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A B S T R A C T   

Background: Deep brain stimulation (DBS) is an established therapy for patients with Parkinson’s disease. In silico 
computer models for DBS hold the potential to inform a selection of stimulation parameters. In recent years, the 
focus has shifted towards DBS-induced firing in myelinated axons, deemed particularly relevant for the external 
modulation of neural activity. 

Objective: The aim of this project was to investigate correlations between patient-specific pathway activation 
profiles and clinical motor improvement. 

Methods: We used the concept of pathway activation modeling, which incorporates advanced volume 
conductor models and anatomically authentic fiber trajectories to estimate DBS-induced action potential initi
ation in anatomically plausible pathways that traverse in close proximity to targeted nuclei. We applied the 
method on two retrospective datasets of DBS patients, whose clinical improvement had been evaluated according 
to the motor part of the Unified Parkinson’s Disease Rating Scale. Based on differences in outcome and activation 
levels for intrapatient DBS protocols in a training cohort, we derived a pathway activation profile that theo
retically induces a complete alleviation of symptoms described by UPDRS-III. The profile was further enhanced 
by analyzing the importance of matching activation levels for individual pathways. 

Results: The obtained profile emphasized the importance of activation in pathways descending from the motor- 
relevant cortical regions as well as the pallidothalamic pathways. The degree of similarity of patient-specific 
profiles to the optimal profile significantly correlated with clinical motor improvement in a test cohort. 

Conclusion: Pathway activation modeling has a translational utility in the context of motor symptom allevi
ation in Parkinson’s patients treated with DBS.   

1. Introduction 

Deep brain stimulation (DBS) is an effective treatment for various 
neurological and mental disorders, and it has become an established 
therapy for patients suffering from therapy-refractory Parkinson’s dis
ease (PD). During DBS, short-duration high-frequency pulses are deliv
ered to subcortical brain structures via implanted electrodes. These 
electrodes usually have 4 or 8 contacts, each of which can be used as a 

current source. Modern DBS systems allow great flexibility in pulse 
modulation, including adjustment of width, amplitude, and frequency. 
Determining an optimal stimulation protocol in such a large parameter 
space is challenging, and to assist medical professionals in this proced
ure, in silico computational models for DBS could be of use (Frankemolle 
et al., 2010; Roediger et al., 2022; Vorwerk et al., 2019). Besides, such 
models could provide insights into the action mechanism of the treat
ment, which in turn could drive the development of more efficient and 
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effective stimulation paradigms. 
In the basal ganglia, DBS has been hypothesized to create an 

“informational lesion” partly facilitated by electrical stimulation of 
highly excitable myelinated axons (Grill et al., 2004) that form pro
jections across DBS targets, such as the subthalamic nucleus (STN) and 
the globus pallidus internus (GPi). To quantify the effect, different 
concepts have been proposed, among which the volume of tissue acti
vated (Butson and McIntyre, 2005) or its approximations (Duffley et al., 
2019) are most commonly employed. Multiple studies have investigated 
correlations of symptom alleviation with voxel metrics defined based on 
the volume of tissue activated and its interaction with structural and 
functional connectivity (Horn et al., 2017, 2019; Li et al., 2020; Mid
dlebrooks et al., 2018). More recently, the concept of pathway activation 
modeling was proposed (Gunalan et al., 2017) that comprises advanced 
volume conductor models and anatomically authentic fiber trajectories 
to estimate a DBS-induced action potential initiation along pathways 
residing in the vicinity of the stimulation targets. To date, studies on 
Tourette syndrome, obsessive–compulsive disorder, treatment-resistant 
depression, and PD have successfully employed pathway activation 
modeling to estimate symptom alleviation in patients (Johnson et al., 
2020; Hartmann et al., 2016; Howell et al., 2019; Goftari et al., 2020). 
However, to our best knowledge, the method has not been applied on a 
cohort level to investigate correlations between DBS-induced activation, 
quantified using pathways composed of multiple axonal models, and 
alleviation of aggregated motor symptoms in PD. 

In this retrospective computational study, we apply pathway acti
vation modeling to identify the network correlates underlying the 
improvement of the Unified Parkinson’s Disease Rating Scale III score 
(motor examination, further referred to as UPRDS-III) and the Move
ment Disorder Society (MDS) sponsored revision of UPRDS-III in pa
tients suffering from therapy-refractory PD. In particular, our aim is to 
evaluate the applicability of the analyzed modeling results for assess
ment of general alleviation of motor symptoms. We base this correlation 
model on pathway activation profiles defined by multiple pathways 
recruited by Subthalamic Nucleus Deep Brain Stimulation (STN-DBS). 
Correlating symptom alleviation with profiles instead of activation in 
individual pathways can be a more robust metric considering compen
satory and adverse effects of fiber recruitment in the vicinity of the STN. 
Based on interprotocol scores, defined as the difference of two DBS-on 
UPDRS-III scores assessed in the training cohort for each patient, we 
construct a pathway activation profile theoretically leading to 100% 
UPDRS-III improvement from baseline and enhance it by analyzing the 
significance of activation levels in individual pathways. The perfor
mance of the resulting profile-based correlation model is then success
fully tested in a held-out cohort. 

