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Purpose: Classification of diabetic retinopathy (DR) is traditionally based on severity
grading, given by the most advanced lesion, but potentially leaving out relevant infor-
mation for risk stratification. In this study, we aimed to develop a deep learning model
able to individually segment seven different DR-lesions, in order to test if this would
improve a subsequently developed classification model.

Methods: First, manual segmentation of 34,075 different DR-lesions was used to
construct a segmentationmodel, with performance subsequently compared to another
retinal specialist. Second, we constructed a 5-step classification model using a data set
of 31,325 expert-annotated retinal 6-field images and evaluated if performance was
improved with the integration of presegmentation given by the segmentation model.

Results: The segmentation model had higher average sensitivity across all abnor-
malities compared to the retinal expert (0.68 and 0.62) at a comparable average
F1-score (0.60 and 0.62). Model sensitivity for microaneurysms, retinal hemorrhages
and intraretinal microvascular abnormalities was higher by 42.5%, 8.8%, and 67.5% and
F1-scoresby15.8%, 6.5%, and12.5%, respectively.Whenpresegmentationwas included,
grading performance increased by 29.7%, 6.0%, and 4.5% for average per class accuracy,
quadratic weighted kappa, and multiclass macro area under the curve, with values of
70.4%, 0.90, and 0.92, respectively.

Conclusions: The segmentation model matched an expert in detecting retinal abnor-
malities, andpresegmentation substantially improved accuracy of the automated classi-
fication model.

Translational Relevance: Presegmentation may yield more accurate automated DR
grading models and increase interpretability and trust in model decisions.

Introduction

Diabetic retinopathy (DR) is the most frequent
complication in diabetes,1 which is the most common
metabolic disease in the working aged population of
the Western world.2 Regular DR screening has been
proven to reduce incidence of severe DR related vision
loss by 90%.3 In clinical practice, retinal experts will
often grade the severity of DR based on some prede-

fined criteria using a disease severity scale. The Inter-
national Clinical Diabetic Retinopathy (ICDR) disease
severity scale4 is a widely adopted standard for DR
disease classification. The standard proposes a five-
point scale with levels ranging from no DR (level 0) to
proliferative DR (PDR, level 4) with three intermedi-
ate levels of increasing severity; mild nonproliferative
DR (mild NPDR, level 1), moderate nonproliferative
DR (moderate NPDR, level 2), and severe nonprolif-
erative DR (severe NPDR, level 3). The lowest level
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of disease (level 1) is indicated by microaneurysms
(MA). Level 2 is defined as the presence of more
than MA, or hemorrhages (HEM) but less severe than
level 3, where definite venous beadings or prominent
intraretinal microvascular abnormalities (IRMA) are
also defining features. Level 4 is indicated by neovas-
cularizations (NV; both active or treated by panreti-
nal photocoagulation) or vitreous hemorrhages. If left
untreated, DR level 4 may result in irreversible vision
loss. Other lesions often present in the retina of people
withDR are hard exudates (HE) and cotton wool spots
(CWS).

At present, DR grading is most commonly amanual
task, but, in recent years, the interest in automating
this task has increased significantly due to the perfor-
mance of deep learning models and convolutional
neural networks (CNNs) for different image recogni-
tion tasks, such as image classification, segmentation,
and object detection.

Gulshan et al.5 were among the first to demonstrate
the use of a CNN for automatic detection of refer-
able DR, defined as moderate NPDR or higher on the
ICDR scale, or diabetic macular edema. Their CNN
was trained on over 100,000 single field retinal images
with reference grades assigned by multiple retinal
experts to perform image classification of the afore-
mentioned disease levels. Many similar works on the
use of classification CNNs also use a binary standard
for classification, either no or mild NPDR versus refer-
able DR (moderate NPDR or worse) or no DR versus
all other ICDR levels.6–10

Ideally, computer assisted grading systems should
be able to recognize all levels of DR, as this would
increase the applicability of the systems in real world
clinical practice. In order to do so, the underlying
model (for example neural network), has to be able to
recognize the features (abnormalities) used by human
experts when grading images according to, for example,
the ICDR reference standard.

Studies on deep learning for disease staging across
multiple levels have been performed.11–13 Results of
these studies indicate that for certain levels of disease,
the specific features, such as MA, IRMA, or NV, are
difficult for models to detect, resulting in somewhat
disparate levels of accuracy for individual levels. This
is likely caused by the need to reduce image resolu-
tion prior to development of deep learning models in
order to overcome computational memory constraints
imposed by the graphical processing unit on which
CNNs are developed. As discussed by Krause et al.,13
this leads to reduction in the effective feature resolu-
tion, which makes it challenging for networks to detect
these abnormalities. When multiple fields or wide field
retinal images with larger resolutions are used, this

reduction in feature resolution becomes even more
pronounced.

