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Abstract: In this study, we aim to elucidate the association between nondiabetic hyperglycemia
and the short-term prognosis of critically ill patients with acute ischemic stroke. We extracted
data using the Medical Information Mart for Intensive Care IV from 2008 to 2019. The primary
outcomes were set as intensive care units (ICU) and in-hospital mortality. We developed a Cox
proportional hazards model to determine the nonlinear association between serum glucose levels
and primary outcomes. Of the 1086 patients included, 236 patients had hyperglycemia. Patients with
hyperglycemia were associated with higher ages, female gender, higher Charlson Comorbidity Index
scores, and higher Acute Physiology Score III scores. After propensity score matching, 222 pairs
remained. The hyperglycemia group had a significantly higher ICU mortality (17.6% vs. 10.8%;
p = 0.041). Meanwhile, no significant differences in ICU length of stay (5.2 vs. 5.2; p = 0.910), in-
hospital mortality (26.6% vs. 18.9%, p = 0.054), and hospital length of stay (10.0 vs. 9.1; p = 0.404)
were observed between the two groups. The Kaplan–Meier curves for ICU and in-hospital survival
before matching suggested significant differences; however, after matching, they failed to prove any
disparity. Non-diabetic patients with acute ischemic stroke have poor clinical characteristic while
encountering hyperglycemic events; therefore, careful monitoring in the acute phase is still required.

Keywords: ischemic stroke; hyperglycemia; non-diabetes; MIMIC-IV; propensity score matching

1. Introduction

Worldwide, stroke remains the second-leading cause of death and the third-leading
cause of disability [1]. There are 12.2 million new cases of stroke per year, and the number of
individuals living with stroke has almost doubled over the past three decades [2]. Ischemic
stroke accounts for approximately 90% of all stroke cases [3]. In the United States, there
are more than 700,000 new cases of acute ischemic stroke (AIS) and recurrent ischemic
stroke annually [4]. However, although the mortality rate after AIS is relatively low in a
real-world experience (less than 6%), it could lead to a two-fold increase among critically ill
AIS patients [5,6].

Poststroke hyperglycemia (PSH) is a common complication that is associated with
poor prognosis. Alterations in glucose metabolism due to fluctuations in peripheral insulin
resistance and endocrine interactions may result in stress hyperglycemia [7]. Persistent
hyperglycemia alters mitochondrial function and increases free radicals, which can aggra-
vate brain ischemic cascades and further compromise oxidative status. This is presumably
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because of the increased hyperosmolarity, anaerobic metabolism, and focal toxicity associ-
ated with ischemic vascular disease [8,9]. Moreover, animal and human studies have also
pointed to the association between stress hyperglycemia and elevated serum lactate levels,
which result in tissue acidosis and brain hypoxia [10]. Therefore, PSH has been recognized
as a prognostic factor that is associated with increased mortality and morbidity.

A recently published review has revealed that more than one-third of critically ill
patients were hyperglycemic [11]. In other observational studies, the prevalence of hyper-
glycemia ranged from 32% to 38% and even reached 16% in patients without diabetes [12].
According to the American Heart Association and American Stroke Association guide-
lines, treating hyperglycemia to achieve serum glucose levels ranging between 140 and
180 mg/dL (7.8–10.0 mmol/L) and closely monitoring patients to prevent severe hypo-
glycemia are recommended; however, the level of evidence is based on limited supporting
data [13]. In addition, the definition of hyperglycemia in patients without diabetes is incon-
sistent among studies. An arbitrary cut-point value may result in inaccurate risk estimation.
We, therefore, aim to study the association between hyperglycemia and non-diabetic pa-
tients suffering from AIS and to elucidate the relationship between those characteristics and
subsequent clinical outcomes, hoping to provide some recommendations for physicians in
daily clinical practice.