2. Materials and methods 

2.1. Patient cohorts and imaging 

Two cohorts from independent DBS centers, namely Charité – Uni
versitätsmedizin Berlin and Würzburg University Hospital, were retro
spectively analyzed for derivation and validation of a pathway 
activation-based correlation model. The collection and analysis of all 
patient data from the training cohort was approved by the Local Ethics 
committee of Charité – Universitätsmedizin Berlin (master vote EA2/ 
186/18). The collection and analysis of all patient data from the test 
cohort was approved by the institutional review board of the University 
Hospital of Würzburg (registration No. 150/15 amendment). The co
horts were formed based on the following criteria:  

• availability of medical imaging data, such as preoperative T1- 
weighted magnetic resonance imaging (MRI) and postoperative 
computed tomography (CT), necessary for electrode localization and 
patient-specific modeling (see App. A: Suppl. 1 and Suppl. 2 for 
further details);  

• current-controlled stimulation mode, which allows to compensate 
for a voltage drop on the electrode-tissue interface (Butson and 
McIntyre, 2005; Miocinovic et al., 2009; Butenko et al., 2022), 
reducing the computational model complexity; 

• STN targeting via the dorsal portion of pallidus. The former restric
tion is imposed since only activation in pathways in the vicinity of 
the STN was investigated, and the latter criterion was applied to 
reduce effects of the pallidal lesioning. 

As a result, 15 patients for the training (Berlin) and 19 for the test 
(Würzburg) cohort were admitted. Although the first cohort contained 
fewer patients, it provided a total of 30 datapoints: two stimulation 
protocols were documented on the same day for each patient as a part of 
another study that compared the standard of care with algorithm-guided 
DBS-programming, see (Wenzel et al., 2021) for further details. Later, 
this aspect was used to derive the correlation model. In both cohorts, the 
patients constituted a representative sampling of a clinical PD-DBS 
cohort (see Table 1). All received octopolar DBS electrodes bilaterally 
to STN (Fig. 1), either using omnidirectional or directional DBS elec
trodes (Boston Scientific VerciseTM, Marlborough, MA, USA). Stimula
tion was performed using a conventional current-controlled DBS signal: 
a rectangular pulse of 20–60 μs length, 79–185 Hz repetition rate, each 
followed by an extended charge balancing period at low amplitude (see 
App. A: Suppl. 1 and Suppl. 2 for further details). Motor performance in 
the training and the test cohorts was evaluated with either UPDRS-III or 
MDS-UPDRS-III, respectively. These scores are strongly (r > 0.95) 
correlated (Merello et al., 2011), and, for brevity, both will be referred 
to as UPRDS-III. They were taken at baseline (off medication, DBS-off) 
preoperatively in the test cohort, and at least 6 months after surgery 
(same day as DBS-on scores) in the training cohort. UPDRS-III scores 
under active DBS (off medication) were acquired at least after 6 months 
in both cohorts. 

Imaging data was processed using Lead-DBS software (Horn and 
Kühn, 2015; Horn et al., 2019) (lead-dbs.org), see Fig. 2. Postoperative 
volumes and preoperative weighted multimodal MRI scans were linearly 
co-registered using SPM12 (Friston et al., 1994) (fil.ion.ucl.ac.uk/spm). 
This was followed by a non-linear normalization step of co-registered 
patient scans to stereotactic Montreal Neurological Institute (MNI) 
space using Advanced Normalization Tools (ANTs, stnava.github.io/ 
ANTs/) ’SyN’ algorithm (Avants et al., 2008). We also accounted for 
potential non-linear displacements introduced by brain shift using an 
additional refinement of the co-registration step that focused on the 
subcortex. Electrodes were localized based on CT scans using PaCER 
(Husch et al., 2018), and results were visually evaluated and refined, if 
necessary. 

Bioelectrical effects of DBS were modeled in patient-specific (native) 
space. To do so, patient-specific brain tissue distributions (grey matter, 
white matter and cerebrospinal fluid) were obtained by segmenting each 
patient’s individual MRI data using the Unified Segmentation approach 
as implemented in SPM12 (Ashburner and Friston, 2005). To account for 
tissue anisotropy, prominent along large fiber tracts, the mean diffusion 
tensor data of the human brain (Zhang and Arfanakis, 2018) were 
transformed into patient-specific space using the inverse deformation 
field derived from the diffeomorphic normalization procedure. The 
same procedure was applied to a basal ganglia pathway atlas (Petersen 
et al., 2019) that describes fiber distribution and classification necessary 
for pathway activation modeling. Created under the guidance of expert 
neuroanatomists, it provides an accurate description of axonal trajec
tories affected by STN stimulation. We must emphasize that these tra
jectories do not represent individualized tractography data, which can 
be extracted using various processing of diffusion imaging (Pujol et al., 
2015). Instead, they stem from the atlas that defines thin bundles of the 
subcortex reconstructed based on MRI, histology, and relevant 
literature. 
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2.2. Field and pathway activation modeling 

Isotropic conductivity values for grey and white matter were eval
uated in the frequency domain based on (Gabriel et al., 1996), but 
omitting α-dispersion as proposed in Zimmermann and van Rienen 
(2021) and additionally upscaled. The conductivity σ of non-dispersive 

cerebrospinal fluid was fixed to 2.0 S/m. In the power spectrum of a 
conventional DBS signal (up to 1 MHz), the conductivities were mono
tonically increasing (σgrey: 0.168–0.235 S/m and σwhite: 0.120–0.153 S/ 
m). To account for this dispersion, which was shown to affect the tissue- 
voltage response (Grant and Lowery, 2010), the Fourier Finite Element 
Method (Butson and McIntyre, 2005) was applied to solve the 

Table 1 
Cohort Demographics and Clinical Outcomes.  