Although CNNs are approaching human level
performance for automatic detection and grading of
DR, they are still lacking in interpretability. The
conclusions reached by deep learning algorithms are in
most cases opaque, which may serve as a barrier for
adoption into real world clinical practice. This problem
could be alleviated by utilizing networks specifically
trained to detect the abnormalities used by human
experts in the grading process. Retinal abnormalities
are often small or their intrinsic features make them
hard to accurately discern. Furthermore, accumulat-
ing the data needed to train algorithms capable of this
task is challenging, as it not only requires collecting
images, but also the difficult and demanding task of
hand annotating each individual relevant pixel in them.

Automatic medical image segmentation has,
like classification, been greatly improved by the
advancement in deep learning methods.14 Several
works have been dedicated to segmentation of
MA,15–19 HEM,19–21 HE, and CWS,19,22–24 and
retinal vessels.25–27 Segmentation of IRMA, panreti-
nal photocoagulation scars (PC) and NV in retinal
fundus images have at present, to the best of our
knowledge, not been explored to the same degree.
Models that are able to accurately detect these specific
abnormalities could serve as an important part of an
automatic grading method, as a way to minimize the
adverse effect of reducing input resolution, and in turn
improve automatic grading models’ ability to stratify
DR across all levels.

In the studies on grading DR or segmentation
of retinal abnormalities referenced above, single-field
images, or in one case two-field retinal images12 are
used. A lot of the features and abnormalities relevant
for grading DR may be located outside this field of
view. As such, the additional information obtained by
including multiple fields or using wide field images
should lead to more accurate diagnosis.

The data sets in this study consisted of six-field
retinal images from Danish patients of the type used
in the Danish DR screening program. This work is the
first to investigate the use of deep learning models in
this population, and, to the best of our knowledge, the
first to perform segmentation of retinal abnormalities
and grading of DR in six-field retinal images.

Methods

Twomodels were developed in this study; a segmen-
tation model for segmentation and detection of retinal
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Figure 1. Example feature image crop (left) and expert annotations (right) with annotations for MA (green), HEM (magenta), CWS (yellow),
IRMA (cyan), NV (blue), and PC (purple).

abnormalities and a classification model for automatic
grading of DR disease severity into the five levels on
the ICDR scale.

The data set used for developing the segmentation
model consisted of 300, high resolution, 6,528 × 6,528
pixel six-field retinal fundus images obtained from
hospitals in the Region of Southern Denmark. Each
image contained pixel level annotations for presence of
the following retinal abnormalities found in the retina
of people with suspected DR: MA, HEM, CWS, HE,
IRMA, NV, and PC. Images had been annotated by
two retinal experts independent from each other using
a proprietary data annotation tool.28 The quality of the
data set was validated using the intraclass correlation
coefficient (ICC) as a measure of agreement between
experts for each abnormality type. Good to excellent
agreement was found for MA (0.81), HEM (0.83), HE
(0.91), CWS (0.91), IRMA (0.77), and PC (0.99). NV
was the only abnormality for which low agreement was
found, with an ICC value of 0.07. Details on validation
of the data are described in Grauslund et al.29

The data set was split into training, tuning, and
testing sets of 209, 45, and 46 images, respectively.
For training and evaluation of model performance, one
set of expert annotations was used and the annota-
tions from the second expert were used for compar-
ative analysis. Images were split such that approxi-
mately 70% of images containing NV were assigned
to the training set and approximately 30% divided
between tuning and test sets. Remaining images were
also divided using the same 70%, 15%, and 15%
split. Figure 1 shows an example image with differ-
ent abnormalities along with retinal expert pixel level
annotations.

Table 1. Number of Annotations for each Abnormality
From the First Expert Across Data Set Splits

Abnormality

Split MA HEM PC HE CWS IRMA NV Total

Training 11,024 2,622 7,148 2,357 385 846 157 24,539
Tuning 1,840 552 1,535 338 76 220 23 4,584
Testing 2,018 452 1,676 348 93 335 30 4,952
Total 14,882 3,626 10,359 3,043 554 1,401 210 34,075

The top row gives the abbreviation for each abnormality
type in the data set and the rightmost column and bottom
row holds the total number of abnormalities in each of the
splits as well as the full data set.

