVs are not bigger than
100 nM and this could enhance the non-specific phagocytic
process called macropinocytosis, or fluid phase uptake (154),
which is actin-dependent and, in macrophages, it is activated by
the CSF-1 (155). A basal amount of engulfed material could be
thus explained by the occurrence of this process.

A more specific substrate used to analyze microglia
phagocytosis is represented by synaptosomes. However, it
was shown that synaptosomes expose phosphatidylserine (PS)
and show caspase activation rapidly after preparation, causing
alterations in assessing the phagocytic process (156).

EXPERIMENTAL SETTINGS FOR
INVESTIGATING SYNAPSE ELIMINATION
BY MICROGLIA

This section describes the main technical approaches which
allow to directly assess the microglia ability to eliminate synaptic
contacts. The chapter analyzes both in vitro and in vivo
experimental settings (see Tables 1, 2).

Synapse Elimination by Microglia in vitro
In order to directly analyze the process of synapse elimination,
multicellular culturemodels provide several advantages (93, 161).
The generation of microglial-neuron co-cultures offers flexibility
in experimental design and, when exploited in concomitance
with the use of cell types deriving from genetically modified
mice, allows to address a variety of mechanistic questions (162–
165). Furthermore, since neurons are grown separately from
microglia prior the co-culture, the two cell types can be subjected
to specific treatments thus allowing to test drug effects in a
selected cell populations before co-culturing. In general, in vitro
experimental systems are not able to mimic developmental stages
as it occurs in vivo. Yet they are useful tools and, in the last years,
these experimental settings have been exploited to investigate the
process of synapse elimination and its molecular underpinning.

In a recent study, Lui et al., (166) focused on Progranulin
(PGRN), the product of the Grn gene, implicated in the
regulation of phagocytosis and release of pro-inflammatory
cytokines from microglia and macrophages (167, 168). The
authors designed a co-culture system in which wild type
cortical neurons were plated at low density to allow uniform
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TABLE 2 | In vivo and ex vivo engulfment assays.

Models Brain areas Engulfed

substrates

Techniques

adopted

References

Cx3xr1-/-

mouse

Hippocampus SNAP25+,

PSD95+

synaptic

materials

Confocal

microscopy;

immune-gold

electron

microscopy

(18)

Itgam-/-;

C3-/- mouse

Visual System RGC inputs Confocal

microscopy

dimensional

(3D) surface

volume

rendering

(15)

Trem2-/-

mouse

Hippocampus PSD95+

synaptic

materials

Fluorescent

microscopy

(20)

Zebrafish Spinal cord Apoptotic

neuron

Fluorescent

microscopy,

3D rendering

(157)

Mertk-/-

Mouse

Cortex Apoptotic

neuron

Time-lapse

two-photon

imaging

(158)

Adult

microglia ex

vivo

Cortex Alexa-488

labeled

apoptotic (dNs)

or live neurons

Flow

cytometry

(70)

Amyloid beta

(through the

fluorescent

marker

Methoxy-XO4)

(159)

Synaptic

markers

VGLUT1 and

synaptophysin

(160)

The table reports some of the experimental approaches used to study microglia

engulfment in vivo and ex vivo in different animal models.

synapse development for 14 days in vitro (DIV14). Concurrently,
microglia isolated from Grn+/+ or Grn−/− neonatal brains
were added to cortical neurons at a 1:3 microglia/neuron ratio
and co-cultured for 72 h. Using a modified Sholl analysis to
measure the density of synapses in the vicinity of microglia cell
bodies and Imaris software to perform 3D reconstructions of
confocal images, the authors quantified the amount of synaptic
material within microglial phagolysosomes and demonstrated a
significant increase in synaptic pruning when neurons were co-
cultured with microglia isolated from mice genetically lacking
Grn. A similar approach was used by Filipello et al., to study the
role of microglial TREM2 in synapse elimination. By co-culturing
microglia with hippocampal neurons at a microglia to neuron
ratio of 1.5:1 for 24 h, and through the analysis of miniature
excitatory post-synaptic currents (mEPSC) and dendritic spines
density, the authors demonstrated that microglia are able to
reduce the density of excitatory synaptic contacts in vitro and
that microglial TREM2 is required for this process to occur
(20). To better visualize neurons and spines, WT neurons were

GFP-transfected at DIV 11–12 before adding microglia to the
co-culture. The use of transwell inserts between the two cell types
allowed to discriminate the effects of microglia that require the
direct contacts with neurons.