Cohort No. (female) Age, years Disease duration, years MDS-UPDRS-III Pre-op baseline UPDRS-III Post-op baseline (MDS-) UPDRS-III DBS-on Med-off 

Training 15 (2) 62.4 ± 6.2 12.8 ± 4.8 — 40.6 ± 8.8 23.3 ± 8.7 
Test 19 (7) 55.5 ± 5.7 9.8 ± 3.4 43.3 ± 9.4 — 22.3 ± 9.6 

The training cohort was evaluated according to UPRDS-III (Unified Parkinson Disease Rating Scale, motor examination), and MDS-UPDRS-III (movement Disorder Society 
sponsored revision) was used in the test cohort; the scores are linearly dependent. Mean values ± standard deviations are reported. In the test cohort, baseline (off medication, 
DBS-off) was assessed preoperatively and in the training cohort at least 6 months after surgery. For each patient in the training cohort two stimulation protocols were documented: 
21.5 ± 8.8 and 25.1 ± 8.3, respectively, with the score difference over the cohort 3.6 ± 7.3. Note that despite the age difference between the cohorts (t  = 3.26, p  < 0.01), there 
was no significant difference in gray matter-to-brain ratio (t = − 0.22, p  = 0.82), computed based on segmentations in native space.  

Fig. 1. Reconstruction of DBS electrodes in the training (Berlin, A) and the test (Würzburg, B) cohorts. Electrodes are visualized in standard stereotactic Montreal 
Neurological Institute (MNI) space using Lead-DBS. Displayed brain structures are defined by the DISTAL atlas (Ewert et al., 2018) and include subthalamic nucleus 
(orange), globus pallidus externus (blue) and globus pallidus internus (green). Note that the exact choice of the electrode placement depends on the patients’ specific 
symptom profiles, anatomical variability (e.g. ventricle size, atrophy, asymmetry), and methodological limitations during image processing. Moreover, having 
distributed electrodes is beneficial when probing DBS effects on various neural substrates in the context of connectomic DBS. 

Fig. 2. Dataflow for computing pathway activation. Based on patient imaging and brain atlases, Lead-DBS (orange box) reconstructs the electrode and provides a 
description of tissue and water diffusion distributions in the brain. These data are used by OSS-DBS (green box) to create an accurate patient-specific volume 
conductor model. The model is then employed to compute electric potential distribution in space and time along axon models allocated on trajectories described by a 
pathway atlas. Finally, for the given distribution, the cable equation is solved to probe axonal activation, i.e. occurrence of an action potential in response to DBS. 
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quasistatic formulation of Maxwell’s equations that describes the spatial 
distribution of the electric potential ϕ(r): 

∇⋅(σ(r,ω)∇ϕ(r)) = 0, (1)  

where ω = 2πf is the angular frequency of one of the harmonics that 
compose the DBS signal. Capacitive properties of brain tissue can be 
neglected in Eq. 1 due to its relatively low contribution after omitting 
α-dispersion. An octave band approximation method (Butenko et al., 
2019) was used to reduce the number of computations in the frequency 
domain. The solution in the time domain is then retrieved using an In
verse Fourier Transform. Anisotropy, especially prominent in white 
matter tracts (Geddes and Baker, 1967), was modeled by expressing 
conductivity in terms of tensors defined according to the mean diffusion 
tensor data that were normalized voxel-wise following the volume 
conservation approach (Güllmar et al., 2010) and scaled by the isotropic 
conductivity of brain tissue. The electrode-tissue interface was neglected 
assuming its minor effect on current-controlled stimulation (Butson and 
McIntyre, 2005) with a charge density per phase below 0.03 mC/cm2. 
Nevertheless, the electrode’s encapsulation layer was accounted for by 
removing axons within a 0.1 mm vicinity, where neuron degeneration 
and glial scarring occur. Note that although a 0.5 mm layer is often 
considered, it is not clear whether a substantial neuronal loss actually 
occurs that far from the electrode (Evers and Lowery, 2020). The ac
curacy of the Finite Element Method computations was controlled based 
on the convergence of the electric field and the current, and elements 
with large deviations were refined. 

The obtained distribution of the extracellular potential in space and 
time was used to solve a double cable equation of a myelinated axon 
model described in McIntyre et al. (2002). The models were allocated on 
the trajectories delineated in Petersen et al. (2019) (for passing fibers, 
the closest point on the trajectory to active contacts was treated as the 
midpoint seed), and the pathway percent activation was computed as a 
fraction of axons in the pathway that elicited an action potential in 
response to the DBS pulse. In the present study, we modeled activation 
in the corticofugal pathway and its collateral to the STN, i.e. the 
hyperdirect pathway (HDP), originating in the primary and premotor 
cortex, as well as the supplementary motor area. To reduce the 
computational costs, the corticofugal pathway was uniformly down
sampled from 5000 to 1250 streamlines. In addition, activation in the 
pallidosubthalamic pathways (sensorimotor portion) and the pallid
othalamic pathways (ansa lenticularis and lenticular fasciculus) was 
investigated. Besides, we computed the extent of direct DBS recruitment 
of the passing cerebellothalamic tract associated with tremor suppres
sion (Coenen et al., 2020). In total, 3500 axon models of 14 pathways 
per hemisphere were deployed for pathway activation modeling, with 
some axons being later removed due to their intersection with the 
electrode, the encapsulation layer or cerebrospinal fluid. 