The images from the first expert annotator in the
training, tuning, and test sets contained 34,075 pixel-
level annotations for the abnormality types described
above. Table 1 gives a detailed overview of the number
of annotations in the three data set splits

To improve the stability of the trained network, the
optic nerve was annotated by hand prior to training
so that the network learned this feature as well. In
cases where the expert had made markings on the optic
nerve, the expert annotation took precedence.

The model used was a variation of the U-
net encoder-decoder architecture14 equipped with a
Inception-v3 encoder30 pretrained on ImageNet.31 The
final pixel-wise classification layer of the decoder was
modified to consist of three different K × K ×
N kernels with K = 1, 3, and 5, respectively, and
N = to the number of classes (abnormalities and
background features). During training, the loss calcu-
lated from each filter’s prediction was assigned an equal
weight of 0.33. The final pixel-wise class prediction
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from the trained model was based on the maximum
average softmax probability from the three output
kernels. The model was implemented in Keras32 and
pretrained ImageNet weights were obtained through
its applications module. The network was trained on
256 × 256 × 3 pixel patch sampled from the 209
high resolution training images using a sliding window
approach. Random data augmentations, such as verti-
cal and horizontal flipping and shifting, as well as
gamma adjustment were performed. Inference on the
full resolution 6,528 × 6,528 images was performed
using an overlapping tiles strategy by modifying the
input layer of themodel to accept 1,024× 1,024 resolu-
tion image crops and combining the tiles into a full
resolution segmentation mask by cropping the edge
pixels of the tiles to remove segmentation errors in the
boundary regions.

Using the first expert as reference standard, the
segmentation model and the second expert were evalu-
ated on the ability to detect individual abnormalities
as well as identify images containing one or more
of a specific type of abnormality. Performance was
measured using recall and precision metrics as well as
F1 scores for both tasks. Recall is equivalent to sensitiv-
ity (that is, the number of true positives divided by the
sum of true positives and false negatives). Precision is
equivalent to the positive predictive value, which is the
number of true positive predictions divided by the sum
of true positives and false positives. The F1 score is the
harmonic mean of recall and precision defined as two
times the product of precision and recall, divided by the
sum of the two metrics.

For detection of individual abnormalities in the 46
test images, a true positive was counted if one or more
pixels in individual abnormalities of a specific type
predicted by the model or second expert overlapped
with one or more pixels of an abnormality of the same
type in the reference annotation. If abnormality pixels
did not overlap, the prediction was counted as a false
positive. Conversely, if one or more pixels of individ-
ual abnormalities in the reference annotation did not
overlap with abnormalities of the same type in the
prediction masks from the model and second expert,
they were counted as false negatives.

For identifying images containing a specific type of
abnormality, a true positive was counted if one ormore
abnormalities of a specific type was predicted in images
where the reference annotation also contained at least
one abnormality of the same type. Otherwise, a false
positive was counted. A false negative was counted if
themodel or second expert failed to identify any abnor-
malities of a specific type in an image where this type
had been annotated by the reference.

For development of the classification model, a data
set of 31,325, 6-field high resolution images was used.
Images were obtained from 5,127 patients screened at
Odense University Hospital, a hospital located on the
island of Fyn in the Region of Southern Denmark,
Denmark. The mean age of patients was 54.7 years
(±15.6), and the average number of screening episodes
was 3.1 (±1.9). Overall, 40.0% of patients had type 1
diabetes and 53.3% had type 2 diabetes. The remain-
ing 6.7% had either other or unknown diabetes type.
The disease severity grade for each image was given by
a retinal expert and assigned based on patient records
from Fyens Diabetes Database. The data set was split
into training, tuning, and test sets using a 75%, 10%,
and 15% split. The data set was split such that images
from individual patients only appeared in one of the
three subsets. A detailed overview of the distribution
of image grades in each split is given in Table 2.

The classification model was an Inception v3
network similar to that used by Gulshan et al.5 for
automatic detection of referable DR as well as Sahlsten
et al.12 and Krause et al.13 for automatic grading of
all DR levels. In this study, two classification models
were developed and their performance with regard to
full scale grading of disease was compared. One model
was developed on raw image features, meaning that no
preprocessing apart from standardization and normal-
ization was applied to the images prior to training. The
second model was developed on images where preseg-
mentation of abnormalities had been performed using
the segmentation model. In this process, the segmen-
tation model constructed a segmentation mask with
predicted abnormalities for each image in the data set.
To allow the model to consider both the raw image
features as well as the presegmented abnormalities,

Table 2. Number of Images for each Level on the ICDR Scale in each Subset of the Development Data Set for the
Classification Model

Level 0 Level 1 Level 2 Level 3 Level 4 Total

Training (75%) 11,926 2,863 4,797 1,490 2,367 23,443
Tuning (10%) 1,595 369 632 191 392 3,179
Testing (15%) 2,361 575 797 310 660 4,703
Total 15,882 3,807 6,226 1,991 3,419 31,325
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Figure 2. Preprocessing step consisting of superimposing segmentation model outputs on development images for the classification
model.

the segmentation mask was superimposed on the raw
feature image prior to training. This process is illus-
trated in Figure 2.