2. Materials and Methods
2.1. Data Source

A single-center and retrospective matched-cohort study was conducted based on the
Medical Information Mart for Intensive Care (MIMIC)-IV database (version 1.0) [14]. The
MIMIC-IV database is an updated version of the MIMIC-III database, which provided dei-
dentified critical care data, according to the Health Insurance Portability and Accountability
Act Safe Harbor provision, for over 40,000 patients admitted to the Emergency Department
or intensive care units (ICUs) of the Beth Israel Deaconess Medical Center (BIDMC) between
2008 and 2019. Under the pre-existing Institutional Review Board (IRB) approval from the
Massachusetts Institute of Technology and BIDMC [15], several improvements, including
structure simplifying, expansion of new data elements, and improvement of usability, have
been made. One author, Hong-Jie Jhou, achieved access to the database to extract data
under the certification of the Collaborative Institutional Training Initiative examination
(number: 39050603). The study protocol was approved by the IRB of Changhua Christian
Hospital (IRB No. 211106).

2.2. Study Populations and Variable Extraction

We extracted data of patients from the MIMIC-IV database, focusing on those aged
between 18 and 89 years, who were at one time admitted to the ICU under the diagnosis
of ischemic stroke, defined as the International Classification of Disease-10 codes of I63,
I65, and I66 or the International Classification of Disease-9 codes of 433, 434, 436, 437.0,
and 437.1. Moreover, patients who received reperfusion therapy, intravenous injection
of recombinant tissue plasminogen activator (rtPA), or mechanical thrombectomy were
enrolled. We excluded 536 patients with diabetes and 40 patients without blood sugar data.
The final sample included 1086 patients (Figure 1).

The following patient characteristics were collected: (1) demographic characteristics,
including age, gender, and race; (2) comorbidities, including hypertension, hyperlipidemia,
congestive heart failure, coronary artery disease, peripheral vascular disease, liver disease,
peptic ulcer disease, chronic obstructive pulmonary disease, renal disease, malignancy,
and rheumatoid disease; (3) the maximum value of laboratory data and vital signs within
the first 24 h of ICU stay, including heart rate, respiratory rate, mean arterial pressure,
body temperature, leukocyte count, platelet count, hemoglobin, urea nitrogen, creatinine,
sodium, potassium, and bilirubin; (4) clinical management, including the use of sedatives,
vasopressors, anti-platelet drugs (e.g., aspirin, clopidogrel, ticagrelor, prasugrel, ticlopidine,
cilostazol, and dipyridamole), anti-coagulants (e.g., warfarin, dabigatran, rivaroxaban,
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edoxaban, and apixaban), reperfusion therapy (e.g., rtPA and mechanical thrombectomy),
tracheostomy, or percutaneous endoscopic gastrostomy/jejunostomy tube placement;
(5) severity and comorbidity scoring systems, including the Charlson Comorbidity In-
dex (CCI) [16,17], and Acute Physiology Score III (APS III) [18]. The sample along with the
characteristic variables, aforementioned predictors, and outcome measures were extracted
via a Structured Query Language script.
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Figure 1. Flow diagram of data extraction from the Medical Information Mart for Intensive Care-IV
database and further grouping layout.

2.3. Outcome Measures

The primary outcomes were ICU mortality and in-hospital mortality defined as any
cause of death after stroke. The secondary outcomes included ICU length of stay, hospital
length of stay, the incidence of intracerebral hemorrhage, the need of percutaneous en-
doscopic gastrostomy/jejunostomy tube placement, and the need of tracheostomy. The
table named “patients” and “admissions” in the MIMIC-IV database provided the survival
information and the length of hospital stay [15]. We adhered to the STROBE guidelines for
the reporting of this cohort study [19].

2.4. Statistical Analysis

Demographics and comorbidity were provided as frequencies and proportions for
categorical data and means ± standard deviations for continuous variables, as appropriate.
We used the unpaired t-test or Mann–Whitney U-test for continuous variables and the
chi-square test and Fisher’s exact test for categorical variables.