In the present study, the fiber diameters and the number of nodes of 
Ranvier, which together defined the axonal length, were fixed for axons 
within one pathway. A fiber diameter of 3.0 μm was chosen for axons of 
the pallidosubthalamic projections with a length of 10 mm (35 nodes of 
Ranvier). For other pathways, the fiber diameter was set to 5.7 μm. Note 
that these myelinated large caliber axons constitute a minority across 
the considered pathways (Liewald et al., 2014), but their activation 
might be of relevance in the context of high-frequency stimulation 
(Perge et al., 2012). The same axon model was employed in Howell et al. 
(2021), where it was noted that larger fiber diameters improve pre
dictability of evoked potentials. In a preliminary analysis, we also tested 
a 12.0 μm fiber diameter as suggested by the authors, but this setup 
yielded a high activation in the corticofugal pathway, which is unlikely 
for clinically accepted protocols due to evoked motor contractions. For 
computational reasons, the length of the axons of passage and the HDP 
was limited to 20 mm (40 nodes of Ranvier), thus not covering the whole 
length of the corresponding projections. Nevertheless, this truncation is 
acceptable due to a minor effect of DBS on distant axonal compartments, 

and a preliminary analysis with longer axons yielded the same activation 
levels. 

All steps described in this subsection were carried out using the open- 
source simulation software OSS-DBS (Butenko et al., 2020) that was 
developed for highly automated DBS modeling in heterogeneous 
anisotropic and dispersive volume conductor models. For the present 
study, the software was implemented as a computational backend, freely 
distributed along with Lead-DBS. The coupling allowed a seamless 
transition between state-of-the-art processing of medical imaging and 
accurate modeling of DBS-induced electric field with subsequent quan
tification of its effect on neural tissue using cable models. The OSS-DBS 
computations were encapsulated in Docker containers (docker.com/) 
deployed on Intel Xeon(R) Gold 6136 CPU @ 3.00 GHz x 48 cores with 
376.6 GB of memory. 

2.3. Analysis of pathway activation profiles 

As a first exploratory step, we calculated correlations between acti
vation levels of individual pathways and the UPDRS-III improvement 
from baseline in the training cohort. We employed the Pearson corre
lation coefficient, assuming a linear interaction between the quantities. 
The Spearman rank correlation was comparable for all tests presented in 
this study. 

Secondly, we analyzed percent activation profiles 𝒜 (vector quanti
ties composed of percent activation over 14 pathways) and their cor
relation with alleviation of motor symptoms. Since the training cohort 
contained two DBS-on datapoints per patient, we decided to use these 
measurements to derive a vector of the interprotocol UPDRS-III 
improvement in the pathway activation space (see Fig. 3). The differ
ence in UPDRS-III scores between two protocols allowed us to compute a 
distance to a theoretical pathway activation profile of 100% improve
ment, i.e. an optimal percent activation profile: 

𝒜optimal = 𝒜+ +
(𝒜+ − 𝒜− )UPDRS+

UPDRS− − UPDRS+

, (2)  

where subscripts “+” and “− ” refer to the better and the worse per
forming stimulation protocols, respectively. Such a definition of the 
optimal pathway activation profile is preferable over derivations using 
baseline, where only endogenous activity is present that is not quanti
fied in the model and assumed to be overwritten by the DBS-induced 
activation of fiber tracts. If the score difference of the two protocols is 
small while their activation patterns are distinctly different, Eq. 2 di
verges: two different solutions lead to a similar result. However, such 
divergent datapoints would have a very low normalized interprotocol 
improvement (a large change in activation leads to a low change in 
UPDRS-III, see the figure below, B), i.e. those datapoints are not 
informative. 

The difference between two profiles was quantified with the Can
berra distance (Lance and Williams, 1967) 

d(𝒜optimal,𝒜a) =
∑14

i=1
wi

|A optimal,i − A a,i|

|A optimal,i| + |A a,i|
, (3)  

where wi is the weighting factor for the i-th pathway, whose default 
value is 1.0. The Canberra distance was chosen based on a preliminary 
analysis within the training cohort where it showed the highest per
formance in comparison with other metrics, such as Bray-Curtis 
dissimilarity and Euclidean distance. It is noteworthy that this normal
ized metric demonstrated the best performance, thus sparing us the 
argument of whether percent activation (percent of fibers activated in 
the tract) or absolute activation (total amount of fibers activated in the 
tract) should be employed when analyzing pathway activation results. 

The next problem was to determine which patients, i.e. pairs of 
datapoints, to use for derivation of 𝒜optimal. At first glance, the patient 
with the best improvement between two DBS-on protocols would be a 
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good candidate. However, the best improvement does not guarantee the 
shortest path to the optimal percent activation profile. Instead, we 
considered patients who had the highest interprotocol UPDRS-III 
improvement normalized by the mean of the difference vector 
(𝒜+ − 𝒜− ). To increase the robustness of the correlation model, 𝒜optimal 

can be averaged among several patients. In the present study, we picked 
three patients with a prominently higher normalized UPDRS-III 
improvement. Additionally, we tested the performance of 𝒜optimal 

derived from all datapoints in the training cohort using a “leave-one- 
out” approach. 

Fig. 3. Derivation of the optimal pathway activation profile. A: illustrative example of derivation using two DBS protocols per patient in a 2-D pathway activation 
space. Note that in our problem the space has 14 dimensions. Values of Pi denote the corresponding UPDRS-III scores for i-th patient, “+” and “− ” subscripts refer to 
the more and less effective stimulation protocols, respectively. Divergent datapoints, i.e. those with a large difference in percent activation (a fraction of axons in the 
pathway that elicited an action potential in response to the DBS pulse) and small difference in motor improvement (P4 here), were not considered for the derivation of 
the optimal profile. B: the intrapatient interprotocol UPDRS-III improvement in the training cohort with and without the normalization by the mean of percent 
activation differences. The normalized metric was used to select datapoints for the derivation of the optimal profile. 