Similar to Sahlsten et al.12 and Krause et al.,13 the
input size to the network was changed. Resolution was
increased from the original 299 × 299 pixels to 598
× 598 pixels. To further reduce the adverse effect of
downsampling, the black border around the retina was
cropped from the images.

Results

Segmentation

Output masks from the segmentation model and
annotations from the second expert along with the

reference annotation and feature image from the test
set of the segmentation data set are shown in Figure 3.

Results for the trained model as well as those of
the second expert for detecting individual abnormali-
ties using precision and recall detection metrics and F1
scores with expert 1 as reference are given in Table 3.

Table 4 gives precision and recall values and F1
scores for detecting images containing specific abnor-
malities in the test set for the model compared to the
second expert using expert 1 as reference.

Table 5 shows how the network and expert 2
confused similar looking abnormalities or incorrectly
detected background (BG) as abnormal.

The example in Figure 4 illustrates how abnor-
malities with similar characteristics were sometimes
confused by the model as well as expert 2. In the
example shown, the model incorrectly detected IRMA
changes in a region where the reference annotation was
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Figure 3. Example feature image (top left), reference annotation (top right), network segmentation output by the segmentation model
(bottom left), and annotations from the second expert (bottom right). MA (green), HEM (magenta), IRMA (cyan), HE (red), and CWS (yellow).

Table 3. Precision, Recall, and F1 Score for the Model and Second Expert Using Expert 1 as Reference

Expert 1 Reference

MA HEM CWS HE PC IRMA NV Mean

Model Precision 0.66 0.59 0.38 0.63 0.82 0.41 0.40 0.52
Recall 0.67 0.74 0.46 0.61 0.84 0.67 0.77 0.68
F1 0.66 0.66 0.42 0.62 0.83 0.51 0.53 0.60

Expert 2 Precision 0.73 0.57 0.75 0.70 0.90 0.54 0.45 0.66
Recall 0.47 0.68 0.41 0.71 0.85 0.40 0.88 0.62
F1 0.57 0.62 0.53 0.70 0.87 0.46 0.60 0.62

The top row gives the abbreviation of each abnormality type. Results are compared column-wise and the bold face number
in each column indicates the highest metric value between expert and model for specific abnormalities as well as the mean
metric value across all abnormalities. Rows are shaded to improve readability.

given as NV. The second expert also identified some
abnormalities in the same area as being IRMAchanges,
although many of the detections were correctly given
as NV according to the reference. The example also
shows instances of MA, HEM, and IRMA being
confused. The supplementary material gives adjusted
precision numbers for detection of individual abnor-

malities. That is, abnormalities were counted as true
positives regardless of the type of abnormalities they
overlapped in the reference annotation.

Sometimes, the segmentation model detected speci-
fic abnormalities while overlooking others in regions
where these had been annotated by the reference
annotator. Meaning that even though the model failed
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Table 4. Image Level Precision, Recall, and F1 Score as well as the Mean Metric Value Across all Abnormalities in
the Segmentation Data Test Set for Expert 2 and Model

Expert 1 Reference

MA HEM CWS HE PC IRMA NV Mean

Model Precision 0.81 0.78 0.50 0.53 0.27 0.69 0.35 0.56
Recall 0.97 1.00 0.92 1.00 1.00 1.00 0.86 0.96
F1 0.88 0.88 0.65 0.69 0.43 0.82 0.50 0.69

Expert 2 Precision 0.97 0.95 1.00 0.85 1.00 1.00 0.70 0.92
Recall 0.86 0.86 0.92 0.68 1.00 1.00 1.00 0.90
F1 0.91 0.90 0.96 0.76 1.00 1.00 0.82 0.91

For image level, a true positive was counted if a type of abnormality was detected in an image containing any such abnor-
mality according to the reference.

to detect individual lesions, it did identify regions of
interest where these were present. In the same way,
background features were identified as abnormal in
regions where other pixels had been annotated by
the reference. This may be realized by looking at the
example in Figure 5.