The restricted cubic splines were conducted to detect the possible nonlinear depen-
dance of the association between hyperglycemia and ICU and in-hospital mortality among
patients with ischemic stroke. There was a sigmoid curve between PSH and in-hospital
mortality (p value for nonlinear dependance < 0.001) (Figure 2). Then, the patients were
categorized according to serum glucose level—below 140 mg/dL (non-hyperglycemia) and
above 140 mg/dL (hyperglycemia)—based on the trend implied by our model.
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Figure 2. The restricted cubic splines demonstrating the nonlinear relationship between hyper-
glycemia and in-hospital mortality. The shaded areas around the curves describe the 95% confi-
dence interval.

We conducted propensity score matching (PSM) analysis to reduce selection bias. The
propensity scores involved the four following variables: age, gender, APS III, and CCI. The
patients’ propensity scores were calculated using the logistic regression model for the whole
cohort [20]. Matching was developed using the Greedy 5-to-1 Digit-Matching algorithm
between the hyperglycemia and non-hyperglycemia groups [21]. After PSM, 222 matched
pairs were created. For the comparison of the matched cohort, the paired t-test or Wilcoxon
signed-rank test was used for continuous variables and McNemar’s test was used for
categorical variables. The distribution of propensity scores was provided to evaluate the
effectiveness of the PSM. All outcomes were compared based on the matched data.

For time-to-event outcomes, the primary outcomes were estimated using the Kaplan–
Meier method and compared using the log-rank test. Univariate and multivariate Cox
hazards model analyses were performed to identify the association between hyperglycemia
and primary outcomes, and the results were expressed as hazard ratios (HRs) with 95%
confidence intervals (CIs). All comparisons were planned, the tests were two-sided, and
p-values of less than 0.05 were used to indicate statistical significance. All analyses were con-
ducted using R statistical software (version 4.0.3; R Foundation for Statistical Computing,
Vienna, Austria).

3. Results
3.1. Pre-PSM Characteristics and Outcome Measurement

Of the 257,366 medical records reviewed, 50,048 patients were at one time admitted to
the ICU. In total, 1662 patients fulfilled our inclusion criteria, of whom 536 were excluded
due to a previous diagnosis of diabetes mellitus and 40 lacked blood sugar data. Ultimately,
1086 patients were included in this study, 236 patients were further assorted into the
hyperglycemia group, and 850 patients were classified into the non-hyperglycemia group
(Figure 1). The basic demographic characteristics of the patients are shown in Table 1.
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Table 1. Characteristics of the study patients.

All Patients Propensity-Matched Pairs

Characteristics HG Group
(n = 236)

Non-HG Group
(n = 849) p Value HG Group

(n = 222)
Non-HG Group

(n = 222) p Value

Age (years) 71.3 ± 13.6 67.2 ± 15.2 <0.001 71.2 ± 13.6 72.2 ± 14.3 0.440
Gender, n 0.011 0.703

Male 106 (44.9%) 461 (54.3%) 101 (45.5%) 105 (47.3%)
Female 130 (55.1%) 388 (45.7%) 121 (54.5%) 117 (52.7%)
Race, n 0.239 0.556 #
White 151 (64.0%) 558 (65.7%) 143 (64.4%) 131 (59.0%)
Black 22 (9.3%) 61 (7.2%) 20 (9.0%) 21 (9.5%)
Asian 8 (3.4%) 13(1.5%) 7 (3.2%) 4 (1.8%)
Other 55 (23.3%) 217 (25.6%) 52 (23.4%) 66 (29.7%)

MAP (mmHg) 117.2 ± 21.0 115.4 ± 19.9 0.231 117.0 ± 21.2 115.4 ± 20.7 0.441
Temperature (◦C) 37.5 ± 0.6 37.3 ± 0.5 <0.001 37.5 ± 0.6 37.4 ± 0.6 0.035

Heart rate (beats/min) 105.3 ± 21.0 94.0 ± 19.2 <0.001 104.3 ± 20.8 97.0 ± 23.0 <0.001
Respiratory rate
(breaths/min) 27.7 ± 5.7 26.6 ± 5.8 0.010 27.4 ± 5.5 27.6 ± 6.4 0.792