Fig. 4. Violin plots of pathway percent activation across both cohorts. The corresponding pathways are visualized in MNI space using Lead-DBS. Each plot contains 
30 and 19 datapoints for the training and the test cohorts, respectively. MC and PMC refer to the primary and premotor cortical regions, SMA – supplementary motor 
area; cf and hdp are the corticofugal and the hyperdirect pathways, respectively; Ansa – ansa lenticularis, Lent – lenticular fasciculus, CbTh – cerebellothalamic 
pathway; l, f, up - lower extremity, face-neck region, and upper extremity in the primary motor cortex. Note that the cohorts’ datapoints provide comprehensive 
coverage of the pathway activation space. 
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Previous experimental and clinical studies showed that stimulation 
of specific pathways in the vicinity of the STN is associated with 
symptom alleviation and occurrence of side-effects (Sanders and Jaeger, 
2016; Tommasi et al., 2008; Coenen et al., 2020; Chen et al., 2018; 
Irmen et al., 2020; Mosley et al., 2020). Therefore, we presume that the 
importance of matching the optimal profile is not uniform among 
pathways. To test this hypothesis, we optimized the weighting factor wi 
for each pathway using the training cohort, but excluding those 
recruited for the derivation of 𝒜optimal. The optimization was conducted 
according to the following procedure. First, a patient was excluded, and 
the rest were randomly shuffled and split. Next, for one set, the 
weighting factors were optimized to maximize the inverse correlation of 
the Canberra distance and the UPDRS-III improvement, both from 
baseline and between protocols. The second set was then used to test the 
performance of the weighted metric. The procedure was repeated for all 
patients. Removal of a patient and random shuffling was employed to 
estimate convergence of the optimal weighting factors across the cohort, 
and multiple trials yielded no significant disparities introduced by the 
shuffling. Note that the limited number of datapoints overall necessi
tated use of the same patients (but in different combinations) in both 
sets. 

3. Results 

3.1. Pathway activation and UPDRS-III improvement 

Pathway percent activation computed for both cohorts are presented 
in Fig. 4 using violin plots that depict the kernel density estimation of the 
underlying distributions. Noteworthy is the difference in percent acti
vation across the cohorts, which can be related to distinctions in the 
treatment strategies of the DBS centers. Analysis of activation in indi
vidual pathways and UPDRS-III improvement from baseline revealed 
only one pathway with a statistically significant positive correlation, 
namely, the HDP branch from the face-neck region of the primary motor 
cortex. However, the correlation was not significant in the test cohort. 

The weak correlations for individual pathways might indicate an 
interplay of activation in different neural circuits. 

Fig. 5, A shows activation profiles of the best responders, i.e. patients 
with the highest UPRDS-III improvement from baseline, and the theo
retical 100% improvement profile, derived from datapoints of three 
patients (from the training cohort) with the highest normalized UPDRS- 
III improvement. The Canberra distance of the datapoints from the rest 
of the training cohort to the optimal profile showed a significant inverse 
correlation with the corresponding UPDRS-III improvements from 
baseline (see Fig. 6, A). In contrast, the optimal profile derived from all 
datapoints of the training cohort was not indicative (see App. B: Suppl. 
1). 

3.2. Key pathways of the activation profile 

Results of the optimization for the weighting factors wi in the Can
berra distance (see Eq. 3), conducted on datapoints of the training 
cohort, indicated that DBS-induced activation in specific pathways 
might play a prominent role in motor symptom alleviation (see Fig. 5). 

In particular, the optimization emphasized a moderate activation in 
both pallidothalamic pathways as well as two branches of the HDP from 
the primary motor cortex, while avoiding stimulation of the corticofugal 
pathway descending from the supplementary motor area. Notably, the 
optimized weights were comparable over the optimization procedure 
(see Fig. 5, B) and were averaged to draw a general conclusion on the 
importance of particular pathways, where deviations in percent acti
vation from the optimal profile led to worse performance. Fig. 6. 

The averagely weighted Canberra distance to 𝒜optimal demonstrated a 
higher correlation with UPDRS-III improvement from baseline than the 
unweighted metric (Fig. 6, A), which is not, however, surprising, since 
the optimization was conducted on these datapoints. Therefore, the 
profile-based correlation model had to be validated on unseen patients 
from the held-out test cohort. Critically, patients from the test cohort did 
not play a role in the model selection process and were entirely naive to 
the final metric derived from the training cohort. This metric, the 

Fig. 5. Theoretical 100% UPDRS-III improvement optimal profile. MC and PMC refer to the primary and premotor cortical regions, SMA – supplementary motor area; 
cf and hdp are the corticofugal and the hyperdirect pathways, respectively; Ansa – ansa lenticularis, Lent – lenticular fasciculus, CbTh – cerebellothalamic pathway; l, 
f, up - lower extremity, face-neck region, and upper extremity in the primary motor cortex. A: percent activation for the optimal profile and the best responders from 
each cohort (should not be confused with the three patients that had the highest normalized interprotocol improvement). Note that the match between these 
datapoints and the optimal profile occurs for different pathways, suggesting that two distinct DBS mechanisms might be present. The mean values of optimized 
weighting factors below the bars can be interpreted as the importance of matching the optimal profile for a particular pathway. Red boxes highlight pathways with 
the highest effect on the correlation model. B: box plots of the optimized weighting factors computed with the ’leave-one-out’ approach. Note the low number 
of outliers. 
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weighted Canberra distance to 𝒜optimal defined in the training cohort, 
was inversely correlated with UPDRS-III improvement from baseline in 
patients of the test cohort, while the unweighted distance was not (see 
Fig. 6, B). Distribution of activation in the highly weighted pathways 
computed for the best responders is shown in Fig. 7. Furthermore, a 
sensitivity analysis was conducted for the percent activation in 𝒜optimal, 
and the results indicated robustness of the correlation model when using 
the weighted Canberra distance (see App. B: Suppl. 3). 