Table 6 shows the number of falsely positive
detected images containing either some or no abnor-
malities by themodel and expert 2. The tables should be
interpreted such that for NV, 6 images were accurately
detected by the model and a total of 11 images
were wrongly predicted to contain NV. Of these, 11
images contained MA, 10 contained MA and CWS,
9 contained MA, CWS, HE, and HEM, 8 images
contained IRMA, HE, CWS, HEM, and MA, and 5
contained all abnormalities apart from NV: IRMA,
HE, CWS, HEM, MA, and PC. In the five images
where themodel predictedMAbut that did not contain
abnormalities according to the reference, two MA on
average were incorrectly detected.

Grading

Per class grading accuracy for the two classification
models trained with and without presegmented abnor-
malities are compared in Figure 6. The average per class
accuracy was 54.3% for the model trained only on the
raw image features and 70.4% for the model trained on
images with presegmented abnormalities.

Themost noticeable differences in accuracy between
the two models was with level 1 DR and level 3
DR, with improved accuracy of 21.5 percentage points
and 54.9 percentage points, respectively. These levels
are indicated by microvascular abnormalities, such as
MA in the case of level 1 and IRMA in the case of
level 3. Figure 7 illustrates the difference in downscal-
ing images with regard to the resolution of relevant
microvascular image features, such a MA.

Confusion tables for full scale grading of DR for the
two classification models are shown in Table 7. From
the confusion tables, the quadratically weighted kappa
was calculated as a measure of agreement between the
models and the reference gradings. The model trained
on images without presegmented abnormalities had
a quadratically weighted kappa value of 0.85, and
for the model trained on images with presegmented
abnormalities the value was 0.90. The multiclass macro
average area under the curve for the model devel-
oped on only raw image features was 0.88, whereas it
was 0.92 when presegmentation of abnormalities was
used.

Figure 8 shows example images correctly graded as
ICDR level 1 by both the feature model as well as
the model trained on presegmented images. A heatmap
created using the gradient weighted class activation
map method (Grad-CAM)33 is overlaid on the images.
This method uses an internal model representation of
the image to show regions with high influence on the
classification.

Figure 9 gives an example where the feature image
model fails to correctly identify the image as ICDR
level 3, whereas the model using presegmented images
correctly classifies the image.

Discussion

In this work, we have shown that a deep learn-
ing segmentation model can be used for detection of
retinal abnormalities associated with DR, achieving
similar or better performance for recall and F1 score
on several types compared to a retinal expert. The
segmentation model can in turn be used in a classifi-
cation method to improve the grading performance of
a classification network for full-scale grading of DR in
six-field retinal images. The increased performance was
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Table 5. Confusion Table Showing False Positive Detected Abnormalities Confused With Other Structures in the
Segmentation Data Test Set for the Model and Expert 2

The diagonally colored cells indicate the true positive detections. The color gradient symbolizes the number of confused
abnormalities or background features (BG) relative to the number of true positive detections of each abnormality type.

likely due to the segmentation model’s ability to detect
microvascular abnormalities that otherwise suffer
from diminishing feature resolution when images are
downscaled prior to development of the classification
model.

The ability to recognize and accurately detect
microvascular features, such as MA and also HEM,
is important as these lesions present in early stages of
DR and indicate the risk of progressing to more severe
levels of disease.1 The segmentation model demon-
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Figure 4. Examples of abnormalities confused by the model and second expert. Feature image crop (top left), reference annotation (top
right), model output (bottom left), and expert 2 annotations (bottom right). MA (green), HEM (magenta), IRMA (cyan), HE (red), PC (purple), and
NV (blue).

strated higher recall for detection of individual abnor-
malities of both types at similar levels of precision
compared to a retinal expert. The segmentation model
also closely matched the expert in the ability to identify

images containing any of these abnormalities, suggest-
ing that segmentation models alone may be used as a
tool for identifying patients at risk of progressing to
more severe stages of disease.

Figure 5. Example showing feature image region (left) where corresponding reference annotation (middle) and segmentation model
predictions (right) are somewhat mismatched but still mostly contain the same types of abnormalities. MA (green), HEM (magenta), IRMA
(cyan), and HE (red).
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Table6. ConfusionTable ShowingFalse PositiveDetectedAbnormal ImagesContainingEitherOther or noAbnor-
malities for the Model and Expert 2

Diagonally shaded cells indicate true positive detected images, that is, images containing one ormore of the specific abnor-
mality type detected by the network and expert 2 using expert 1 as reference. The color gradient symbolizes the number of
incorrect detections relative to the number of true positive detections for each abnormality type or images with no abnormal-
ities (NA).