An additional study where microglia and neurons derived
from mutant or knock out mice were combined in mixed
culture to investigate synapse elimination, focused on the
role of PTEN, a well-recognized syndromic risk allele for
autism spectrum disorder (169). Using co-cultures of primary
neurons and microglia from PtenWT/WT , PtenWT/m3m4, or
Ptenm3m4/m3m4 mice in different combinations, followed by co-
localization of pre- and post-synaptic markers, the authors
demonstrated that Ptenm3m4/m3m4 mutation results in increased
microglia-dependent synaptic pruning in vitro. Interestingly,
the largest decrease in synaptic contact density was observed
when Ptenm3m4/m3m4 neurons were cultured with Ptenm3m4/m3m4

microglia indicating an additive effect when the mutation
occurs in both cell types. A relevant technological addition
of this study is the setting of a protocol which allows co-
culturingmicroglia and neurons for a week in amicroglia/neuron
ratio 1:1 (i.e., a longer time compared to the generally used
general protocols).

The co-culture setting allows to test pharmacological or
experimental treatments which reduce microglial phagocytic
ability. Inhibition of synapse phagocytosis in vitro was recently
demonstrated upon the exposure of hippocampal neurons
to ANXV, an innate molecule that binds phosphatidylserine-
bearingmembranes with high affinity, 15min before co-culturing
them with microglia. ANXV, by cloaking externalized PS,
prevents its recognition by microglial TREM2 and prevents
synapse elimination, as demonstrated by the lack of dendritic
spine density and mEPSC frequency reduction. A similar
approach was taken in another recent work, where microglial
cells were exposed to different treatments before being added
to neuronal cultures (100). Specifically, Allendorf et al.,
demonstrated that LPS, fibrillar Aβ, phorbol 12-myristate 13-
acetate (PMA) or rTAU protein induced removal of sialic
acid residues in microglial cells. This resulted in an enhanced
microglia ability to phagocytose neuronal components. Of note
neuronal phagocytosis was inhibited by a blocking antibody
against CD11b/CR3 (100).

Besides co-cultures of murine microglia and neurons,
recent studies took advantage of the use of human cells.
In a very interesting paper, Sellgren et al. developed and
validated a high-throughput method for modeling synaptic
pruning in vitro, using cells derived from SZ patients or
healthy subjects (103). Specifically, the authors employed iPSC-
derived-microglia like cells and iPSC-derived neurons, the latter
generated from an inducible neurogenin 2 (NGN2) expressing
stable NPC lines. After 21 days of neural differentiation,
mature iMGLs derived from monocytes were added to
neurons for 48 h. iMGLs, maintained under serum-free in
vitro conditions, were found to engulf synapses from iPSC-
derived neural cultures, as assessed by live imaging of iPSC-
derived neurons stained for Alexa Fluor 488-phalloidin and by
measuring PSD-95 engulfment. Using this asset, the authors
demonstrated a significantly higher, complement-dependent,
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uptake of synaptic structures when cells from SZ patients were
employed (103).

Synapse Elimination by Microglia in vivo
Since Ito et al. in 1998 isolated and identified a novel gene
“the iba1 gene” specifically expressed in microglia, traditionally,
Iba-1 antibodies have been used to label/stain microglia
using immunohistochemistry (170). Confocal laser scanning
microscopy is frequently used to image fluorescently labeled
microglia in tissue sections (fixed), retinal whole mounts (fixed
or fresh) and organotypic brain slices (fresh) to investigate
microglial density, morphology, distribution, and dynamic
interactions with different cell types (171, 172).

In the last decades, thanks to the advancement of high
resolution live microscopy techniques, Iba1-positive microglia
have been characterized as highly motile cells, extending and
retracting their processes as they survey the microenvironment
in the healthy brain (173). Both pre-synaptic boutons and
postsynaptic spines have been shown to be contacted by
microglial processes (6, 174). In the visual cortex, the microglia-
synapse contacts were examined in closer resolution using
3D reconstruction serial electron microscopy (6). This study
revealed that, in addition to pre- and postsynaptic specializations,
microglial processes also contacted peri-synaptic astrocytes and
the synaptic cleft.

