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Machine Learning-based Voice Assessment for the Detection
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*,†,aCarlo Robotti, ‡,aGiovanni Costantini, ‡,aGiovanni Saggio, ‡Valerio Cesarini, *Anna Calastri,
*Eugenia Maiorano, §Davide Piloni, ║Tiziano Perrone, ║Umberto Sabatini, ¶Virginia Valeria Ferretti,
#Irene Cassaniti, †,#Fausto Baldanti, **Andrea Gravina, **Ahmed Sakib, ††Elena Alessi, ††Filomena Pietrantonio,
††Matteo Pascucci, ‡Daniele Casali, ‡Zakarya Zarezadeh, ‡Vincenzo Del Zoppo, ‡‡,§§Antonio Pisani, and
*,†Marco Benazzo, *yx║{#zzxxPavia, z**Rome, and yyAriccia, Italy

Summary: Many virological tests have been implemented during the Coronavirus Disease 2019 (COVID-19)
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pandemic for diagnostic purposes, but they appear unsuitable for screening purposes. Furthermore, current
screening strategies are not accurate enough to effectively curb the spread of the disease. Therefore, the present
study was conducted within a controlled clinical environment to determine eventual detectable variations in the
voice of COVID-19 patients, recovered and healthy subjects, and also to determine whether machine learning-
based voice assessment (MLVA) can accurately discriminate between them, thus potentially serving as a more
effective mass-screening tool. Three different subpopulations were consecutively recruited: positive COVID-19
patients, recovered COVID-19 patients and healthy individuals as controls. Positive patients were recruited
within 10 days from nasal swab positivity. Recovery from COVID-19 was established clinically, virologically and
radiologically. Healthy individuals reported no COVID-19 symptoms and yielded negative results at serological
testing. All study participants provided three trials for multiple vocal tasks (sustained vowel phonation, speech,
cough). All recordings were initially divided into three different binary classifications with a feature selection,
ranking and cross-validated RBF-SVM pipeline. This brough a mean accuracy of 90.24%, a mean sensitivity of
91.15%, a mean specificity of 89.13% and a mean AUC of 0.94 across all tasks and all comparisons, and outlined
the sustained vowel as the most effective vocal task for COVID discrimination. Moreover, a three-way classifica-
tion was carried out on an external test set comprised of 30 subjects, 10 per class, with a mean accuracy of 80%
and an accuracy of 100% for the detection of positive subjects. Within this assessment, recovered individuals
proved to be the most difficult class to identify, and all the misclassified subjects were declared positive; this might
be related to mid and short-term vocal traces of COVID-19, even after the clinical resolution of the infection. In
conclusion, MLVA may accurately discriminate between positive COVID-19 patients, recovered COVID-19
patients and healthy individuals. Further studies should test MLVA among larger populations and asymptomatic
positive COVID-19 patients to validate this novel screening technology and test its potential application as a
potentially more effective surveillance strategy for COVID-19.
Key Words: SARS-CoV-2−Cough−Screening test−Surveillance−Sensitivity−Accuracy.
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INTRODUCTION
The Coronavirus Disease 2019 (COVID-19) pandemic,
caused by Severe Acute Respiratory Syndrome Coronavirus
2, has reached more than 200 countries to date, jeopardizing
healthcare systems and national administrations world-
wide.1-3 At the time of writing (September 2021), over
225 million confirmed cases and more than 4.5 million
deaths had been reported globally.4 To curb the alarming
spread of the disease, several virological tests were promptly
implemented, including reverse transcription-polymerase
chain reaction (RT-PCR) for viral RNA detection,5 sero-
logic testing for immunoglobulins M (IgM) and G (IgG)
quantification6 and rapid diagnostic kits.7,8 Nevertheless,
available testing strategies suffer from critical limitations in
accuracy and most appropriate clinical applications.9,10

Furthermore, inadequate testing infrastructures, high costs,
lack of testing components, and long waiting times for
results might have contributed to the poor control of the
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pandemic,11,12 leading to an underestimation of the infec-
tion’s actual burden.13

Specifically, the limitations of current screening strategies
(symptoms checklists, temperature checking)14,15 stress the
need for new instruments, which should be highly sensitive,
but also widely accessible, non-invasive, cost-effective, and
able to provide results quickly and at scale.16 Within this
frame, the present research project was designed to test a
novel COVID-19 screening tool based on voice analysis
through machine learning (ML). Conventional voice analy-
sis proved useful in detecting distinguishing acoustic fea-
tures of pathologies impairing all structures and systems
responsible for phonation, including lungs,17-19 trachea,20

larynx,21-23 vocal folds24,25 and central nervous system.26-30

Furthermore, encouraging results had been obtained for dis-
orders impairing voice production mechanisms only second-
arily, including cardiovascular diseases31-34 and diabetes.35

Advantageously, ML-based voice assessment (MLVA)
allows processing thousands of acoustic variables simulta-
neously, benefiting from the computational power of prop-
erly trained algorithms.36,37 Moreover, MLVA confirmed
its efficacy even on samples gathered through non-profes-
sional recording instruments (ie, smartphones),38,39 making
this technology potentially available on a global scale
through mobile devices.