IRMA and neovascularizations indicate more
severe DR. The segmentation model was able to
identify more IRMA changes compared to the retinal
expert with higher F1 scores, although with lower
levels of precision. Because IRMA alone can indicate

level 3 DR, the segmentation model may also assist in
detecting more severe levels of disease. Compared to
the retinal expert, the segmentation model somewhat
struggled to accurately detect NV, with both lower
recall and precision values. Identifying NV is crucial,



Automatic Detection and Grading of Retinopathy TVST | June 2022 | Vol. 11 | No. 6 | Article 19 | 11

Figure 6. Compared per class accuracy for individual disease levels on the ICDR scale for model trained on raw image features and model
trained with presegmented abnormalities.

Figure 7. Comparison between resolution of microaneurysms in a region cropped from an original resolution image (left) and the same
region fromadownsampled feature image (middle) anddownsampledpresegmented image (right).MA (green), HEM (magenta), IRMA (cyan),
and HE (red).

as these may result in acute loss of vision due to
vitreous hemorrhages. NV was the abnormality type
with the fewest examples in the segmentation data,
with only 157 instances in the training set. This is
significantly less than the number of MA and PC
with 11,024 and 7,148 training examples, respectively.
Improving performance for this abnormality could
then simply be a matter of collecting more data. This
process, however, is very cumbersome as it involves
annotating individual pixels.

Generally, precision was lower for the segmentation
model compared to the expert for both image level
detection as well as detection of individual abnormal-
ities. The low model precision could in some cases be
attributed to it confusing abnormalities with similar
characteristics. This was also the case for the second

expert, but was more pronounced for the model. For
both the model and expert, MA were often confused
with HEM and IRMA, and HEM were likewise
confused with IRMA and MA, and for the model
in some cases also NV. For the model, IRMA was
more often than other abnormalities confused with
NV, indicating a similarity between these types of
abnormalities. This can perhaps be realized by looking
at the example in Figure 4. As seen in the supple-
mentary material, precision increased significantly for
both the expert and model when all abnormalities
were treated as the same class, that is, when the task
was formulated as a binary segmentation/detection
problem.

Highly sensitive models can lead to many false
positives and this may be problematic. It could be



Automatic Detection and Grading of Retinopathy TVST | June 2022 | Vol. 11 | No. 6 | Article 19 | 12

Table 7. Confusion Table for Full Scale Grading of DR According to the ICDR Scale in Six-Field Images for the
Feature Image Model and Model Trained Using Presegmented Abnormalities

Diagonally colored cells indicate the true positive gradings. The color gradient indicates the number of incorrect gradings
for each level relative to the number of correct grades.

argued that slightly oversensitive models are not neces-
sarily problematic for detection of retinal abnormali-
ties. As it stands, most decisions regarding treatment of
DR are handled by humans. Few machines are given
full autonomy when it comes to diagnosing DR, and
most deep learning models developed for automatic
retinal image analysis will therefore operate as clini-
cal decision support tools. As opposed to classifica-
tion algorithms, segmentation models yield semanti-
cally meaningful information directly interpretable by
humans, and predictions from overly sensitive models
can quickly be verified or ignored. For image level
detection, the segmentation model raised a false alarm
in 10 out of the 46 test images in the segmentation

data set. That is, in 10 images, the model detected
abnormalities but none were present according to the
expert reference. Of these 10 images, 5 were incorrectly
predicted to contain MA, 1 with CWS, 2 with HE,
and 2 with PC. Neither HE and CWS alone indicate
DR but may be used as indicators of other types
of diabetic eye disease, for example, diabetic macular
edema. Of the seven images that were incorrectly
predicted by themodel to contain IRMA, all contained
at least MA. Six images also contained HEM, and
five of the images in addition contained HE accord-
ing to the reference. Similarly, 11 images were incor-
rectly predicted to contain NV, but of those 11 images,
8 of them had been annotated with IRMA, HEM,
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Figure 8. Example image correctly graded as ICDR level 1 by feature imagemodel (left) and presegmentationmodel (right) with Grad-CAM
heatmaps illustrating regions in the image with high influence on model predictions. In the image on the right, the segmentation model
has detected microaneurysms (green) as well as a single photocoagulation scar (purple).

Figure 9. Example image incorrectly graded as ICDR level 2 by feature image model (left) but the same image correctly graded as ICDR
level 3 by presegmentation model (right). Grad-CAM heatmaps illustrate regions with high influence on the prediction. In the image on the
right, the segmentation model has identified instances of MA (green), HEM (magenta), IRMA (cyan), and NV (blue).