4. Discussion 

In this study, we conducted pathway activation modeling for two 
cohorts of Parkinson’s patients that underwent DBS surgery at two in
dependent centers. Based on modeling results for a training cohort, we 
proposed a method to derive an optimal activation profile using differ
ences in percent activation and UPDRS-III scores assessed for two pro
tocols evaluated in each patient. Furthermore, we evaluated the 
importance of activation in particular pathways for the obtained profile. 

At last, we demonstrated that proximity to the optimal activation profile 
in the multidimensional pathway activation space has a statistically 
significant correlation with UPDRS-III improvement in a test cohort 
from an independent center. 

The methodology of optimal profile derivation, described in this 
study, required a comprehensive documentation of two distinct but 
clinically effective DBS-on Med-off protocols per patient. More often, 
only one protocol is available and hence replicating this exact analysis 
method is not possible in commonly available datasets. In our view, 
however, this highlights the unique value of acquiring datasets with 
multiple stimulation parameters tested in the same patient to construct 
meaningful models that are by design cleaned from a “patient factor”. In 
other words, this method allows to reduce the influence of the baseline 
“noise”, i.e. intrinsic activity not quantified in the model. In principle, 
the derived optimal profile should describe patient improvement in 
other centers based only on one protocol, as was demonstrated in this 
study for the test cohort from an independent DBS center. It should be 
noted that while the optimal profile was derived using only three 

Fig. 6. Correlation of UPDRS-III improvement with weighted and unweighted Canberra distances to the optimal profile 𝒜optimal. The profile was defined in the 
pathway activation space based on three patients with the highest normalized interprotocol UPDRS-III improvement. The weighting of pathway contributions to the 
Canberra distances is determined using the rest of the training cohort. A: significant inverse correlations are observed in the training cohort whether with or without 
the weighting (the three patients used for derivation of 𝒜optimal are excluded). Dash lines between datapoints depict the interprotocol binary correlation (black – valid 
prediction, purple – false), the best responders from Fig. 5 are marked with red circles. B: in the held-out test cohort, only the weighted metric has a statistically 
significant correlation with UPDRS-III improvement. 

Fig. 7. Pathway activation visualized in Lead-DBS. A: pathways whose activation levels determine the UPDRS-III improvement (shown in MNI space). Cyan and blue 
– the hyperdirect pathway, descending from the face-neck and upper extremity of the primary motor cortex, red – the corticofugal pathway, descending from the 
supplementary motor area, green – lenticular fasciculus, orange – ansa lenticularis. B and C: pathway activation (shown on computational axon models in patient- 
specific space) for the best responders in the training and the test cohorts, respectively. Axons closer than 0.1 mm to the electrode are excluded (purple) due to 
presumable glial scaring and neurodegeneration. Note the high recruitment of the hyperdirect and the corticofugal pathway for the best responder in the test cohort. 
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patients who had a considerably higher normalized UPDRS-III 
improvement, the weighting factors of Canberra distances were 
defined using the rest of the training cohort. 

4.1. Effect of activation in individual pathways 

Notably, the computed percent activation of individual axonal 
pathways demonstrated no clear correlation with clinical improve
ments. This result is especially remarkable for the hyperdirect pathway 
(HDP), associated with motor symptom alleviation in Parkinson’s dis
ease (PD) (Sanders and Jaeger, 2016; Chen et al., 2018; Li et al., 2014). 
Furthermore, even though activation in one branch of the HDP corre
lated with UPDRS-III improvement from baseline, the result was not 
reproducible in the test cohort. One possible explanation is that the 
correlation of improvement with HDP activation might be hindered by 
the nearby corticofugal pathway, whose stimulaton has been associated 
with tetanic motor contractions (Tommasi et al., 2008). In addition, 
subthreshold stimulation of these tracts has been reported to exacerbate 
akinesia and bradykinesia (Xu et al., 2011), so patients may not neces
sarily show significant relief of motor symptoms despite high activation 
levels in the HDP. Admittedly, this was not the case for the best 
responder in the test cohort (see Fig. 5 and Fig. 7, C), possibly due to its 
individual lower responsiveness to the stimulation. We also analyzed 
correlations of UPDRS-III improvement with activation in the HDP, the 
corticofugal, and the pallidothalamic pathways without differentiating 
between branches. However, this did not yield conclusive results. It 
should be noted that the considered clinical DBS protocols did not 
produce motor contractions associated with a high activation in the 
corticofugal pathway, hence the effect could not be quantified in the 
correlation tests. Further studies are warranted to investigate pathway 
activation profiles associated with DBS-induced side-effects. 

4.2. Effect of balanced pathway activation 

More conclusive results were obtained when considering motor 
improvement as a function of the whole activation profile. Defined by 
the weighted Canberra distance, discrepancy of test cohort profiles with 
the optimal percent activation profile demonstrated a statistically sig
nificant inverse correlation with UPRDS-III improvement from baseline. 
Importantly, the optimal profile was derived from datapoints of the 
training cohort, in particular, from differences of DBS-on intrapatient 
UPDRS-III scores and corresponding percent activation. 

When analyzing the optimal profile, it is notable that two branches of 
the HDP from the primary motor cortex and of the corticofugal pathway 
from the supplementary motor area were assigned high weighting fac
tors (see Fig. 5, B), i.e. their percent activation was strongly associated 
with the motor outcome. For the corticofugal branch descending from 
the supplementary motor area, the percent activation in the optimal 
profile was minimal, suggesting its detrimental effect. On the other 
hand, the moderate percent activation in the presumably beneficial HDP 
branches can be explained by the proximity to the corticofugal pathway 
(note the high activation level of the HDP and the corticofugal pathway 
for the best responder in the test cohort). 

The percent activation together with the weighting factors for the 
optimal profile could be used to hypothesize possible mechanisms of 
action of STN-DBS. Particularly high weights emphasize the importance 
of the pallidothalamic projections: the ansa lenticularis and lenticular 
fasciculus, which have been considered a functional continuum (Parent 
and Parent, 2004; Neudorfer and Maarouf, 2018). The latter factor is 
important when analyzing the activation profiles of the best responders. 
When comparing them to the weighted optimal profile, we can hy
pothesize that these pathways as well as the HDP are beneficial for 
alleviation of motor symptoms in PD. The ansa lenticularis and lentic
ular fasciculus are the primary inhibitory outputs of the basal ganglia to 
the ventral anterior thalamic nucleus (Lanciego et al., 2012), which it
self is projecting to motor-relevant cortical regions. In a PD affected 

network, the GPi exhibits bursting activity (Tachibana et al., 2011), 
which has been associated with generation of motor symptoms (Kim 
et al., 2017). Alleviation could arise from a direct modulation of this 
pathological activity, e.g. via an “informational lesion” induced by the 
non-physiological pattern of DBS (Grill et al., 2004). Furthermore, 
therapeutic effects of stimulation of the pallidothalamic pathways 
would also explain the comparable efficiency of GPi-DBS in treating 
motor symptoms of PD. In historical context of ablative surgery, 
lesioning of ansa lenticularis was shown to be beneficial for tremor 
alleviation (Wycis and Spiegel, 1952). 

Considering these pathways as potential targets has important clin
ical implications. For DBS patients who respond poorly to the treatment, 
such as those in whom the active electrode contacts are outside the 
dorsolateral “sweet spot” of the STN (Dembek et al., 2019), clinicians 
could attempt to alleviate symptoms by thoroughly investigating stim
ulation responses for electrode contacts near the ansa lenticularis and 
lenticular fasciculus. Prospective studies could consider new implanta
tion trajectories that allow both mechanisms with precise targeting of 
the hyperdirect and pallidothalamic pathways, preferably stimulated via 
different electrode contacts. This strategy would offer the possibility of 
inducing desynchronised DBS patterns. 

At the same time, one should be aware that the STN is a site of 
convergence of different functional circuits (Accolla et al., 2016). That is 
a probable reason for its efficiency as a DBS target, where a simultaneous 
modulation of distinct symptoms is pursued. While detrimental effects 
could be associated with particular tracts, in this case, the corticofugal 
branch from the supplementary motor area (Fig. 5), it is of no surprise 
that the presented results do not pinpoint a particular neural pathway 
correlated with the UPDRS-III improvement. Instead, they suggest a 
profile of pathways whose balanced activation alleviates the profile of 
symptoms. Such a metric is more feasible than separately defined 
optimal activation levels, especially since pathway-specific DBS is not 
yet possible with clinically approved electrodes. While our results did 
not carve out a simple optimal activation profile, others have reported 
along the same lines that multiple small subcortical fibers seem to play a 
role for optimal DBS outcomes in PD (Noecker et al., 2021). Most tracts 
studied here have been considered to play a role in motor symptoms and 
our results suggest that it is not key to activate/modulate a single spe
cific tract (such as the hyperdirect pathway alone) but instead a specific 
array of tracts connecting or passing the STN. 

5. Limitations 

Arguable results of the correlation tests for individual pathways 
might originate from uncertainties introduced by the computational 
model. We suspect that the lack of data on pathway-specific axonal 
morphology is the primary source of the error in pathway activation 
modeling. Furthermore, inaccuracies arise from volume conductor 
modeling, processing of medical images and clinical evaluation. In 
particular, the accuracy of the induced electric field distribution highly 
depends on the dielectric properties of brain tissue, subjected to un
certainties (McCann et al., 2019). Moreover, since these properties vary 
in space, accurate electrode reconstruction is crucial. Its accuracy is 
defined by multiple factors including patient imaging data, quality of co- 
registration and normalization, as well as accuracy of electrode artifact 
extraction from postoperative images. While reconstruction errors 
cannot be completely eliminated, Lead-DBS provides robust processing 
routines (Horn et al., 2019) and facilitates manual evaluation of inter
mediate results, yielding reliable electrode localizations. Variation in 
dielectric properties and neural morphology can be further addressed by 
means of uncertainty quantification, as was shown in Butenko et al. 
(2019) and Schmidt et al. (2013) in the context of DBS. 

In the optimal profile, noteworthy is the small weighting factor of the 
sensorimotor pallidosubthalamic projections. That might be attributed 
to the limitations of the pathway activation modeling when investi
gating this local circuit, which excitatory-inhibitory reciprocity is a 
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probable source of synchronization in the basal ganglia (Nambu et al., 
2015). Note that the subthalamopallidal projections were not consid
ered, since the electrodes are located near the cells of these afferents, 
and their stimulation might induce complex intrinsic dynamics not 
modeled in the study. Besides, due to the electrode implantation, these 
short pathways are relatively more exposed to glial scaring that poten
tially affects neurotransmission and extracellular ionic concentrations 
(Jakobs et al., 2019). 

Apart from the limitations of the computational model the following 
study limitations deserve mentioning. First, not all efferent and passing 
pathways potentially affected by STN-DBS were modeled. To decrease 
the computational effort, we deliberately excluded the anterior cingu
late and the prefrontal cortex assuming that they play a minor role in the 
motor symptoms of Parkinson’s disease, although connectivity with the 
latter was associated with rigidity improvement (Akram et al., 2017). 
Among the local projections not examined, pathways of the substantia 
nigra pars reticulata are of particular interest, as it plays a similar role in 
the basal ganglia as the GPi. Unfortunately, these projections were not 
included in the basal ganglia pathway atlas (Petersen et al., 2019), 
employed here as an exclusive source of the structural connectivity. 

Developed by experienced neuroanatomists using advanced visuali
zation techniques, this atlas is less prone to contain false-positive tra
jectories occurring due to a poor signal-to-noise ratio of diffusion 
imaging, commonly employed for individualized fiber tractography. 
However, the atlas is neither patient-specific nor able to account for 
disease-related changes. In this study, individual anatomical variability 
was partially accounted for by translation of pathways to the patient- 
specific space using a subcortical normalization strategy (Ewert et al., 
2019). Nevertheless, the proposed method of optimal activation profile 
derivation could be applied for basal ganglia pathways directly recon
structed from patient data as described in Pujol et al. (2017). 

Furthermore, to generalize UPDRS-III improvement, we avoided 
differentiating between lateral and axial symptoms when analyzing 
activation levels, which were calculated separately for each hemisphere 
and then averaged. Differences in the pathway percent activation across 
both hemispheres are presented in App. B: Suppl. 2. In contrast to a 
symptom-circuit specific analysis, in this study we aimed at drawing a 
more general conclusion about therapeutic patterns for these represen
tative cohorts of PD patients. Evidently, the circuit specificity could not 
be captured when analyzing complete UPDRS-III scores as was shown 
here by the absence of significant correlations between activation in 
individual pathways and the general improvement. Derivation of stim
ulation protocols for patient-specific needs in symptom alleviation is an 
important step in DBS advancement, and it is a subject of on-going 
research. However, low tremor levels in the recruited cohorts did not 
allow us to apply the proposed methodology to derive and compare 
activation profiles for hyperkinetic and hypokinetic aspects of PD. 

Finally, the optimization procedure of the weighting factors, con
ducted in the training cohort, was developed rather intuitively, and 
future studies should consider more robust methods. It also remains 
unclear whether optimization should emphasize the interprotocol cor
relation of the improvement with the distance to the optimal profile or a 
general increase of correlation for all datapoints. For the given data
points, we did not observe significantly higher correlations in the test 
cohort for either case. 
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Universitätsmedizin Berlin and the Berlin Institute of Health. 

CRediT authorship contribution statement 

K. Butenko: Conceptualization, Methodology, Software, Investiga
tion, Formal analysis, Visualization, Writing - Original Draft. N. Li: 
Methodology, Software, Validation, Writing - Review & Editing. C. 
Neudorfer: Formal analysis, Investigation, Writing - Review & Editing. 
J. Roediger: Resources, Investigation, Writing - Review & Editing. A. 
Horn: Conceptualization, Resources, Supervision, Writing - Original 
Draft. G.R. Wenzel: Resources, Writing - Review & Editing. H. Eld
ebakey: Resources, Writing - Review & Editing. A.A. Kühn: Resources, 
Project administration. M.M. Reich: Resources, Conceptualization, 
Writing - Review & Editing. J. Volkmann: Resources, Project admin
istration. U. van Rienen: Resources, Supervision, Project administra
tion, Funding acquisition, Writing - Review & Editing. 

Declaration of Competing Interest 

J.V. have business relationships with Medtronic, Abbott, and Boston 
Scientific, which are makers of DBS devices, outside the submitted work. 
A.A.K. reports personal fees and non-financial support from Medtronic, 
personal fees from Boston Scientific, grants and personal fees from 
Abbott, outside the submitted work. M.R. reports grant support and 
honoraria for speaking from Medtronic and Boston Scientific, outside 
the submitted work. A.H. reports lecture fees for Medtronic and Boston 
Scientific and is a consultant for AlphaOmega. G.R.W received travel 
expenses and attendance fees by Boston Scientific and Ipsen Pharma. K. 
B., N.L., C.N., J.R., H.E. and U.v.R. have nothing to disclose. 

Appendix A. Supplementary data 

Supplementary data associated with this article can be found, in the 
online version, at https://doi.org/10.1016/j.nicl.2022.103185. 

References 

Frankemolle, A.M.M., Wu, J., Noecker, A.M., Voelcker-Rehage, C., Ho, J.C., Vitek, J.L., 
et al., 2010. Reversing cognitive-motor impairments in Parkinson’s disease patients 
using a computational modelling approach to deep brain stimulation programming. 
Brain 133 (3), 746–761. https://doi.org/10.1093/brain/awp315. 

Grill, W.M., Snyder, A., Miocinovic, S., 2004. Deep brain stimulation creates an 
informational lesion of the stimulated nucleus. Neuroreport 15, 1137–1140. https:// 
doi.org/10.1097/00001756-200405190-00011. 

Butson, C., McIntyre, C.C., 2005. Tissue and electrode capacitance reduce neural 
activation volumes during deep brain stimulation. Clin. Neurophysiol. 116 (10), 
2490–2500. 

Duffley, G., Anderson, D., Vorwerk, J., Dorval, A., Butson, C., 2019. Evaluation of 
methodologies for computing the deep brain stimulation volume of tissue activated. 
J. Neural Eng. 16 (6), 1–15. 

Horn, A., Reich, M.M., Vorwerk, J., Li, N., Wenzel, G., Fang, Q., et al., 2017. Connectivity 
predicts deep brain stimulation outcome in Parkinson disease. Ann. Neurol. 82 (1), 
67–78. https://doi.org/10.1002/ana.24974. 

Horn, A., Wenzel, G., Irmen, F., Huebl, J., Li, N., