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The culture-independent strategies to study microbial diversity and function have led to a revolution in environmental genomics,
enabling fundamental questions about the distribution of microbes and their influence on bioremediation to be addressed. In this
research we used the expression of universal stress proteins as a probe to determine the changes in degrading microbial population
from a highly toxic terephthalate wastewater to a less toxic activated sludge bioreactor. The impact of relative toxicities was
significantly elaborated at the levels of genus and species. The results indicated that 23 similar prokaryotic phyla were represented
in both metagenomes irrespective of their relative abundance. Furthermore, the following bacteria taxa Micromonosporaceae,
Streptomyces, Cyanothece sp. PCC 7822,Alicyclobacillus acidocaldarius, Bacillus halodurans, Leuconostoc mesenteroides, Lactococcus
garvieae, Brucellaceae, Ralstonia solanacearum, Verminephrobacter eiseniae, Azoarcus, Acidithiobacillus ferrooxidans, Francisella
tularensis, Methanothermus fervidus, andMethanocorpusculum labreanumwere represented only in the activated sludge bioreactor.
These highly dynamicmicrobes could serve as taxonomic biomarkers for toxic thresholds related to terephthalate and its derivatives.
This paper, highlights the application of universal stress proteins in metagenomics analysis. Dynamics of microbial consortium of
this nature can have future in biotechnological applications in bioremediation of toxic chemicals and radionuclides.

1. Introduction

Terephthalate (TA) is also known chemically as polyethy-
lene terephthalate (PET) or terephthalic acid (PTA) (1,4-
benzenedicarboxylic acid) [1]. Terephthalate and its isomers
are among top 50 chemicals manufactured in the world [2, 3].
The chemical derivatives are used in the manufacturing of
textile, polyester films, adhesives, coatings, and polyethylene
terephthalate bottle [4]. The terephthalate wastewater is
typically treated by aerobic biological systems [5, 6]. The
anaerobic treatment requires less energy and nutrients than
traditional aerobic processes and has become an attractive
alternative [7]. Using anaerobic bioreactors, organic com-
pounds are transformed into methane and carbon dioxide
through a complicated network of a consortium of different
types of bacteria. There are documented studies on these
metabolic networks based on anaerobic degradation of some

known agroindustrial wastewater constituents such as alco-
hols and fatty acids [8, 9].

The anaerobic sludge bioreactor has been shown to be
very successful in treating terephthalate containing wastewa-
ter [10, 11]. The microecosystem is composed of acetogenic
bacteria which are good degraders of complex organic
compounds, converting them to intermediate mixture of
formate, hydrogen, and acetate. The methanogenic archaea
present will then mineralize the intermediates to methane
and carbon dioxide [12–16]. Due to favorable energy in
the fermentation step from terephthalate to acetate, the
microbial population interacts syntrophically and requires
the methanogenesis step as a coupling reaction to drive
the process [17]. It has also been suggested that within
the methanogenic consortium, terephthalate is degraded via
decarboxylation to an intermediate benzoyl-CoA and later to
acetate and hydrogen which are mineralized to methane and
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carbon dioxide [18, 19]. The degradation of terephthalate to
acetate and hydrogenwas due to the fermentative population,
while the methanogenesis process was the sole responsibility
of both hydrogenotrophic and acetoclastic methanogens.
However, this pathway remains unconfirmed due to the
difficulty in isolating synthrophic bacteria [8, 18].

Many petrochemical industries are producing a wide
range of chemical intermediates, plastics, and synthetic rub-
ber from petroleum rawmaterials, thus generating enormous
amount of toxic cyanide-containing wastewater [20], and
many other varieties of toxic compounds that are considered
potential stressors to the anaerobic degrading microorgan-
isms [21–23]. As such the microbial degrading consortia of
terephthalate are under enormous amount of environmental
stress. A phenotypic feature crucial to an organism’s survival
is the ability to response and adapt to unfavorable or stressful
environment. A protein family known to enable bacteria,
archaea, fungi, and plants to respond to unfavorable or
stressful environment is the universal stress protein (USP)
family [24, 25].The universal stress proteins (USPs) are found
in diverse group of organisms like archaea, eubacteria, yeast,
fungi, and plants (Pfam accession number PF00582), and
encompass a conserved group of proteins whose expressions
are triggered by a large variety of environmental insults [26].
This variety of stress conditions may include starvation of
one of the following nutrients: carbon, nitrogen, phosphate,
sulfate, and the required amino acid and the presence of a
variety of toxicants and other agents including heavy metals,
oxidants, acids, antibiotics, heat shock, DNA damage, and
uncouplers of the electron transport chain [27, 28].

The transcripts from universal stress proteins are con-
sidered low abundant transcripts [24, 29] and are induced
to perform specialized functions triggered by environmental
stressors as indicated above. This implies that USPs are not
housekeeping genes. Multiple USP genes may be encoded in
a genome and are expressed to circumvent varying insults
[26]. Species-specific USP genes may differ completely in
both their subcellular locations and functions.This specificity
indicates that the expressedUSP genes depend on the triggers
in question and the functions to be performed in the imme-
diate environment. In an extreme and noxious environment
such as terephthalate wastewater and bioreactor systems, the
USPs genes could be acting as both extracellular sensor to the
environmental insult (terephthalate) [30, 31] and as a cellular
protector to the organism’s degrading enzymes from possible
toxicant denaturing effect [32].

TheUSP genes and their signal peptides are very sensitive
to the stressor(s) threshold value(s), and thus these genes
will be expressed at a minimum threshold value, and above
the maximum threshold value the organism will be extinct
from the system. Only organisms with highly equipped USP
apparatus will survive higher threshold values. This implies
that the threshold value of an environmental insult can be
a dynamic parameter for the microbial consortium, with
the appearance or disappearance of particular organism(s)
serving as biomarker(s) of stressor levels. The wastewater is
expected to have a higher threshold of terephathalate toxi-
cants and only organisms with well-adapted USP genes will
proliferate at this toxic threshold. As the wastewater is treated

in the activated sludge, its toxicity decreases continuously
until the accepted treatment level is attained. Therefore the
dynamic of themicrobial consortium in the bioreactor can be
correlated or calibrated to the stressor (terephthlate toxicant)
value in the biotreatment system.

A metagenome analysis has been proven as an effective
method for retrieving interestingmicrobial populations from
complex ecosystems [33, 34]. This paper reports research
investigation to elucidate the dynamics of potent degrad-
ing microbial populations in a bioreactor treatment plant
containing terephthlate toxicant. We have used bioinformat-
ics strategies on metagenomics data to identify microbes
expressing the universal stress protein’s genes from the
terephthalate degrading microbial community. We used
GOLD ID: Gm00012 metagenome library constructed from
both wastewater and terepthalate bioreactors samples. The
results reveal that the dynamics of the microbial consortium
in both highly toxic wastewater and the less toxic activated
sludge could be potential biomarkers of toxicity thresholds.
To our knowledge, this paper is the first report on applying
universal stress protein’s genes as initial filter for compar-
ing metagenomes. The findings could have biotechnology
applications in the bioremediation of toxic chemicals and
radionuclides.

2. Methods

The procedure for identifying microbial taxonomic distribu-
tion and universal stress protein biomarkers are summarized
in Figure 1. Each step is described in the sentences.

2.1. Read Extraction and Sequence Similarity Search. The
universal stress protein reads were extracted using Pfam
annotation. The finished metagenomes were retrieved from
the Integrated Microbial Genomes with Microbiome Sam-
ples (http://img.jgi.doe.gov/cgi-bin/m/main.cgi) using the
Pfam domain accession Pfam00582. We obtained universal
stress protein sequence reads from the terephthalate acti-
vated sludge and terephthalate wastewater metagenomes.
The Pfam00582 gene function was used as filter for reads
corresponding to the universal stress protein expressing
microbial community. To determine the taxonomic distri-
bution of the source organisms for the universal stress pro-
teins and their functional annotations in each metagenome
sample, we ran tblastn comparison against the National
Center for Biotechnology Information (NCBI) nonredun-
dant nucleotide database (ncbiN-nr) and blastx against the
NCBI nonredundant Protein Database (ncbiP-nr) at default
parameters [35] and followed the steps in the workflow chart
(Figure 1).

2.2. Metagenomic Analysis and Visualization

2.2.1. Taxonomic Binning. MEGAN (“MEtaGenomeANa-
lyzer”) software version 4.70.4 was used to process the
NCBI BLAST output file for taxonomic sources of the
sequences. The processing was based on the NCBI taxonomy
embedded in MEGAN with default lowest common ancestor
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Figure 1: Overview of the procedure identifying microbial taxonomic distribution and universal stress protein biomarkers.

(LCA)-parameters (min. score: 35, top percent: 10.0 and
min. support: 5, and disable taxa: 9). The LCA algorithmin
MEGAN randomly chooses 10%, 20%, . . . , 100% of the total
number of reads as subsets. For each of these random subsets
the number of leaves (hit with at least 5 reads (min support) is

determined.The tblastn and blastx search results were loaded
intoMEGAN and applied the LCA algorithm to compute the
assignment of reads to taxa and estimate the USP express-
ing taxonomical content of each metagenome. We mapped
the taxon information of significantmatches at phylum, class,
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genus, and species levels for the two metagenomes. We used
all ranks of the NCBI taxonomy, placing more conserved
sequences higher up in the taxonomy (i.e., closer to the root)
andmore distinct sequence onto nodes that are more specific
(i.e., closer to the leaves, which represent species and strains).

2.3. Comparative Visualization and Statistical Significance
of Reads. The different datasets were brought together and
compared for taxonomical and functional attributes under a
multiple comparison tree. The metagenomes were compared
at the levels of phylum, class, genus, and species including
their functional attributes using normalized read count.
The comparison was done by generating different types of
interactive visualization using bar and pie charts where each
node in the NCBI taxonomy is shown as a pie or bar chart
indicating the number of normalized reads from each dataset
that have been assigned to that node. In this work we used
the Holm-Bonferroni correction [36, 37] significance test at
1% confidence interval for both the up test and the down test.
The 𝑃 value was automatically generated byMEGAN.The up
test is visible as a black bar to the left of nodes for phylum
and specie comparisons. The down test on the other hand
incorporates Pearson’s 𝜒2-test to compare the distribution of
the two datasets on the children of a particular node. If the
𝑃-value of the up test is below the critical level (0.01), then
the part of the node that faces the parent will be highlighted,
whereas a significant 𝑃-value for the down test will result in
the part of the node that faces the children to be highlighted.

2.3.1. Rarefraction Curve. An important question in metage-
nomic sampling is whether the level of sequencing performed
for a given sample is sufficient to capture the most abundant
taxa. We addressed this by plotting the discovery rate of
the metagenomes, also called rarefraction analysis or species
richness. The species richness was estimated by rarefaction
analysis in MEGAN as indicated by [38]. The MEGAN
program uses an LCA-algorithm to bin reads to taxa based
on their blast-hits. This results in a rooted tree where each
node represents a taxon as stated above. The leaves in this
tree are then used as operational taxonomic units (OTUs)
in the rarefaction curve analysis. The program randomly
chooses 10%, 20%, . . . , 100% of the total number of reads as
subsets. For each of these random subsets the number of
leaves (hit with at least 5 reads (min. support) is determined.
This random subsampling is repeated 20 times, and then the
average value is used for each percentage. Our analysis was
evaluated at the most resolved level of the NCBI taxonomy to
capture as much of the richness as possible. At this level, the
leaves weremostly strains and species.We analyzed all taxa in
themetagenomes (Bacteria, Archaea, Eukaryota, viruses, and
environmental sequences). The graph obtained can be used
to give a rough estimate on how many additional species are
likely to be discovered if the number of reads are increased by
a certain factor.

2.3.2. Metabolic Pathway Analysis. The MEGAN program
automatically calculates functional classification of the reads
using either the SEED comparative genomics environment

or the Kyoto Encyclopedia of Genes and Genomes (KEGG)
classification or both. The results can be interactively viewed
and inspected. In SEED classification MEGAN attempts to
map each read to a SEED functional role, using the highest
scoring BLAST match to a protein sequence for which the
functional role is known. The SEED classification will be
depicted as a rooted tree whose internal nodes represent
the different subsystems and whose leaves represent the
functional roles. For KEGG analysis the program attempts
to match each read to a KEGG orthology (KO) accession
number using the best hit to a reference sequence for which
a KO accession number is known. This information is then
used to assign reads to enzymes and pathways. The KEGG
classification will be represented by a rooted tree whose
leaves represent different pathways. Each pathway can also
be inspected visually, to see which reads were assigned to
which enzymes. Both KEGG and SEED classifications were
annotated in the metagenomes analyzed.