MA, HE, CWS, HE, and PC by the expert annota-
tor. No images without any abnormalities were incor-
rectly predicted to contain either IRMA or NV by the
model.

Although the image level precision for detecting
photocoagulation scar tissue was low, this may not
be reason for much concern. In most cases, clinicians
will have access to patient health records wherein it is
documented whether patients have received prior treat-
ment. As such, this marker is not the most vital for
clinical decision support. On the other hand, NV are
indicative of DR requiring treatment, and it is therefore
problematic that the model had a low recall compared
to the expert for image level detection, with lower level
of precision aswell. As only seven imageswithNVwere

present in the test data, the conclusions drawn from
these results have to be considered with some degree
of uncertainty.

Segmentation and detection of retinal abnormal-
ities can be leveraged for automatic full scale DR
disease staging. Presegmentation likely helps minimize
the adverse effect of diminishing feature resolution
caused by downscaling images prior to development
of grading models. The segmentation mask makes
it easier for the grading model to recognize relevant
features, as these will be more visible in the color-
coded segmentation masks. Intuitively, from the point
of view of a grading network, recognizing identically
colored pixels indicative of specific abnormalities, for
example, cyan, magenta, and green for IRMA, HEM,
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and MA, respectively, is a much more reasonable task
compared to the raw pixels values that are affected
by pigmentation and image artifacts, such as illumina-
tion. This is exemplified in Figure 7, where the feature
resolution of microvascular changes in the form of
MA are shown in the original resolution image and
compared to downsampled images with and without
presegmented abnormalities. The problem of reduced
feature resolution is also discussed by both Sahlsten
et al.12 and Krause et al.13 In both studies, increased
input image resolution during model development led
to improved full scale grading performance.

Individual grades on the ICDR scale are, in some
cases, defined by specific lesions and microvascular
abnormalities. In the case of ICDR level 1 and level 3,
MA, HEM, and IRMA may be used as indicators and
by including all these abnormalities in the segmenta-
tion data set, the classification model was more likely
to take these into consideration when leveraging the
outputs from the segmentation model. As again illus-
trated in Figure 7, MA and IRMA are especially sensi-
tive to the adverse effect of downsampling. Looking
at the chart in Figure 6, it can be seen how preseg-
mentation of abnormalities leads to improved grading
accuracy for these two levels in particular.

The general idea of leveraging segmentation of
retinal abnormalities for improved disease staging is
analogous to the method by De Fauw et al.34 for
diagnosis of retinal disease in optical coherence tomog-
raphy images and also by Ling et al.35 for grading DR
across multiple levels in retinal images.

As illustrated by the examples in Figures 3, 4, and 5,
the segmentation masks created from model predic-
tions were not fully accurate. In some cases, segmen-
tation errors were caused by noise or artifacts in the
images, such as underexposure. Hence, it was beneficial
to include the raw features as well, rather than relying
solely on the segmentation mask when developing the
grading model. In some cases, the segmentation model
incorrectly detected PC orNV in images that otherwise
contained no abnormalities, or with only mild levels of
pathology, which could have caused the classification
model to incorrectly classify images as level 4 based on
the presence of these abnormalities if relying solely on
the segmentation mask. We believe that including the
raw image features enabled the classification model to
reason about the general makeup of an image and take
into account the image artifacts that may have caused
the segmentation model to fail.

Using the segmentation masks in the grading
pipeline also helped to decrease the opaqueness of
model predictions by providing semantically meaning-
ful information on what features the model consid-
eredwhen grading images.When comparing the images

in Figure 8, it can be seen that theGrad-CAMheatmap
from the network trained on presegmented images
is more focused on the area where the segmentation
model had identified microaneurysms, which are defin-
ing of level 1 DR, whereas the corresponding heatmap
for the model trained on raw features is more spread
out. In the same way, it can be seen in Figure 9 that the
model trained on presegmented images was seemingly
able to use the IRMA changes detected by the segmen-
tation model to correctly identify the image as repre-
senting DR level 3. In comparison, the heatmap from
the model trained on raw image features reveals that
this network has more or less ignored the regions with
IRMA changes, likely causing it to misclassify the
image as level 2.

Increased model interpretability is likely going to be
a factor in implementing computer assisted diagnos-
tic tools in clinical practice in the future. The prover-
bial black box nature of convolutional neural networks
may serve as a barrier in this regard. Methods such as
Grad-CAM aim to resolve this issue by using inter-
nal model representations of the image to compute
the features most relevant for predictions. Although
this method has worked very well for images of more
general nature, for example, pictures of animals or
everyday objects such vehicles and household items,33
it does not yield the same degree of meaningful infor-
mation when dealing with the high-resolution retinal
images used in this study. This is again illustrated by
the example in Figure 8, where the heatmaps in both
the case of raw feature image and presegmented image
are very coarse. Were it not for the presegmented MA,
neither image would provide a lot of useful insight
into the model’s decision making. The shortcomings
of the method in the context of medical imaging
likely relates to the combination of high-resolution
images and more or less microscopic disease markers.
In order to get a good indication of important image
features, the internal representation is taken from the
deep layers of the network where the resolution, that
is, height and width of the image, is even smaller
than the original input resolution to the network.
When the information from this layer is projected back
onto the input image, the granularity is decreased,
resulting in these types of coarse heatmaps. Thus, the
presegmentation approach not only helps to improve
grading accuracy, but also significantly increases model
interpretability.

When using the segmentation masks in the classi-
fication pipeline there was a risk that the grading
model would become overly reliant on these and
perhaps ignore other features that may be relevant. We
attempted to avoid this issue by including most of the
known retinal abnormalities in DR in the segmentation
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data set, including HE and CWS, and not only those
defined in the ICDR scale as indicators of different
DR disease levels. Currently, disease staging is based
on definitions made by human experts. Although these
definitions are built on years of cumulative knowledge
by many experts, they still may not be perfect in regard
to accurately estimating the risk of disease progression
or blindness. We imagine that deep learning models
may be used for constructing better risk stratification
models in the future, and it was therefore a priority to
include as much information as possible in the data set
to allow models to take this into account.

Making pixel level annotations of abnormalities is
an enormously straining and tiresome task, not least
in the case of DR, as these are mostly microscopic
and hard to discern, even for domain experts. When
comparing one expert against another, or a model
against an expert as in this study, there is a risk that
the results have been influenced by annotators suffer-
ing from fatigue. Based on the high level of agreement
and consistency demonstrated in our previous study on
the agreement between the two experts,29 it is our view
that it has not affected the results presented here.

In this study, full scale grading of DR in six-field
retinal images from Danish patients has been demon-
strated for the first time, with results comparable to
those demonstrated for two-field retinal images by.
Sahlsten et al.12 and single field images by Krause et
al.13 The average per class accuracy for the 5 levels on
the ICDR scale was 60.2% and 72.6% in Sahlsten et
al.12 and Krause et al.,13 respectively. Sahlsten et al.12
also report a multiclass macro area under the curve
value of 0.96. Quadratic weighted Kappa is reported
by both Sahlsten et al.12 and Krause et al.13 with values
of 0.91 and 0.84. In comparison, the method described
in this study using presegmented images, average per
class accuracy was 70.4%, macro area under the curve
was 0.92, and quadratic weighted kappa was 0.90.

In this study, the classification models were devel-
oped for grading DR across all levels of disease in
the ICDR scale. Deep learning models, such as that
by Gulshan et al.5 that perform binary classifica-
tion of nonreferable or referable DR, can serve as
tools for reducing the strain on healthcare systems by
referring only patients with moderate or worse DR
to consultations with retinal experts. Automatically
grading disease across all levels may hold additional
value in regard to reducing healthcare expenditure.
Although some countries perform regular screenings
of patients regardless of their level of disease, the
screening system in Denmark assigns individualized
screening intervals based on, among other things, the
specific ICDR disease level.36 In this setup, the differ-
ence in screening interval between level 2DRand level 3

DR could be as high as 21 months, and, in either case,
the patient is not deemed to be in immediate need of
medical attention.

Although comparisons are made in this study
between the segmentation model and a human expert
for detection of retinal abnormalities, this is not the
case for full scale grading of DR.At the time of writing,
the image grades in the classification data set have been
assigned on the basis of electronic health records and
the data set has not been subject to further adjudica-
tion by retinal experts. The importance of adjudication
and expert validation of data sets has been discussed
by Gulshan et al.5 and Krause et al.13 and this is
something that will need to be addressed in the future.
Comparisons between aCNNand retinal specialists for
full scale grading of DR is made by Krause et al.,13
where the quadratic weighted kappa values for human
experts ranged from 0.80 to 0.91. As such, the method
presented here could be argued to perform on the level
of human experts.

The results presented in this study suggest that
segmentation models can serve as an additional tool
for clinical decision support and automated grading of
DR. By the virtue of the unique segmentation data set
presented here, along with adjudication of classifica-
tion data, it should be possible to develop more effec-
tive models in the future.
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