Deep Learning (DL), especially based on Convolutional
Neural Networks (CNN) applied to images or Long Short-
Term Memory networks, is commonly considered as a sub-
stantial alternative to traditional machine learning pipeline
methods. The advantages include the possibility to extract
chance very complex features (through repeated non-linear
transformation of data) and the fact that it is completely
data-driven,t therefore not requiring preprocessing of the
training set. However,D DL is often difficult to use with small
datasets, requiring larger sets (often in the order of thousands
of entries or more40) and/or a suitable data augmentation pro-
cedure, which indeed constitutes a preprocessing artifact.
Moreover, DLmodels usually comprehend a large number of
parameters and require more hardware resources for their
training. Several studies41,42 demonstrated the possibilities of
DL for pathological speech assessment; yet, the datasets and
the accuracy values have often shown to be comparable with
those of traditional ML methods for the same pathologies,
namely Parkinson’s disease43 or dysphonia.44 Moreover, a
study by Hasan et al45 compared CNN and SVM for hyper-
spectral image recognition with the results being very similar,
slightly favouring SVM. Although apparently different from
our task, hyper-spectral images are in fact translated as image
inputs for CNN and as a set of complex features for the
SVM, which is exactly how a speech-based pathology detec-
tion is carried out.

We considered the two approaches as equally promising,
and significantly problem-dependent. For this specific study,
we chose a traditional SVM-based machine learning pipe-
line based on many state-of-the-art performances on pathol-
ogy identification with small datasets, but also considering
our need to still retain clinically relevant features in our
analysis, which would be a much more difficult task using a
high-abstraction DL-based approach.

Interestingly, over the last few months, some research
groups have been racing worldwide to search for COVID-
19 acoustic biomarkers,46 mainly focusing on cough and
breath sounds and yielding promising results.47-49 The
DiCOVA challenge within the Interspeech 2021 conference
is also worth mentioning, where several teams tested algo-
rithms for the identification of COVID-19 from crowd-
sourced voice samples,50 with the winning team accuracy
being 87%. Nonetheless, several limitations of these studies
appear noteworthy. Firstly, data was mainly collected
through web-based platforms, thus bounding researchers to
rely on patients’ self-declarations. Secondly, being con-
ducted outside of controlled clinical settings, incomplete
clinical data were often provided (ie, testing type and tim-
ing, inclusion and exclusion criteria, COVID-19 symptoms).
Thirdly, to the best of our knowledge, only two studies
included vocal samples other than cough in the
analyses.50,51 Specifically, in our opinion, proper speech
tasks could provide valuable additional features for MLVA
implementation, in reason of the complex interactions
between voice-production subsystems36,52 and their peculiar
impairments in COVID-19.53-57 Lastly, no ML study
enrolled recovered COVID-19 patients to date, even though
they may represent a crucial population for multiple rea-
sons, including potential residual viral spreading58-60 and
severe long-term disabilities.61-63

Therefore, the present study was designed to test MLVA
as a potential screening tool for COVID-19 within a con-
trolled clinical setting, collecting multiple vocal tasks (sus-
tained phonation, speech, cough) with commercially
available smartphones from three different subpopulations
(positive COVID patients, recovered negative COVID-19
patients, healthy controls).
MATERIAL AND METHODS

Study design
The study was conducted between March 2020 and October
2020 at three Italian COVID-19 units after approval of the
ethics committees (IRCCS San Matteo Foundation, Pavia,
Italy, reference number 20200053388; Ospedale dei Castelli,
Ariccia, Italy, reference number 0064181/2020; Policlinico
Tor Vergata Foundation, Rome, Italy, reference number
0012909/2020). The study was conducted following the prin-
ciples stated by the Helsinki Declaration.64
Study population
For the present study, 70 positive COVID-19 patients
(group P), 70 recovered negative COVID-19 patients (group
R) and 70 healthy individuals (group H) matching inclusion
and exclusion criteria (Table 1) were consecutively
recruited. An additional test sample population of 10 sub-
jects per group (15 males and 15 females; median age 53
years; interquartile range 37-63) was also recruited. Positive



TABLE 1.
Inclusion and Exclusion Criteria for the Three Study Groups

Inclusion Criteria Group P Group R Group H Exclusion Criteria Group P Group R Group H

Age between 18 and 80 y & & & Drugs acting on CNS & & &
European ethnicity & & & Head and neck cancer & & &
Italian native speaker & & & Lung cancer & & &
Positive NS (< 10 d) & & NA Chemoradiation therapy & & &
Two consecutive negative NS NA & NA C-PAP therapy & & &
LUS ≤ 3 NA & NA Tracheal intubation & & &
Negative SS (> 20 d) NA NA & Tracheostomy & & &

Abbreviations: P, positive COVID-19 patients; R, recovered negative COVID-19 patients; H, healthy control subjects; NS, SARS-CoV-2 nasal swab for RNA

detection; LUS, lung ultrasound score; SS, SARS-CoV-2 serum sample for IgM and IgG quantification; CNS, Central Nervous System; C-PAP, Continuous Pos-

itive Airway Pressure; NA, not Apre-cable.
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COVID-19 patients were recruited within 10 days from
nasal swab (NS) positivity. For positive patients, COVID-
19 pneumonia was diagnosed clinically and radiologically
through chest computed tomography (CT). Recovery from
COVID-19 was confirmed clinically, radiologically, and
with two consecutively negative NS tests. Moreover, only
recovered patients with a Lung Ultrasound score ≤ 3 were
recruited, to exclude subjects with residual pulmonary fibro-
sis.65-67 Healthy individuals were recruited among hospital
staff members and their acquaintances if they never had
tested positive for COVID-19, reported no COVID-19
symptoms, nor had unprotected exposure to COVID-19
cases (known or suspected). Serum samples (SS) for anti-
bodies quantification were collected from healthy partici-
pants at least 20 days after recording sessions,68-70 yielding
negative results. Written informed consent was obtained
from all participants. All data was pseudonymized.
Voice recordings
Recording sessions were conducted in similar hospital
rooms, with quiet environments and tolerable levels of back-
ground noise. Specifically, no machines producing static or
impulsive noises were running in the background and no
other voices were captured while recording. Moreover, the
global quality of the recordings was assessed by ear by three
independent audio engineers, rating samples as “accept-
able” based on voice clarity, absence of noticeable reverb,
absence of noticeable hiss or hum noises, and intelligible
phonation. Voice samples were recorded with Huawei Y6-
2019 smartphones (Huawei Technologies Co., Ltd., Shenz-
hen, China), in high quality and uncompressed format (.
wav, 16-bit, 44.1 kHz). Devices were carefully disinfected
after each use, according to the manufacturer’s instructions.
Participants were instructed to sit up straight on chairs with
no armrests, keeping elbows and arms relaxed to avoid arm
and shoulder strain. During recording sessions, all partici-
pants removed their masks not to alter acoustic signals nor
speech intelligibility.71-73 The device’s microphone was
placed 15-20 cm in front of the participants’ mouths. Three
distinct vocal-tasks were performed by each participant: (1)
sustained voicing of the vowel /a/ (like in “bra”), at
comfortable pitch and loudness, for at least 5 seconds; (2) a
common Italian saying (“a caval donato non si guarda in
bocca,” literally “do not look a gift horse in the mouth”);
(3) cough. Three trials were recorded for each task. For the
vowel and the sentence tasks, the trial with the lowest com-
peting noise was then selected for MLVA,74 while all three
cough trials were considered for the analyses. Recordings
with poor audio quality or mispronunciation errors were
then discarded from the analyses (Table S1 in the Supple-
ment). All recordings were uploaded to a secure institutional
server. Audio files were then trimmed to retain only vocaliz-
ing sections. Each participant provided three trials for each
task effortlessly. Specifically, recording sessions required no
more than 2 minutes for each participant.
Machine learning-based voice assessment (MLVA)
MLVA was performed in five steps: preprocessing, feature
extraction (FE), feature selection (FS), feature ranking
(FR), and classification (CL). First, raw audio data of all
vocal tasks underwent preprocessing elaboration. Specifi-
cally, Root Mean Square normalization was applied to feed
the algorithms with normalized data, thus mitigating varia-
tions related to different recording environments. Subse-
quently, FE was performed embedding OpenSMILE
(OpenSMILE; audEERING GmbH, Munich, Germany)75

in a bash script, following previously validated protocols.39

A total of 6373 unidimensional features was extracted using
the configuration file of the INTERSPEECH2016 Compu-
tational Paralinguistics Challenge (IS ComParE 2016) fea-
ture dataset.75 Subsequently, FS, FR and CL were
performed using the software Weka (Waikato Environment
for Knowledge Analysis; University of Waikato, Waikato,
New Zealand).76 Starting from FS, audio files were orga-
nized into nine different datasets, with three binary compar-
isons between the classes, each one being based on the three
vocal tasks. Thus, the training set was arranged for one-ver-
sus-one comparisons, namely P versus H, P versus R and R
versus H. According to a Greedy-Stepwise search method,
each binary dataset underwent FS with a Correlation-Based
approach,77 retaining approximately 2% of the previously
extracted features. FR was performed basing on heuristic
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merit factors through a linear SVM classifier.78 The first 50
top-ranking features were preserved for each dataset, retain-
ing the most informative content while maintaining a stan-
dardized number of features. Finally, CL was conducted
through the SVM classifier (Radial Basis SVM), which was
selected for its effectiveness within the analysis of relatively
small datasets.79,80 Accuracy on the training set, for each
binary classifier (binary MLVA), was calculated by means
of a 10-fold cross-validation, dividing the whole set into
folds and using a different one of those as a validation set
each time. Final accuracy is the average of the 10 accuracies
obtained on each nine-to-one set. On the other hand, the
test accuracy on the external set was obtained by running
the pretrained binary models on the test data, unified with a
majority voting system. Since each binary model is com-
prised of three sub-classifiers, one per vocal task, a majority
voting system was also used to unify the outputs of the three
sub-classifiers. Those subjects who received three different
responses from the three binary classifiers were deemed as
“uncertain.” Sensitivity and specificity were obtained
through confusion matrices, as well as their three-class
equivalent (H Accuracy, P Accuracy, R Accuracy).
Statistical analysis
To compare clinical and demographic characteristics, statis-
tical tests were performed using Stata (StataCorp 2019,
Stata Statistical Software: Release 16, College Station, TX).
Qualitative variables were summarized as absolute counts
and percentages of each category, while quantitative varia-
bles were summarized as medians and interquartile ranges.
Fisher’s exact test was used to compare categorical variables
between the groups of patients. Mann-Whitney test and
Kruskal-Wallis test (with Dunn’s test for post hoc compari-
sons) were used to compare quantitative variables between
two or more groups of patients, respectively. Bonferroni’s
correction was applied to allow for multiple comparisons.
Two-sided P values were considered statistically significant
when lower than 0.05.
RESULTS

Study population
Seventy positive COVID-19 patients (group P) were consec-
utively enrolled at the COVID-19 Units of the enrolled insti-
tutions. To match this population, 70 participants were
consecutively recruited among recovered negative COVID-
19 patients and healthy individuals. These subjects make up
the training set for the binary MLVA. Clinical and demo-
graphic data are reported in Table 2.

Moreover, 30 subjects (10 per class) have subsequently
been collected for an external test sample which allowed
MLVA to act as a three-way classifier.

COVID-19 symptoms were reported by 77% of both posi-
tive and recovered patients (P > 0.90). More than 40% of
symptomatic participants of both groups reported dyspnea
on exertion and asthenia (P > 0.05). Cough, dyspnea at rest,
blocked nose, and fever were reported more frequently by
positive COVID-19 patients (P < 0.02 in all comparisons).
Contrariwise, muscle pain was reported at a higher rate by
recovered subjects as a residual symptom (P = 0.006).
Finally, no relevant differences were highlighted for the
remaining screened symptoms (P > 0.05). At the time of
enrollment, COVID-19-related pneumonia had been diag-
nosed clinically and radiologically in 57% of positive
patients; former diagnoses of COVID-19-related pneumo-
nia were recorded instead for 96% of recovered patients (P
< 0.001).
Machine learning based voice assessment (MLVA)
Receiver Operating Characteristic (ROC) curves describing
MLVA performances for each binary comparison between
groups are depicted in Figure 1 and in Figures S1 and S2 in
the Supplement.81 Table 3 reports accuracy, sensitivity, spec-
ificity, and area under the ROC curve (AUC) values. Over-
all, MLVA for binary classifications (on the training set)
demonstrated a mean accuracy of 90.24% (range 87.88%-
92.81%), a mean sensitivity of 91.15% (range 83.58%-
93.27%), a mean specificity of 89.13% (range 85.51%-
92.31%) and a mean AUC of 0.94 (range 0.91-0.97) across
all tasks and all comparisons. According to accuracy values,
the vowel task performed as the best discriminator within
the comparison between groups P and H (90.07%) and
between groups P and R (92.81%). Differently, the cough
task performed as the best discriminator within the compari-
son between groups R and H (90.49%). Finally, radar charts
highlighting the top-ranking acoustic features for all tasks
and comparisons are depicted in Figure 2 and in Figures S3
to S10 in the Supplement. The lists of all top-ranking fea-
tures are reported in Tables S2 to S10 in the Supplement.

For the three-way classification carried out on the exter-
nal test set, accuracies of 80%, 100% and 60% have been
obtained for the identification of healthy, positive and
recovered subjects respectively, which brings to a mean
accuracy of 80%. Noteworthily, one recovered subject was
deemed as “uncertain.” For this external test, three binary
classifiers were ensembled, each comprised of three
ensembled sub-classifiers, one per vocal task. This unifica-
tion procedure was carried out with a majority voting sys-
tem. Binary accuracies for each sub-classifier were
calculated only for the test subjects pertaining to the two
classes considered by each binary classifier: for example,
recovered subjects were not considered in evaluating the
accuracy within the P versus the H classifier. Confusion
matrices for each sub-classifier along with binary accuracy,
sensitivity and specificity are reported in Table 4. The final
confusion matrix for all the test subjects is reported in
Table 5, while the compact 3 £ 4 matrix is reported in
Table 6.
DISCUSSION
The present investigation, conducted within a controlled
clinical setting, demonstrated that MLVA can accurately



TABLE 2.
Clinical and Demographic Characteristics of the Three Study Groups

Variables Group P

(n = 70)

Group R

(n = 70)

Group H

(n = 70)

P value

Global P Versus H P Versus R R Versus H

Age, median (IQR), years 57 (39-67) 59 (48-69) 41 (29-54) < 0.001 < 0.001 0.215 < 0.001
Gender

Males, n (%) 40 (57%) 45 (64%) 37 (53%) 0.402 NC NC NC

Females, n (%) 30 (43%) 25 (36%) 33 (47%)

BMI, median (IQR), kg/m2 27.8 (26.1-31.2) 26.5 (24.4-30.5) 24.3 (22.4-28.6) 0.015 0.006 0.458 0.043
Smoking habits

Non-smokers, n (%) 35 (50%) 38 (54%) 38 (54%) 0.005 0.333 0.522 0.003
Smokers, n (%) 8 (11%) 2 (3%) 15 (21%)

Ex-smokers, n (%) 27 (39%) 30 (43%) 17 (24%)

COVID-19 pneumonia

diagnosis, n (%)2
40 (57%) 67 (96%) - < 0.001 - - -

COVID-19 symptoms

Presence of symptoms,

n (%)

54 (77%) 54 (77%) - > 0.90 - - -

Number of symptoms,

median (IQR)

2 (1-4) 2 (1-3) - 0.096 - - -

Asthenia (n, %) 29 (41%) 39 (56%) - 0.128 - - -

Dyspnea on exertion (n, %) 29 (41%) 31 (44%) - 0.864 - - -

Cough (n, %) 34 (49%) 8 (11%) - < 0.001 - - -

Muscle pain (n, %) 10 (14%) 25 (36%) - 0.006 - - -

Dysphonia (n, %) 23 (33%) 5 (7%) - < 0.001 - - -

Olfaction disorder (n, %) 13 (19%) 6 (9%) - 0.137 - - -

Taste disorder (n, %) 12 (17%) 5 (7%) - 0.119 - - -

Olfaction and taste

disorder (n, %)

13 (19%) 6 (9%) - 0.137 - - -

Dyspnea at rest (n, %) 15 (21%) 2 (3%) - 0.001 - - -

Blocked nose (n, %) 11 (16%) 2 (3%) - 0.017 - - -

Headache (n, %) 6 (9%) 7 (10%) - > 0.90 - - -

Fever (n, %) 7 (10%) 0 (0%) - 0.013 - - -

Dysphagia (n, %) 1 (1%) 5 (7%) - 0.209 - - -

Chest pain (n, %) 2 (3%) 3 (4%) - > 0.90 - - -

Data regarding COVID-19 pneumonia and COVID-19 symptoms were collected only for positive and recovered COVID-19 patients, therefore cells are left blank

for healthy control subjects. Data about pneumonia for group P refer to ongoing COVID-19 pneumonia diagnosis at the time of enrollment, while for group R

they refer to previously diagnosed and currently recovered COVID-19 pneumonia. Significant p values are reported in bold font.

Abbreviations: P, positive COVID-19 patients; R, recovered negative COVID-19 patients; H, healthy control subjects; IQR, interquartile range; NC, not calcu-

lated; BMI, body mass index; COVID-19, coronavirus disease 2019.
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discriminate between positive COVID-19 patients, recov-
ered negative COVID-19 patients, and healthy individuals,
by detecting highly-distinguishing patterns of audio features
for all tasks across all study groups. In comparison to most
previous works, this study expands MLVA analyses to
proper speech tasks, providing further evidence in support
of the potential clinical application of this novel screening
tool for COVID-19.

Binary MLVA (cross-validated on the training set)
yielded promising results for all tasks and all comparisons
between groups, with a satisfactory mean accuracy of
90.24% and a significantly high mean AUC of 0.94.82 Previ-
ous studies testing cough and breath sounds reported
encouraging results in terms of accuracy (range 88.89%-
98.50%) and AUC (range 0.80-0.98).48,49 However, compar-
isons with literature appear scarcely feasible, primarily for
methodological reasons. Firstly, previous studies searching
for COVID-19 acoustic biomarkers relied almost exclu-
sively on cough, since it represents a well-renowned
COVID-19 core symptom.83-85 Pre-COVID-19 ML studies
demonstrated the relevance of cough samples for detecting
multiple respiratory conditions.86,87 However, it is conceiv-
able that proper speech tasks may provide additional valu-
able features for MLVA, potentially even more
representative of the multifaceted interactions between pho-
natory subsystems36,52 and their impairment in COVID-
19.53-55,57 Indeed, the vowel task proved higher accuracy
and AUC values than cough when discriminating between
groups P and H and between groups P and R, demonstrat-
ing lower performances only when discriminating between
groups R and H, thus confirming that speech tasks may
have at least similar informative contents. With regards to
sensitivity (the ability to detect subjects with the disease)
and specificity (the ability to identify healthy individuals),



FIGURE 1. ROC curves comparing MLVA performances for all tasks within the discrimination between positive COVID-19 patients
(group P) and healthy individuals (group H).
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binary MLVA yielded satisfactory results. In particular,
when discriminating between groups P and H, the vowel
task demonstrated the highest sensitivity (92.11%), while
the sentence task proved the highest specificity (92.31%). A
preliminary observation of the selected acoustic features
highlights a trend that sees domains other than the fre-
quency as the most prevalent ones. This is in line with the
fact that differences in voices over the three classes are not
TABLE 3.
Accuracy, Sensitivity, Specificity and Area Under the Curve (AU
and All Comparisons Between Groups