Comorbidities, n
CCI 6.90 ± 2.50 6.07 ± 2.37 <0.001 6.90 ± 2.50 6.83 ± 2.32 0.783

Hypertension 170 (72.0%) 582 (68.6%) 0.305 161 (72.5%) 165 (74.3%) 0.667
Hyperlipidemia 54 (22.9%) 160 (18.8%) 0.168 50 (22.5%) 41 (18.5%) 0.290

Coronary artery disease 32 (13.6%) 78 (9.2%) 0.049 31 (14.0%) 26 (11.7%) 0.478
Congestive heart failure 46 (19.5%) 128 (15.1%) 0.102 43 (19.4%) 44 (19.8%) 0.905

PVD 24 (10.2%) 103 (12.1%) 0.407 24 (10.8%) 24 (10.8%) 1.000
COPD 36 (15.3%) 125 (14.7%) 0.839 34 (15.3%) 39 (17.6%) 0.552

Liver disease
Mild 5 (2.1%) 21 (2.5%) 0.753 5 (2.3%) 7 (3.2%) 0.558

Moderate to severe 1 (0.4%) 4 (0.5%) 1.000 # 1 (0.5%) 2 (0.9%) 1.000 #
Peptic ulcer disease 7 (3.0%) 4 (0.5%) 0.003 # 6 (2.7%) 1 (0.5%) 0.122 #

Renal disease 22 (9.3%) 87 (10.2%) 0.676 19 (8.6%) 32 (14.4%) 0.053
Rheumatoid disease 7 (3.0%) 19 (2.2%) 0.518 7 (3.2%) 5 (2.3%) 0.558

Malignancy 30 (12.7%) 51 (6.0%) 0.001 27 (12.2%) 15 (6.8%) 0.052
Laboratory parameters

WBC (109/L) 13.6 ± 6.1 10.0 ± 3.9 <0.001 13.4 ± 5.9 10.8 ± 5.2 <0.001
Hgb (g/dL) 12.5 ± 2.1 12.6 ± 2.0 0.222 12.5 ± 2.1 12.4 ± 2.1 0.749

Platelet (109/L) 255.0 ± 113.5 230.2 ± 87.9 <0.001 250.7 ± 106.0 235.3 ± 92.8 0.106
Creatinine (mEq/L) 1.1 ± 0.5 1.0 ± 0.8 0.316 1.0 ± 0.4 1.0 ± 0.8 0.528

BUN (mg/dL) 22.1 ± 14.4 17.4 ± 10.4 <0.001 20.8 ± 12.4 19.1 ± 11.4 0.143
Sodium (mmol/L) 141.0 ± 5.1 140.4 ± 3.5 0.057 140.8 ± 4.8 140.7 ± 3.8 0.818

Potassium (mmol/L) 4.3 ± 0.7 4.2 ± 0.6 <0.001 4.3 ± 0.7 4.2 ± 0.6 0.006
Bilirubin (mg/dL) 0.7 ± 0.5 0.7 ± 0.7 0.917 0.7 ± 0.5 0.7 ± 0.5 0.516

Drugs, n
Anti-platelet agents 176 (74.6%) 690 (81.3%) 0.023 165 (74.3%) 173 (77.9%) 0.373

Anti-coagulation agents
Warfarin 51 (21.6%) 216 (25.4%) 0.227 46 (20.7%) 61 (27.5%) 0.096
NOAC 5 (2.1%) 59 (6.9%) 0.005 4 (1.8%) 10 (4.5%) 0.103

tPA or EVT 56 (23.7%) 203 (23.9%) 0.954 54 (24.3%) 62 (27.9%) 0.387
APS III 49.1 ± 24.1 34.6 ± 16.0 <0.001 45.7 ± 19.9 45.7 ± 19.5 0.988

ICU mortality, n 45 (19.1%) 42 (4.9%) <0.001 39 (17.6%) 24 (10.8%) 0.041
ICU length of stay, day 5.5 ± 6.8 3.8±5.1 <0.001 5.2 ± 6.7 5.2 ± 8.1 0.910
In-hospital mortality, n 66 (28.0%) 73 (8.6%) <0.001 59 (26.6%) 42 (18.9%) 0.054

Hospital length of stay, day 10.2 ± 11.1 7.0 ± 7.7 <0.001 10.0 ± 11.0 9.1 ± 10.6 0.404
Intracranial hemorrhage, n 27 (11.4%) 88 (10.4%) 0.635 27 (12.2%) 29 (13.1%) 0.775

Tracheostomy, n 17 (7.2%) 35 (4.1%) 0.050 16 (7.2%) 10 (4.5%) 0.225
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Table 1. Cont.

All Patients Propensity-Matched Pairs

Characteristics HG Group
(n = 236)

Non-HG Group
(n = 849) p Value HG Group

(n = 222)
Non-HG Group

(n = 222) p Value

PEG/PEJ tube placement, n 42 (17.8%) 94 (11.1%) 0.006 39 (17.6%) 36 (16.2%) 0.704

Propensity score matching by age, sex, Charlson comorbidity Index, acute physiology score III, the CHA2DS2-
VASc score, and HAS-BLED score. APS III: acute physiology score III; BPM: beats per minute; BUN: blood urea
nitrogen; CCI: Charlson comorbidity Index; COPD: chronic obstructive pulmonary disease; EVT: endovascular
mechanical thrombectomy; Hgb: hemoglobin; MAP: mean arterial pressure; NOAC: novel oral anticoagulant;
PVD Peripheral vascular disease; PEG: percutaneous endoscopic gastrostomy; PEJ: percutaneous endoscopic
jejunostomy; tPA: tissue plasminogen activator; WBC: white blood cell. #: Testing by Fisher exact test or
Wilcoxon Test.

3.2. Post-PSM Characteristics and Outcome Measurement

PSM based on age, gender, APS III, and CCI resulted in the creation of 222 matched
pairs. Both the hyperglycemia and non-hyperglycemia groups were well-balanced with the
four covariates (Figure 3). After PSM, the hyperglycemia group still showed significantly
higher ICU mortality (17.6% vs. 10.8%; p = 0.041). Meanwhile, in terms of ICU length
of stay (5.2 vs. 5.2 days; p = 0.910), in-hospital mortality (26.6% vs. 18.9%; p = 0.054),
and hospital length of stay (10.0 vs. 9.1 days; p = 0.404), no significant differences were
observed between the two groups. Regarding the secondary outcomes, the incidence of
intracranial hemorrhage (12.2% vs. 13.1%; p = 0.775), the need for tracheostomy (7.2% vs.
4.5%; p = 0.225), and the need for percutaneous endoscopic gastrostomy/jejunostomy tube
placement (17.6% vs. 16.2%; p = 0.704) did not significantly differ between the two groups
(Table 1).
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subjects, and the distribution of propensity score values. (B) Histograms demonstrating the density
of propensity score distribution in the hyperglycemia and non-hyperglycemia groups before and
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3.3. Kaplan–Meier Survival Curves and Univariate Cox Regression Analysis of Primary Outcomes

To evaluate survival, the patients were followed up until discharge, and the longest
hospital length of stay was 88 days. The Kaplan–Meier curves for ICU and in-hospital
survival before PSM between the hyperglycemia and non-hyperglycemia groups are shown
in Figure 4A,B, which suggested significant differences. Nevertheless, the Kaplan–Meier
curves for ICU and in-hospital survival after PSM (Figure 4C,D) failed to show a significant
difference between the hyperglycemia and non-hyperglycemia groups.
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Figure 4. Kaplan–Meier survival curves until intensive care unit (ICU) discharge and hospital
discharge. (A) ICU mortality before propensity score matching (PSM); (B) in-hospital mortality before
PSM; (C) ICU mortality after PSM; (D) in-hospital mortality after PSM. The colored areas describe
the standard deviation. ICU, intensive care unit.

The results of the univariate Cox regression analysis demonstrated that before PSM,
hyperglycemia was related to higher ICU mortality (HR, 2.55; 95% CI, 1.67–3.89) and
in-hospital mortality (HR, 2.51; 95% CI, 1.79–3.52); yet, after PSM, ICU mortality (HR,
1.54; 95% CI, 0.92–2.57), and in-hospital mortality (HR, 1.33; 95% CI, 0.90–1.98) did not
significantly differ between the two groups (Table 2).

Table 2. Association between outcomes and hyperglycemia among patients with ischemic stroke.

With Hyperglycemia Versus Non-Hyperglycemia (Reference)

Variables Before PSM-Univariate After PSM-Univariate

Outcomes Crude HR (95%CI) p Value Adjusted HR (95%CI) p Value
ICU Mortality 2.55 (1.67−3.89) <0.001 1.54 (0.92−2.57) 0.097

In-hospital Mortality 2.51 (1.79−3.52) <0.001 1.33 (0.90−1.98) 0.156
Propensity score matching by age, sex, Charlson comorbidity Index, acute physiology score III. HR: hazard ratio.

4. Discussion

This study revealed that the clinical characteristics of the patients without diabetes
with stroke and hyperglycemia and those without hyperglycemia were different. Those
with hyperglycemia tended to be associated with higher ages, female gender, higher CCI
scores, and higher APS III scores. Because of these differences, patients with hyperglycemia
had higher risks of ICU and in-hospital mortality and longer length of stay in the ICU and
hospital than those without hyperglycemia. However, after PSM, no significant differences
were observed in most primary and secondary outcomes between the two groups, except
the ICU mortality in the matched cohort.

The underlying mechanisms linking hyperglycemia to the risk of complications are
probably multifactorial and complicated. These events may be due to stress hyperglycemia,
which is caused by insulin resistance, the interplay among hormones, and regulatory
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cytokines. Studies have implicated that hyperglycemia in inflammatory response is as-
sociated with poor outcomes [22]. Increased mortality and elevated glucose levels have
been associated with impaired brain–blood barrier integrity, which allows the influx of
inflammatory cells and blood solutes into the brain, leading to adverse stroke outcomes
such as neuronal death and brain edema [23,24]. Additionally, hyperglycemia accelerates
damage to the brain tissue surrounding the damaged neurons [25]. Elevated levels of reac-
tive oxygen species are produced by nicotinamide adenine dinucleotide phosphate oxidase
and protein kinase C, resulting in possible neuronal damage and reduced reperfusion [26].
Diffusion- and perfusion-weighted magnetic resonance imaging were used to prove the
aforementioned findings. Acute hyperglycemia upon admission is correlated with reduced
penumbra, a greater final infarction size, and more dependent functional outcomes [8].
Thus, multiple complex molecular mechanisms and pathological changes may contribute
to the poor prognosis of stress hyperglycemia after ischemic stroke.

Hyperglycemia is a common complication after ischemic stroke [11]. A recent study has
revealed that the prevalence of hyperglycemia is 22% in non-diabetic AIS patients [27,28].
Similar trends were reproduced in our preliminary analysis (21.8%). According to the
clinical recommendation from the American Diabetes Association [29], hyperglycemia is
defined as serum glucose levels of more than 140 mg/dL (7.8 mmol/L) among hospitalized
patients, and the target range is 140–180 mg/dL (7.8–10.0 mmol/L). A similar perspective
was also supported by the NICE-SUGAR trial [30]. However, for PSH, the definition
varies widely with the cutoff points ranging from 110 mg/dL (6.1 mmol/L) to 180 mg/dL
(10.0 mmol/L) [31–34], which is not a precise guidance. In our analysis, the regression
model demonstrated sigmoid curves between the glycemic status and mortality; in addition,
the HR of mortality was approximately two-fold higher when the glucose levels reached
140 mg/dL. Consequently, it is reasonable to regard the maximum value of serum glucose
in the first 24 h after AIS as a prognostic factor. Furthermore, continuous monitoring to
prevent patients’ serum glucose level from falling into the bilateral plateaus of our sigmoid
curves should be kept in mind.

In the Stroke Hyperglycemia Insulin Network Effort (SHINE) randomized clinical
trial, among patients with AIS with hyperglycemia, neither intensive nor standard glycemic
control revealed a significant difference in functional outcomes at 3 months [35]. Meanwhile,
another study has proposed that strict glycemic control using insulin improved the National
Institutes of Health Stroke Scale (NIHSS) after 30 days [36]. In the UK Glucose Insulin in
Stroke Trial (GIST-UK), insulin-based regimens indeed lowered the mean plasma glucose
level; however, the 90-day mortality did not show a significant reduction [37]. To sum up,
the clinical benefit of intense glucose level control remains ambiguous. Yet, hypoglycemia
events were observed more frequently in the strictly controlled group, which is highly
correlated with subsequent mortality and morbidity [38]. To some degree, our results also
worked in concert with SHINE and GIST-UK. After excluding the clinical heterogeneity,
hyperglycemia was not independent of the short-term prognosis in non-diabetic AIS
patients. As for diabetic AIS patients, hypoglycemia events are frequent due to defective
glucose counter regulation in advanced diabetes mellitus. This evidence makes physicians
more distressed in determining whether to treat PSH or not. In this study, we realized that
the HR of mortality was low when the glucose level was below 140 mg/dL; moreover, the
HR showed a mild increase when the curves approached the left side. Similar viewpoints
were confirmed in the latest subgroup analysis of SHINE [38].

In a multicenter, prospective cohort study by the Korean Stroke Cohort for Func-
tioning and Rehabilitation, Yoon et al. highlighted that PSH also affects long-term func-
tional outcomes [27]. A similar current was also noted in other cardiovascular diseases,
such as acute coronary syndrome [39,40] and small-vessel disease, especially non-fatal
lacunar stroke [41,42], which showed long-term protective effects and even regenerative
potential with strict glycemic control. Because of the nature of the MIMIC-IV database,
we chose intracranial hemorrhage, tracheostomy, and percutaneous endoscopic gastros-
tomy/jejunostomy tube placement as the indicators of functional outcomes. Among them,
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intracranial hemorrhage plays a key role, especially because it significantly affects a pa-
tient’s disability and quality of life [43,44]. Even though this study failed to show significant
differences after PSM, we should always consider that elevated glucose levels put patients
at risk of hemorrhagic transformation, particularly those receiving reperfusion therapy.

The advantages of this study were as follows: this was a broad-scale study based on
real-world patient data and this study explored the association between hyperglycemia
and survival status among patients with AIS. Nevertheless, the results should be clarified
in the context of the several limitations. First, selection bias existed because the clinical
information was obtained from a single institution. Second, patients with ischemic stroke
were defined according to the first sequence diagnosis code in this retrospective study;
however, the diagnostic accuracy remained unknown, and misclassifications may result in
false associations. Third, retrospective studies may have baseline differences; therefore, we
adjusted as many potential confounders as possible to achieve an appropriate balance using
PSM. Fourth, given the limitations of the MIMIC-IV database, some important data were
lacking, including the severity scale (e.g., NIHSS), the subtypes of ischemic stroke, cardiac
parameters, routine biochemistry exams for stroke risk assessment (e.g., HbA1c value),
the management of hyperglycemia, and the cause of mortality. No long-term follow-up
data were provided; thus, we cannot obtain the modified Rankin Scale score at 3 months.
Finally, because of the nature of observational databases, further randomized clinical trials
are needed to validate our findings.

5. Conclusions

This retrospective study revealed that non-diabetic AIS patients with hyperglycemia
had inferior clinical characteristics compared with those without hyperglycemia. However,
after eliminating the clinical heterogeneity, the short-term prognosis was non-significantly
different. Overall, sigmoid curves showed that the HR was approximately two-fold higher
when the serum glucose level reached 140 mg/dL. It would require early, continuous,
and careful monitoring in patients without diabetes with ischemic stroke to avoid critical
deterioration. Yet, it is still controversial whether there is a need for strict management of
hyperglycemic events for non-diabetic AIS patients.
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