3. Results and Discussion

3.1.TheUniversal Stress Protein Reads and Sequence Similarity
Searches. ThePF00582 gene filteredwas used to extract genes
encoding universal stress proteins from both metagenomes.
The taxonomical classification of the reads queried against
the NCBI nonredundant Nucleotide Database (ncbiN-nr)
yielded file size of 19.41 GB containing 6,735 reads from
wastewater and 13.6GB containing 4,574 reads from the
activated sludge. These reads were used for taxonomic
binning. Furthermore, the BlastX query against the NCBI
nonredundant Protein Database (ncbiP-nr) resulted to 7,133
reads for the wastewater and 5,475 reads from the acti-
vated sludge samples. In 1992, Nyström and Neidhardt [27]
reported the cloning, mapping, and nucleotide sequencing
of a monocistronic gene in Escherichia coli encoding a
small (13.5 kDa) cytoplasmic protein with increased synthesis
during growth inhibition or presence of toxic agents. The
gene was designated UspA, and subsequent mutant-based
analysis of the gene led to the proposal that the encoded
protein may have a general protective function related to
the growth arrest state [39]. Genomic data have been used
to identify genes encoding the USP domain in the Archaea,
Bacteria and Eukaryotes [26, 40–42].This report represents a
useful application of data mining and integration to generally
underutilized USP genes expression inmetagenomics studies
and their possible application in bioremediation biotechnol-
ogy. The common effect of toxic stress to an organism is to
denature its proteins. Stress proteins are stress-inducible and
they respond to a variety of environmental stressors through
activation of various intracellular signaling pathways. All
known stresses, if sufficiently intense, induce expression of
these proteins. A common aspect of these inducing stresses is
that they result in proteins having nonnative conformations
[32, 43].

3.2. Metagenomic Analysis and Visualization. The BLAST
output files were analyzed according to NCBI taxonomy
in MEGAN using default LCA-parameters (min. score: 35,
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top percent: 10.0 and min. support: 5, and disable Taxa:
9). The distribution of the entire sequence (reads) shows
that there are significant differences in the proportion of
reads assigned to the domains Bacteria and Archaea for the
twometagenomes (Figure 2). In the wastewater metagenome
57,108 reads were assigned to Bacteria and 36,466 reads to
Archaea, while in the activated sludge metagenome 63,334
reads were assigned to Bacteria and 32,589 reads to Archaea.
The presence of the prokaryotic community structure in
both metagenomes suggests that terephpthlate degradation
follows a two-step process through the syntrophic associa-
tion between fermentative bacterial groups, which convert
terepthalate to acetate and hydrogen and the methanogens,
which convert acetate and hydrogen to final gaseous products
(CH
4
and CO

2
) [12–16]. An important feature of MEGAN is

the ability to interactively collapse or expand a tree at different
levels of the taxonomy, making it possible to start at a high-
level view and then drill down to a low-level comparison.

In this research we have used the Holm-Bonferroni
correction [36, 37] significance test at 1% confidence interval
for both the up test and the down test. This version corrects
results that could have been identified by chance and thereby
represent uninformative data, thus giving a strong indication
of significant difference between the metagenomes. Holm-
Bonferroni correction analysis of the binned reads showed
a striking difference between the two metagenomes on the
abundance of the phyla and species reads. The MEGAN
software uses two directed homogeneity tests called the up
test and the down test to get an impression of how significant
the two datasets differ as described in [44]. The test provides
answers to two questions. (i) Is there a significant difference
in the proportions of occurrences on a particular node in
the two datasets? (ii) Is there a significant difference in the
distribution of reads among the children of a particular node
in the two datasets? The up test will answer the first question
whether the proportion of assignments at a node as a fraction
of its parent is significantly different between the two datasets.
It uses the two-sample 𝑡-test, with the null hypothesis being
that the two fractions are equal. The 𝑃-value thus describes
the probability that the two fractions are from the same
distribution, that is, that the corresponding organisms are
equally abundant in both environments. The thickness of
the black highlighting is logarithmically proportional to the
significance.

A total of 23 similar prokaryotic phyla were represented
in both metagenomes, but their individual assigned reads
showed remarkable significant differences (Figure 3). In the
bacteria, the Proteobacteria was the most enriched group
[45, 46] followed by Firmicutes and Bacteroidetes/Chlorobi
group in that order. In the Archaea, the Euryarchaeota was
significantly abundant [47–49] followed by Crenarchaeota.
These findings are in accordance with previous characteri-
zation of the microbial consortia in laboratory-scale tereph-
thalate systems. For example, most clones were affiliated
to the delta class of the Proteobacteria which were closely
affiliated with bacterial genera Syntrophus and Smithella
that form syntrophic relationships with methanogens to
degrade aromatic compounds such as benzoate [46]. Another
research investigation observed that the archaea found in the

syntrophic granule were all close relatives of methanogens
in the Euryarchaeota and were closely affiliated to the gen-
era Methanosaeta, Methanospirillum and Methanogenium,
and the order Methanomicrobiales [45]. Concurrently other
researchers reported that both acetoclastic Methanosaeta
spp. and hydrogenotrophic methanogens (Methanospirillum,
Methanobacterium and Methanobrevibacter) are frequently
found in anaerobic sludge granules [47, 48] and are suggested
to be important for sludge granulation [49]. This finding will
further support the two-step degradation process of tereph-
pthlate under mesophilic methanogenic conditions [12–16]
with delta Proteobacteria and syntrophic methanogenic Eur-
yarchaeota the major fermentative bacterial populations.

The impact of the relative toxicity was significantly
elaborated at the levels of both the genus and species (Figures
3 and 4). We are interested in the dynamic of microbial
population and their future applications in environmental
bioremediation, as such we are focusing on the lower toxic
activated sludge metagenome. Terephthalate and derivatives
compounds such as benzoate, methyl benzoate, and other
intermediate toxic chemicals have profound impact on the
microbial community leading to significantly population
diversity. In the lower toxic activated sludge community,
the microbial genera that appeared in the activated sludge
which were not represented in the highly toxic wastewater
were Micromonosporaceae, Streptomyces, Leuconostoc, Bru-
cellaceae, Verminephrobacter, and Azoarcus. In the Archaea
genera,Methanothermus andMethanocorpusculum were not
represented in the highly toxic wastewater. The following
species of bacterial were present only in the activated
sludge Micromonosporaceae, Streptomyces, Cyanothece sp.
PCC 7822, Alicyclobacillus acidocaldarius, Bacillus halodu-
rans, Leuconostoc mesenteroides, Lactococcus garvieae, Bru-
cellaceae, Ralstonia solanacearum, Verminephrobacter eise-
niae, Azoarcus,Acidithiobacillus ferrooxidans, and Francisella
tularensis.The Archaea speciesMethanothermus fervidus and
Methanocorpusculum labreanumwere not also represented in
the highly toxic wastewater (Figure 4).These highly dynamic
microbes could represent the stress responsive taxonomic
biomarkers for terepthalate threshold levels.

One of the interesting features of both metagenomes
was the selective dynamics noticed at the family, genus
and species levels. A key environmental factor influencing
the dynamics of the microbial consortia and the eventual
expression of the universal stress protein is the toxic stressor
[27, 39]. We suggest that the decrease in the concentra-
tions of terephthalate and its derivative after syntrophic
methanogenic degradation [15, 46] accounts for the emer-
gence of activated sludge specific species. The shift in the
entire prokaryotic abundant in wastewater compared to
activated sludge might be due to continuous depletion of the
specific toxic compounds [50].

Rarefaction analysis was performed at the most resolved
species level of the NCBI taxonomy in MEGAN. This illus-
trates the taxonomic richness detected in both metagenome
samples (Figure 5). The plot shows the rarefaction curves of
annotated species richness and the total assigned taxa (leaves)
in percentage detected in both wastewater and activated
sludge metagenomes.
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Figure 4: Continued.
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Figure 4: Dynamic of specie population from both metagenomes. The wastewater community is blue, and activated sludge population
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Figure 5: Rarefaction curve: the plots show the rarefaction curves
of annotated species richness. It indicates the total assigned taxa
(leaves) in percentage detected in the wastewater and activated
sludge.

Both metagenomes curves rise very quickly at first, but
the activated sludge then levels off as more new species
are found per unit percentage of sequences sampled. The
steep slope rarefaction curves for wastewater community
indicated that not all the taxonomic richness had been
accounted for and that a large fraction of the species diversity
remains to be discovered and more intensive sampling is
likely to yield additional species. Conversely, the activate
sludge flattened out and indicates that complete taxonomic
richness had been attained. From rarefaction analysis the
high number of sequence reads for wastewater could be one
of the contributing factors to the imbalance of the number of
microbial families and species between both metagenomes.
Another potential factor could be the shift in concentration
gradient of terephthalate and its associated toxicants as more
of these toxic chemicals become degraded. With time this
could be pivotal to the emergence of the activated sludge
unique families and species. Previous research has shown
that the chemicals present in terephthalate wastewaters (i.e.,
terephthalic, phthalic, benzoic, trimellitic, and acetic acids),
with the exception of p-toluic acid, are readily degradable
with time in the bioreactor [50]. This process will signifi-
cantly reduce the toxic concentrations and hence enriches
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Figure 6: The comparative visualization showing the mapping of eight SEED terms.

the families and species that are specific to the activated
sludge microbial consortium. However, the oxidation of ter-
ephthalate to acetate and hydrogen is an endergonic reaction
unless coupled to methanogenesis reactions that it further
convert those intermediates to the final gaseous products
[13]. The shift in the entire prokaryotic abundance between
wastewater and activated sludge might be accounted by the
continuous depletion of toxic products [50].

3.2.1. Metabolic Pathway Analysis. To gain insight into the
pathways, we annotated the reads from each metagenome
to the KEGG and SEED terms mapped in MEGAN. The
comparative visualization shows the mapping of eight SEED
terms (Figure 6). The virulence term (TypeV pilus) was
annotated to the activated sludgemetagenome irrespective of
the high reads abundance of pathogenic prokaryotes assigned
to the wastewater sample. This indicates that the pathogenic
microbes in the wastewater do not express the TypeV
pilus virulence gene. In the terephthalate activated sludge
bioreactor, incorporation of porous plastic biomass support
particles (BSP) has resulted in the increased percentage of
chemical oxygen demand (COD) reduction which was found
to be related to the increase in biomass formation [20] and
thus encourages the formation of prokaryotic biofilm during
perturbation such as inadequate operational conditions to
enrich the microbial consortia [51].

In Escherichia coli a global regulator had been identified
which controls genes related to stress response, biofilm
formation, and virulence by recognizing curved DNA and
by silencing acquired genes [52]. Biofilm formation plays a
critical role in the pathogenesis and is correlated with the
function of various structures such as fimbriae and virulence
pili such asTypeVpilus [53–55]. For the stress response terms,
the main family involved was the universal stress protein
family. We noticed that more stress response genes were

expressed in the wastewater sample. The key environmental
factor influencing the dynamics of the microbial consortia
and the eventual expression of the universal stress protein
in both metagenomes is toxicity [27, 39]. This indicates that
there are relative high toxic substances (terephthalic, phthalic,
benzoic, trimellitic and acetic acids) and other stressors in
the wastewater [50] compared to the activated sludge. More
protein biosynthesis is taking place in the activated sludge,
indicating that the community is recovering from the high
toxic assault in the wastewater that denatured many protein
units [32, 43].

Also in the activated sludge the following SEED func-
tions were annotated: protein biosynthesis and clustering-
based subsystems (NusA-TFII cluster). The main subsystem
involved in the clustering-based subsystems term is the
NusA-TFII cluster, whose role is in transcription termi-
nation protein NusA. This indicates that more transcrip-
tion process is taking place in the activated sludge to
circumvent the depleted protein load from the high toxic
wastewater metagenome [32, 43]. In the wastewater sam-
ple we identified the nucleosides and nucleotides function
while in both metagenomes the following functions were
annotated (1) transportation of manganese, (2) respiratory
(soluble cytochrome), (3) cell division, and (4) cell cycle.
The Nucleosides and Nucleotides term was annotated only
in the wastewater metagenome. The main process is the de
novo purine biosynthesis. The de novo purine biosynthetic
pathway produces purines which represent the building
blocks for DNA and RNA synthesis, provide energy in
chemical and redox reactions, and act as signaling molecules
in regulatory pathways [56]. The de novo purine path-
way consists of ten stepwise reactions that serve to con-
vert phosphoribosyl pyrophosphate to inosine monophos-
phate. In general, prokaryotes tend to use freestanding
single-functional enzymes for the chemical transformation.
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Figure 9: Methane metabolism pathway identified in the wastewater.

The main enzyme involve here is Phosphoribosylamine
glycine ligase (EC 6.3.4.13) which catalyzes the ligation of
glycine and 5-phosphoribosylamine to generate 5-phos-
phoribosyl glycineamide [57]. This indicates initiation of
biosynthesis for primary enzymes needed to commence the
chemical transformation of toxics in the wastewater.

The main membrane transport is in the transportation
of manganese. Manganese has a central function in the
regulation of stress responses, physiology, and metabolism
in prokaryotes [58] and also to be pivotal in pathogenesis
[59]. There were no significant differences in the number of
reads assigned to both metagenomes. This indicates the need
for continuous regulation of stress responses, physiology, and
metabolism of the prokaryotes in bothmetagenomes through
manganese transportation. The respiratory term involves
soluble cytochrome and functional-related electron carriers.
One of the steps of a common pathway for biological energy
conversion involves electron transfer between cytochromes
[60]. The cytochromes are ubiquitous electron carriers with

essential functions in cellular energy and signal transduc-
tion. These electron carriers participate in both respiratory
and photosynthetic electron-transfer chains [61]. There were
more respiratory reads annotated to the wastewater than the
activated sludge. This is because the oxidation of tereph-
thalate to acetate and hydrogen is an endergonic reaction
unless coupled to methanogenesis reactions that further
conversion of the intermediates will result to the final gaseous
products [13]. This suggests that more energy is needed for
degrading the high toxic concentration in the wastewater
sample.

Themain cell division and cell cycle was in both commu-
nities were the control of cell elongation division cycle, and
the particular enzyme involved is the endonuclease III (EC
4.2.99.18). Endonuclease III (EC 4.2.99.18) is a DNA repair
enzyme which removes a number of damaged pyrimidines
from DNA via its glycosylase activity and also cleaves the
phosphodiester backbone at apurinic/apyrimidinic sites via a
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Figure 10: The glycerol 3-phosphate common to both metagenome.

beta-elimination mechanism [62] with the native containing
a single [Fe

4
S
4
]2+ cluster. There was no striking difference in

the number of reads assigned to each metagenome, although
the activated sludge community shows a slight higher anno-
tation of reads. In proliferating cells, DNAdamage is detected
by sensors that elicit a cellular response which can arrest
the cell cycle and repair the damage [63, 64]. This suggests
that more prokaryotic cellular proliferation and DNA repairs
are taking place to circumvent the depleted microbial loads
and the DNA assaults that resulted from the wastewater
metagenome.

Also the comparative visualization shows the mapping
KEGG terms (Figure 7). In this work we shall focus on the
four metabolic pathways identified. These pathways include
(1) carbohydrate metabolism (glyoxylate and dicarboxylate
metabolism); (2) Energy metabolism (methane metabolism);
(3) lipid metabolism (glycerophospholipid metabolism), and
(4) nucleotide metabolism (purine metabolism). In the gly-
oxylate and dicarboxylate metabolism pathways, the formate
dehydrogenase gene (EC: 1.2.1.2) with 28 reads was identified
in thewastewater sample butwas not detected in the activated
sludge metagenome (Figure 8).

The dehydrogenase gene from most aerobic organisms
is devoid of redox-active centers [65] and together with the
hydrogen dehydrogenase gene (EC: 1.12.1.2) forms a system
previously known as formate hydrogenlyase. Glyoxylate is
a toxic intermediate which in humans undergoes oxalate
formation [66, 67] with severe consequences for the tissues
involved. The glyoxylate cycle is thought to be present in
bacteria, protists, plants, fungi, and nematodes but not in
other Metazoa [68]. Glyoxylate cycle is a distinct, anaplerotic
variant of the tricarboxylic acid (TCA) cycle whose net effect
is the conversion of twomolecules of acetyl-CoA to succinate
gluconeogenesis [68]. Glyoxylate cycle allows the synthesis
of macromolecules from dicarboxylates compounds such as
ethanol and acetate whose intoxication producesmultisystem
organ injury [69]. It has been suggested that within the
methanogenic consortium, terephthalate is degraded via
decarboxylation to an intermediate benzoyl-CoA and later to
acetate and hydrogen which are mineralized to methane and
carbon dioxide [14, 18].Thepresence of this pathway indicates
that glyoxylate could be one of the terephthalate intermediate
metabolite and together with terephthalate is biochemically
transformed in the wastewater sample.
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Figure 11: De novo purine biosynthesis pathway identified in the wastewater.

In the methane metabolism pathway, the formate dehy-
drogenase gene (EC: 1.2.1.2) with 28 reads was also iden-
tified in the wastewater sample but was not detected in
the activated sludge metagenome (Figure 9). In methane
metabolism pathway the formate dehydrogenase gene will
mineralize the intermediate mixture of formate, hydrogen,
and acetate to methane and carbon dioxide by methanogenic
archaea [18]. This gene was not detected in the activated
sludge sample, which is likely due to the low abundance of
reads assigned to Euryarchaeota and methanogenic archaea.
Another reason for lack of dehydrogenase gene might be due
to low gene coverage encoded by these taxa or due to the
absence of terephthalate and toxic intermediate metabolite to
be degraded via decarboxylation pathway to methane in the
activated sludge metagenome [14, 18].

In the glycerophospholipid metabolism pathway, the
glycerol 3-phosphate dehydrogenase gene (EC: 1.1.5.3) with
14 reads was identified in the wastewater sample, and also
18 reads were detected in the activated sludge metagenome
(Figure 10). The glycerol 3-phosphate dehydrogenase
(G3PDH) gene is an oxidoreductase and a key enzyme
in the pathway of glycerol synthesis, which converts
dihydroxyacetone phosphate (DHAP) to glycerol-3-
phosphate [70]. It is a flavin-dependent dehydrogenase
and an essential membrane enzyme, functioning at the
central junction of glycolysis, respiration, and phospholipid
biosynthesis. In bacteria, the enzyme is localized to the
cytoplasmic membrane [71]. Glycerol is a small and simple
molecule produced in the breakdown of glucose, proteins,
pyruvate, triacylglycerols, and other glycerolipids, as

well as release from dietary fats. It has long been known
to play fundamental roles in several vital physiological
processes, in prokaryotes, and eukaryotes and is an
important intermediate of energy metabolism [72]. It is
the primary energy source for heterotrophic haloarchaea
and a major component of “salty” biodiesel waste [73].
Glycerol-3-phosphate dehydrogenase (Gpd1p) is a cytosolic
NAD(+)-dependent glycerol 3-phosphate dehydrogenase
gene, that is, localizes to peroxisomes and plays a critical role
in the cellular response to osmotic stress and a role in redox
balance [74].

The comparativemicrobial visualization fromour unpub-
lished work indicates that there are generally more reads
assigned to the wastewater than activated sludge sample
based on the salinity attribute. The high annotation of
glycerol-3-phosphate dehydrogenase gene in activated sludge
(18 reads) compared to wastewater (14 reads) indicates
that the activated sludge community is very sensitive to
salinity fluctuations. This correlates with their overexpres-
sion of glycerol-3-phosphate dehydrogenase. The glycerol-3-
phosphate dehydrogenase (G3PDH) is efficient in protecting
against the effect of salt, pH, and temperature stresses [75],
and overexpression of the GPD1 gene encoding glycerol-3-
phosphate dehydrogenase has been shown to confer high salt
stress tolerance and osmoadaptation tomicrobial cell [76, 77].
In the de novo purine biosynthesis pathway, phosphoribo-
sylamine glycine ligase gene (EC 6.3.4.13) with 14 reads was
identified in the wastewater sample but was not detected
in the activated sludge metagenome (Figure 11). This might
be related to the low abundance of reads assigned to the
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activated sludge metagenome or the absence of biosynthesis
of enzyme building blocks. This suggests that the building
blocks of chemical transformation enzymes might have
been synthesized in the wastewater metagenome with high
terephthalate concentration. Another reason for the absence
of enzyme building blocks is the comparative reduction of
terephthalate and toxic intermediate metabolite to methane
via decarboxylation pathway [14, 18] in the activated sludge.
The de novo purine biosynthesis pathway had been explained
also in the SEED function.

4. Conclusions

The metagenomics concept has been used to analyze the
dynamics of potent degrading microbes expressing the uni-
versal stress proteins from the terephthalate degradingmicro-
bial community.These highly dynamic microbial species that
appeared only in the activated sludge of less toxic terepthalate
and its derivatives could serve as taxonomic biomarkers for
toxic thresholds related to terepthalate and its derivatives.
Dynamics of microbial consortium of this nature can have
future in biotechnological application in bioremediation such
as toxicity monitoring and biosystem augmentation.
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