Comparison Vocal Task Accuracy (%) Sen

Group P versus Group H Vowel /a/ 90.07

Sentence 87.88

Cough 89.44

Group P versus Group R Vowel /a/ 92.81

Sentence 91.18

Cough 91.50

Group R versus Group H Vowel /a/ 89.21

Sentence 89.55

Cough 90.49

Abbreviations: P, positive COVID-19 patients; R, recovered negative COVID-19 pati
always detectable by ear. Moreover, a predominance of
RASTA related features88 can be observed. The RASTA
domain is based on cepstral coefficients of a PLP autore-
gressive model, high-pass filtered in the mel-frequency
domain. Therefore, it is inherently insensitive to slowly-
varying spectral components, which are most often repre-
sented by background noise and differences in recording
hardware and environment. On the other hand, RASTA is
C) of Machine-Learning Based Voice Analysis for All Tasks

sitivity (%) Specificity (%) AUC (CI) Cut-Off

92.11 88.00 0.94 (0.90-0.98) 0.93

83.58 92.31 0.91 (0.86-0.96) 0.85

91.28 87.50 0.92 (0.90-0.94) 0.91

92.86 91.43 0.97 (0.95-1.00) 0.94

91.04 91.30 0.96 (0.92-1.00) 0.94

93.27 89.58 0.94 (0.92-0.96) 0.92

92.86 85.51 0.92 (0.87-0.97) 0.93

92.75 86.15 0.96 (0.92-0.99) 0.93

90.63 90.36 0.92 (0.90-0.94) 0.91

ents; H, healthy control subjects; CI, 95% confidence interval.



FIGURE 2. Discrimination between positive COVID-19 patients and healthy individuals based on the first 20 top ranking features of the
vowel task. The red line of this radar plot corresponds to positive COVID-19 patients (group P), while the blue line corresponds to healthy
individuals (group H). Each radius represents a distinct audio feature. Each point on the red line represents the feature's mean value for
group P, normalized to its mean value for group H. Out of the original 50 top-ranking features, only the first 20 were reported for convenient
viewing reasons. The list of all 20 top-ranking features is depicted in Table S2 (For interpretation of the references to color in this figure leg-
end, the reader is referred to the Web version of this article).
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sensitive to eventual other background voices, which we
were very careful not to include in our recordings. With
regards to proper speech tasks, Pinkas51 and Shimon52 also
obtained encouraging results through their preliminary
analyses (vowel /a/, counting from 50 to 80). However, data
was gathered from smaller populations of positive COVID-
19 subjects and their analyses yielded lower AUC and accu-
racy values. Secondly, most studies gathered cough samples
from crowdsourced databases, allegedly to promptly gather
large datasets, nonetheless often providing incomplete medi-
cal data.

Foreseeing the need for an automatic tool, a three-way
classifier was also developed by unifying the three models
with a majority voting system. Thus, the features used for
the classifications were the same used for the binary
MLVA. This classification yielded 80% accuracy for the
identification of subjects of group H, a 100% accuracy for
subjects of group P and a 60% accuracy for subjects of
group R, with 10% classified as “uncertain.” With a mean
of 80%, the classifier still yields relevant accuracy, compara-
ble to that of conventional nasal swabs, with the additional
advantage of preliminarily discriminating recovered sub-
jects. Furthermore, the trend of the vowel being the best dis-
criminating task, shortly followed by the sentence, was
confirmed. It is worth noting that all misclassified recovered
subjects were declared as positives. This might suggest that
the COVID-19 “signature” persists in the voice in the mid
and short-term, even when the clinical course of infection is
over. This is in line with considerations by Helding et al89

on COVID-induced long-lasting damages to the phonatory
system, which are especially concerning for voice professio-
nals such as singers and therefore deserve attention.

These promising results further support the potential
employment of MLVA as a COVID-19 screening tool.
Regarding eventual on-site examinations, setting up
uncrowded and noise-free recording environments would be
very beneficial, especially regarding the complexity of the
problem which requires clean datasets (high-quality and
homogeneous). However, the presence of noise-robust fea-
tures like RASTA and the caveat of avoiding background
voices in the recordings could be sufficient, to an extent that
still needs to be thoroughly tested, for an on-site



TABLE 4.
Confusion Matrices for Each Sub-Classifier Over the External Test Set, Along With Binary Accuracy, Sensitivity and Speci-
ficity Calculated on the Two Respective Classes for Each Comparison

# Real Class P Versus H P Versus R R Versus H

Vowel /a/ Sentence Cough Vowel /a/ Sentence Cough Vowel /a/ Sentence Cough

1 H H H H P P P H H R

2 H H H H R P P H H R

3 H P H H P P P H H R

4 H H H H P P P H H H

5 H H H H P P R H H R

6 H H H H P P P H H R

7 H P H P R P P H H R

8 H P H P P P P H H H

9 H H H H P P P H H R

10 H H H H P P P H H H

11 P P P P P P P R R R

12 P P P P P P P R R R

13 P P P P P P P R R R

14 P P H P P P P H R R

15 P P P P P R P R R R

16 P H P P P P P R R R

17 P P P P P P P R R R

18 P H P P P R P R R R

19 P P P P P P P R R R

20 P P P P P P P H R R

21 R H H H R R R R R R

22 R P P H R R R R R R

23 R H H H R R P R R R

24 R P P H R P P R R R

25 R P P H R P P R R R

26 R P H H R R P R R R

27 R P H H R P P R R P

28 R H P H R R P R P R

29 R P P H R P P R R R

30 R H H H R R P R R R

Accuracy (%) 75 95 90 100 80 60 100 95 60

Sensitivity (%) 80 90 100 100 100 100 100 90 90

Specificity (%) 70 100 80 100 60 20 100 100 30

Abbreviations: #, number of test subject; P, positive COVID-19 patients; R, recovered negative COVID-19 patients; H, healthy control subjects.
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examination outside the clinical environment, such as in
closed spaces placed in the territory or even in a silent room
at one’s house. Naturally, an automatic tool in a “real”
environment will possibly require a new training process.

The present research was conceived to overcome the criti-
cal issues of current screening strategies, such as symptoms
checklists and temperature checking. Regarding symptoms
checklists, a recent review concluded that commonly
screened COVID-19 signs and symptoms have low diagnos-
tic accuracy, since neither presence nor absence of symp-
toms is accurate enough to confirm or rule out the disease.14

Temperature screening appears to be an unreliable, high-
cost, and low-yield strategy.15 Indeed, in a study investigat-
ing European patients' clinical features, only 45% of mild-
to-moderate COVID-19 patients had fever, and the rate
dropped to 9% when asymptomatic individuals were also
considered.84 Therefore, based on our preliminary results,
we believe that MLVA could represent a more reliable,
cost-effective, non-invasive, and widely deployable
COVID-19 screening tool. Specifically, several MLVA
screening scenarios could be envisioned: (1) population
daily screening, potentially localizing new viral hotbeds; (2)
remote testing, limiting infectious risk for healthcare work-
ers by reducing in-person interactions; (3) alternative
COVID-19 testing where virological tests are scarcely acces-
sible or poorly available.90

Furthermore, MLVA could also be employed at scale to
preselect candidates for virological testing because of its
high sensitivity and specificity. Interestingly, a recent meta-
analysis highlighted that sensitivity and specificity of cur-
rently available COVID-19 diagnostics are not equally
high, ranging from 97.2% of RT-PCR analyses of sputum
samples to 73.3% and even 62.3% when RT-PCR is per-
formed on NS specimens and saliva, respectively.91 This



TABLE 5.
Final Confusion Matrix for the Three Classifiers on the External Test Set Along With Mean Accuracy and Per-Class
Accuracies

# Real Class Binary Classifiers Output: Final Error

P Versus H P Versus R R Versus H

1 H H H P H

2 H H H P H

3 H H H P H

4 H H H P H

5 H H H P H

6 H H H P H

7 H P H P P yes

8 H P H P P yes

9 H H H P H

10 H H H P H

11 P P R P P

12 P P R P P

13 P P R P P

14 P P R P P

15 P P R P P

16 P P R P P

17 P P R P P

18 P P R P P

19 P P R P P

20 P P R P P

21 R H R R R

22 R P R R R

23 R H R R R

24 R P R P P yes

25 R P R P P yes

26 R P R R R

27 R H R P uncertain uncertain

28 R H R R R

29 R P R P P yes

30 R H R R R

Accuracy (%) 80

H accuracy (%) 80

P accuracy (%) 100

R accuracy (%) 60

Abbreviations: #, number of test subject; P, positive COVID-19 patients; R, recovered negative COVID-19 patients; H, healthy control subjects; Final, final pre-

diction obtained through majority voting of the three classifiers; Error, whether a mis-classification has occurred.
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variability may be primarily related to COVID-19 clinical
course, since chances of viral detection on biological sam-
ples depend on specific collection times.91,92 Moreover,
being time-consuming and expensive,93 these technologies
TABLE 6.
Final 3 £ 4 Confusion Matrix

True Class Classified as

H (%) P (%) R (%) Uncertain (%)

H (%) 80 20 0 0

P (%) 0 100 0 0

R (%) 0 30 60 10

Abbreviations: P, positive COVID-19 patients; R, recovered negative

COVID-19 patients; H, healthy control subjects.
appear unsuitable for reiterated population screening. Con-
trariwise, effective surveillance regimens (aimed at rapidly
filtering infected individuals out from the population, thus
preventing further spreading) should focus instead on high-
frequency testing, even with lower analytic sensitivity.94

Both high-sensitivity and low-sensitivity tests can detect the
infection within its narrow transmission window, but only
frequently repeated tests can spot it during its very early
phases.95 In this matter, being a low-cost and widely spread-
able technology (ie, smartphones), MLVA could potentially
be employed to test large populations recurrently over time,
suggesting prompt confirmation through virological diag-
nostics when suspected cases are detected, making this novel
technology a more effective COVID-19 filter. It is to be
stressed that, in the case of quite rare diseases such as
COVID-19, screening tests with high specificity and Positive
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Predictive value (PPV, the probability that subjects with a
positive test truly have the disease) are preferable, as they
offer a better “rule in” test. However, the diagnostic param-
eters of a screening test (such as accuracy, specificity and
sensitivity) are not intrinsic properties of the test itself, but
they do strongly depend upon the clinical setting in which
the test is applied. Therefore, in order to reduce falsely posi-
tive results, data regarding the actual prevalence of
COVID-19 should be taken into account in order to weight
the results of this screening tool. Nevertheless, patients
should always be sent to conventional diagnostics for confir-
mation (ie, RT-PCR) in case of positive results.96,97

Although the test set is not large, preliminary results
stresses the potential utility of MLVA as an on-site screen-
ing tool used in substitution or in addition to nasal swabs
for prediagnosis, as well as the possibility to develop an
application for real-time, remote self-assessment. In these
regards, we consider MLVA to only be a preliminary tool
which should suggest a more extensive examination in case
of a positive outcome.

Recruited healthy individuals had to respect strict inclu-
sion criteria. Furthermore, SS testing was conducted at least
20 days after recording sessions, yielding negative results.
Similarly, Laguarta49 crowdsourced cough samples from
healthy individuals who declared having tested negative,
nevertheless not specifying testing type. For the present
investigation, control subjects did not undergo baseline NS
testing, since NS may yield falsely-negative results,98 espe-
cially in early phases of COVID-19 and with potentially
high rates.99 Instead, numerous studies demonstrated that
seroconversion rates in positive COVID-19 patients reach
almost 100% 15 to 19 days after symptoms onset,68-70 sug-
gesting that delayed immunological confirmation might
offer a more reliable strategy when recruiting healthy con-
trol subjects during the present pandemic.

Noteworthily, this is the first study testing MLVA on
recovered COVID-19 patients, with promising results. Spe-
cifically, the satisfactory classification accuracy obtained
discriminating between positive and recovered patients sug-
gests that MLVA may detect different COVID-19 clinical
phases. Therefore, further studies should test MLVA in
monitoring disease progression. Moreover, the results
obtained within the discrimination between recovered and
healthy individuals suggest that COVID-19 may leave
detectable vocal traces even without clinically evident pul-
monary impairments. In fact, all recovered patients had a
Lung Ultrasound Score of 3 or lower.65-67 The importance
of recruiting recovered patients lies in the fact that these
subjects might test positive again, although the reasons
behind it (ie, reinfections, new viral variants, reactivation of
former infections) and eventual residual viral spreading are
still debated.58-60 Ultimately, it is expected that healthcare
systems will face critical challenges in the future for the
management of recovered COVID-19 patients due to poten-
tial long-term invalidating sequelae.61-63,100,101 In this mat-
ter, MLVA could offer a feasible and low-cost strategy to
detect these subjects among the general population.
Lastly, some limitations of the present investigations must
be stated. Firstly, most positive and recovered COVID-19
patients (77%) presented clinical symptoms of the disease.
Future studies should address this experimental approach
to positive but asymptomatic patients, thus improving
MLVA performances in the preclinical phases of COVID-
19.102 Secondly, we are aware that our study's sample size
was limited, and that the lack of sample size calculation lim-
its the ability to draw ultimate inferences in support of a
prompt employment of MLVA in clinical practice. There-
fore, although promising, the results of the present study
should be intended as preliminary.103 However, the adopted
rigorous methodology and the homogenous population of
this study (same ethnicity, language and nationality) sup-
port the quality of our results, hopefully dispelling some
skepticism towards this pioneering screening technology.
Wider multicultural and multilanguage study should be
designed to confirm our findings among international popu-
lations, in order to rapidly answer the pressing need for a
more effective surveillance strategy for COVID-19.104
CONCLUSIONS
In conclusion, the present MLVA model demonstrated high
accuracy for the discrimination between positive COVID-
19 patients, recovered negative COVID-19 patients and
healthy control subjects within a controlled clinical setting.
A preliminary three-way classification proves the feasibility
of an automatic tool. Moreover, the prevalence of noise-
robust acoustic features like the RASTA domain suggest
that an on-site examination is possible, especially in suffi-
ciently noise-free environments. Further studies should test
MLVA with pauci-symptomatic positive subjects, which are
prevalent in the postvaccine era, and will also focus on
long-term recovered subjects. Moreover, further examina-
tions would be beneficial especially with wider datasets
among larger populations, in order to validate this novel
screening instrument and answer the pressing need for a
more effective surveillance strategy for COVID-19.
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