Subsequently, the close microglia-synapse contacts appeared
to result in the shaping, or re-wiring, of neuronal circuits by
phagocytosis of synaptic materials. The phagocytic properties
of microglia have been extensively analyzed through different
microscopy-based approaches: confocal imaging, electron
microscopy, two-photon microscopy and lightsheet microscopy
(15, 173, 175–177). These techniques allow to visualize and
quantify, in a very reliable manner, the material engulfed by
microglia in the brain, generating a clear picture of the phagocytic
process in specific time windows. 3D reconstruction of the
phagocyte and its intracellular structures (e.g., phagolysosomes
and other intracellular organelles) by softwares like Imaris, ilastik
[(178); 1.3.2] and CellProfiler [(179); v3.0] has been successfully
used to generate very detailed images of phagocytic microglia
and to quantify the material internalized.

Two milestones articles first demonstrated, by electron
microscopy and super-resolution confocal microscopy, the
presence of pre- and post-synaptic structures inside microglial
phagolysosomes in different brain regions (mouse visual system
and hippocampus) during critical periods of synaptic refinement.
In particular, in 2011, Paolicelli et al. spotted synaptic material
inside microglia, providing the demonstration that these cells
play an active role in pruning synapses. Specific presynaptic
(SNAP25) and postsynaptic (PSD95) proteins were identified
inside microglial processes following synaptic contacts, by
confocal or immune-gold electron microscopy, respectively
(18). Furthermore, disrupting the fractalkine (Cx3cl1/Cx3cr1)-
mediated communication between microglia and neurons in an
otherwise healthy mouse, resulted in brain circuits persisting as
immature into adulthood (18, 180, 181). In 2012, the Stevens’
lab at Boston Children’s Hospital, found that, in the newborn
mouse visual system, microglia can engulf synapses in the

lateral geniculate nucleus (LGN) through a process mediated by
both complement and neuronal activity. Using Cholera Toxin
B Subunit (CTB) injections in Cx3cr1 gfp/+ mice, in which
microglia express GFP, the authors elegantly showed for the first
time, by 3D reconstructions that microglia contain engulfed RGC
inputs. By either silencing or promoting neuronal activity in one
eye using TTX or forskolin, respectively, they further showed
that microglia selectively prune the weaker inputs. Notably,
by examining microglial engulfment in C3 mutants and C3-
receptor mutants, Schafer et al. showed that this process critically
relies on the complement cascade. Of note, impaired microglial
engulfment in both these mutants correlated with long-lasting
defects in the segregation of ipsi- and contralateral RGC inputs
in the dLGN, with an increase in synaptic densities (15). To
confirm that inputs are in fact phagocytosed by microglia,
Schafer et al. introduced a staining of in situ microglia for
the phagolysosomal marker CD68, performing the subsequent
colocalization with synaptic materials. Only the synaptic material
internalized in CD68-positive phagolysosomal structures was
considered for the analysis. A few years later, the same group
published a detailed methodology for imaging and quantitatively
measuring engulfment using confocal microscopy combined
with 3D surface volume rendering, amethodwhich is widely used
by the scientific community (182).

Still today these two papers represent the landmark for
researchers interested in studying microglia-mediated synapse
elimination in vivo. Indeed, most if not all the subsequent
studies heavily relied on the methods introduced by these
pioneering works. Filipello et al. (20), used the same protocol of
engulfment analysis and quantification proposed by Schafer et al.
to describe the role of TREM2 in regulating synapse phagocytosis
during hippocampal development. The same approaches were
used to demonstrate the role of CD47, a transmembrane
immunoglobulin superfamily protein that directly inhibits
phagocytosis by binding to its receptor, SIRPα, thus behaving
as a “don’t eat me” signal during postnatal development (22).
With the aim to detect the phagocytosis of a different substrate,
a similar approach was also taken by Cignarella et al. who
analyzed myelin engulfment and degradation by microglia in the
cuprizone model of brain demyelination. By confocal analysis
and subsequent 3D reconstruction, the authors showed that
a TREM2 agonistic antibody enhanced myelin uptake and
degradation, resulting in accelerated myelin debris removal by
microglia. Again, 3D reconstruction by the Imaris software
of CD68 structures inside Iba1-positive microglia containing
dMBP-positive myelin debris, was used as a consolidated method
of analysis (183).

Using time-lapse imaging, Weinhard et al., recently reported
that, rather than removing the whole synaptic structure,
microglia prune presynaptic structures through a selective partial
phagocytic process termed trogocytosis, or “nibbling.” The
authors studied microglia “nibbling” on presynaptic structures
of neurons in organotypic tissue culture, an ex vivo model that
preserves tissue architecture important for microglia physiology
and offers the advantages of a tissue-relevant context effective in
studying the synaptic elimination processes. Subsequent analysis
of fixed hippocampal tissue from postnatal day 15 (P15) mice
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using quantitative confocal microscopy as well as correlative
light and electron microscopy, revealed that microglia only
capture small (<1 um) presynaptic components though a process
which involves the “sinking” of presynaptic structures into the
microglial cytoplasm prior to membrane closure. Conversely,
pseudopodia, a hallmark of phagocytosis, were not observed (17).
Further lines of investigation are expected to provide additional
insights into the precise mechanisms by which microglia remove
and digest synaptic contacts.

Facs-Based Microglia Phagocyitc Assays
ex vivo
The analyses described in the previous paragraphs rely
on the use of in vitro microglia, prepared as described in
Microglia Cell Lines, Primary Newborn Microglia, and Human
Microglia-Like Cells sections. However, similar assays can
also be performed taking advantage of microglia freshly
isolated from the adult or juvenile brain and analyzed
right away (see Primary Adult Microglia chapter). The
latter setting maintains closer features to those of the
same cells when present in brain environment, despite of
the isolation process and the consequent manipulation.
In 2007, Biber’s group showed the possibility to isolate
microglia from specific brain regions (optic nerve, striatum,
hippocampus, cerebellum, spinal cord, cortex) and to quantify
the amount of fluorescent microspheres phagocytosis by confocal
microscopy (62).

In the recent years, the use of flow cytometry has implemented
microscopy techniques thus becoming a very useful approach
to dissect the phagocytic properties of microglia not only in in
vitro assays but also using freshly isolated microglia ex vivo.
This strategy was successfully used by Krasemann et al., who
identified a role for apolipoprotein E (APOE) in regulating a
subset of microglia, exhibiting a common neurodegenerative-
associated phenotype (MGnD). To determine the mechanisms
through which MGnD were induced during neurodegeneration,
they injected Alexa-488 labeled apoptotic (dead, dNs) or live
neurons (Ns) into the cortex and hippocampus of naïve mice.
In parallel, they also injected fluorescent E. coli or zymosan
as a control. By gating the CD11b+ CD45low population they
were able to distinguish the phagocytic cells that internalized
488-labeled apoptotic neurons (CD11b+ CD45low dNs-Alexa
488+) vs. non-phagocytic microglia (CD11b+ CD45low dNs-
Alexa 488−) (70).

A similar approach was used by Tejera and Heneka who
showed in detail how to analyze Aβ phagocytosis by flow
cytometry using microglia freshly isolated from adult mice.
Mice were intraperitoneally injected with the Aβ fluorescent
marker Methoxy-XO4, and microglia were isolated through
a Percoll gradient and directly analyzed by FACS. The
CD11b+CD45low population, also positive for Methoxy-XO4,
represented microglia phagocytosing Aβ (159). Using a different
strategy, Levey’s group validated a rapid flow cytometric assays
to test phagocytic capacity of acutely isolated CNS mononuclear
phagocytes (MPs). MPs were isolated through a Percoll gradient
and subsequently incubated with macroparticle and fibrillar

Aβ42 (fAβ42). Flow cytometric analysis revealed distinct
phagocytic capacities of CD11b+CD45low and CD11b+CD45high

cells both in physiological condition and in disease models (184).
The use of mass cytometry (CyTOF), a technique that

combines flow cytometry with mass spectrometry, has enabled
a high-dimensional analysis of cell surface markers, signaling
molecules and cytokines in brain myeloid cells at the single-cell
level (185–187). Because the method is largely unhampered by
interference from spectral overlap, it allows for the detection
of considerably more simultaneous parameters than does
traditional flow cytometry. This has facilitated the understanding
of phenotypic diversity of mouse and human macrophages in
vitro and in vivo (188, 189). Interestingly, different macrophage
phenotypes were found to have different phagocytic activities.
In 2019, Schulz et al., created a functional assay to assess
phagocytic activity of macrophages by mass cytometry. This
method combines an in-depth phenotypic characterization of
macrophages based on the expression of 36 protein markers
with an analysis of biological function. The authors assessed
the abilities of macrophages activated in vitro under different
conditions to phagocytose bacteria and cancer cells. By
correlating the phagocytic activity with markers expression of
single cells, they defined characteristic signatures preferentially
associated with phagocytosis of specific targets. This strategy can
be also applied to better understand and link cell phenotype to
phagocytic function in microglia in health and disease (106).

Pitfalls and Hints
The study of synapse elimination using co-cultures of neurons
and microglia requires specific attention especially in relation
to the establishment of the adequate co-culture conditions. In
particular, defining the optimal density of microglial cells and
the neuron/microglia ratio represents the most critical issue. The
optimal ratio may vary depending on the experimental design
and should be established accordingly. Another limitation to be
considered is the limited time window (24–72 h) during which
the microglia-neuron model can be maintained in co-culture.
This limitation, which results from the fact that the two different
cell types prefer different culture conditions (56), discourage the
setting of experiments addressing processes which develop in the
long term. The limited time-scale of this model is due to the
negative effect of the continuous presence of microglia on the
overall health of the neurons and to the fact that the culture
media contains a high concentration of serum used to support
the microglia, likely causing the microglia to be in an already
activated state.

To overcome this issue, recently, it has been developed a tri-
culture system consisting of neurons, astrocytes, and microglia.
Primary rat cortical cells were maintained in a serum-free
culture media developed to support all three cell types. It has
been demonstrated that adding astrocytes in the culture system
ameliorates neurons conditions. This “tri-culture” system can
be maintained for at least 14 days in vitro (DIV), without any
negative effect of the continuous presence of microglia on the
overall health of the neurons (93).

Regarding the in vivo studies, one of the major risks associated
with the study of microglia in vivo, is that manipulation of the
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CNS tissues (as an example, during brain slices preparation)
can lead to tissue injury and subsequent microglia activation.
To solve this issue, tissue clearing techniques coupled with light
sheet microscopy can be used to visualize microglia within intact
transparent CNS tissues. Although, so far, this technique has not
been used to study synaptic pruning, it could be relevant in the
future. Indeed, besides allowing an unbiased global investigation,
the method will eliminate the need to perform histological
sectioning [methods and applications reviewed in (190)].

Moreover, it needs to be considered that iba1 antibodies
which have been traditionally used to label microglia in situ,
also recognize border-associated macrophages (BAMs) as well
as subsets of peripheral myeloid cells. The possibility to
differentiate microglia from BAMs, which reside within the
meninges, choroid plexus and brain perivascular spaces as well
as from circulating myeloid cells that infiltrate the CNS during
neuroinflammation, is therefore mandatory. More recent studies
have focused on identifying microglia-specific markers that can
reliably distinguish microglia from other leukocytes, both in
healthy conditions and disease. Given the range of markers and
antibodies that can be used to identify microglia, the choice
of targets needs to be carefully considered for each scientific
question. Under this respect, recently described reporter mice
have taken advantage of microglia-specific signature genes,
including Tmem119eGFP (140), Tmem119TdTomato (141),
Sall1GFP (142), and HexbTdTomato (159) mice are knock-in
strains in which the expression of fluorescent reporter proteins
is largely restricted to microglia. Another critical point when
studying microglia in vivo is most of the confocals microscopes
have limited imaging depth and require therefore the specimens
to be sectioned (brain) or microdissected (retina). Also, image
acquisition can be slow and Photobleaching of tissue can occur,
while fixation may affect MG morphology. Finally, although
modern microscopy provides a qualitative appraisal of synaptic
proteins inside microglia, yet they have some drawbacks for
a fast and unbiased quantification. In particular, the spatial
resolution of confocal microscopy may be insufficient to resolve
microglial and synaptic structures when they are less than few
hundreds of nanometers apart from each other (17) [see (184)
for an exhaustive review of several confocal, multiscale imaging
methods for brain research]. Further, although limitations due
to the fact that penetration of infrared light is limited to
1,000µm in depth from the surface (191), in vivo two-photon
excitation microscopy enabled direct measurement of synapse
turnover in mice at postnatal 2 and 3 weeks and obtained the
reliable data of spine turnover in neocortical areas (192). Synapse
turnover in the hippocampus and other subcortical areas can
be measured by endoscope technology, although this technique
is less reliable than the two-photon imaging, mainly due to the
lower resolution (192).

Given the technical limitations, the development of alternative
approaches is currently in high demand (133). New technologies
that could provide important advantages are holographic
microscopy which brings the resolution of electron microscopy
to the order of the Armstrong, and multi-isotope imaging
mass spectrometry. The latter technique also allows to image
and quantify molecules and presents a great potential for

identifying new molecular targets in neuroimmunological
field (145).

The analysis of freshly isolated microglia by FACS-based
phagocytic assays ex vivo may pose a few specific problems. As
already mentioned, it is critical to choose protocols generating
freshly isolated microglia from the adult brain that avoid
hyper-activation and stress of this type of cells. Again, flow
cytometers need to be up to date, and FACS lasers should be
often calibrated and constantly maintained by specialists at the
FACS facilities. The combination of antibodies used to stain
microglia and to detect the phagocytic material need to be chosen
taking into account fluorophore emission/excitation spectra
overlapping and the subsequent compensation. It is always
necessary to add the proper isotype controls to the staining panel
to discriminate unspecific signal. Negative and positive controls
and cells deriving from mice knockout for the specific gene of
interest should be run in parallel when analyzing signal/proteins
that have not been described before. Importantly, the gating
strategy used to select CD11b+ CD45low microglia should be
carefully chosen taking into account that other immune cells also
positive for those markers are present in the brain parenchima
and meninges. Finally, when choosing antibodies to specifically
target microglia (i.e., Tmem119, P2ry12) it is important to
consider that during pathological /inflammatory conditions these
molecules can change being down or upregulated, therefore
making it necessary to revise the gating strategy and the
antibodies panel.

CONCLUSIONS

In the last years, several novel techniques and approaches
have been introduced which have significantly advanced
the study of how microglia cells, at specific stages of
brain development, perform engulfment and elimination of
neuronal and synaptic components. Phagocytic assays employing
liposomes, synaptosomes or apoptotic membranes allow the
dissection of the molecular and lipidic components that direct
the engulfment process. Co-cultures of neurons and microglia
derived from WT or genetically modified mouse models provide
the possibility to successfully assess, by different methods, the
molecular requirements and the functional consequences of
the synapse elimination process. While these methods provide
settings suited to easily investigate the mechanistic aspects of
the process of microglia-mediated phagocytosis, they suffer from
the major problem that isolated microglia do not maintain the
phenotypic and functional features they have in the brain. The
in vitro assays need therefore to be combined with analysis in
brain sections or using microglia freshly isolated from the adult
or juvenile brain and immediately analyzed, which allows to
maintain closer features to those of the same cells present in
brain environment. The use of flow cytometry has implemented
confocal and electron microscopy techniques, revealing as a very
useful approach.

Finally, the possibility to generate microglia-like cells from
human embryonic stem cells or by the reprogramming of adult
cells into induced pluripotent stem cells is providing new,
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important possibilities to investigate the process of neuronal
and synaptic phagocytosis employing material derived from
human patients. It is expected that these methods will be soon
implemented by the possibility of incorporating the appropriate
number of microglia-like cells derived from human embryonic
stem cells into brain organoids, in order to obtain a cell type
ratio comparable to that of the human brain and allowing at
the same time the microglia differentiation in a 3-dimensional
structure. Together with the combined use of high resolution
microscopy, FACS and mass cytometry analysis, we can expect
that these approaches will represent a further step toward a
deeper comprehension of the process of synapse elimination in
healthy or diseased contexts.
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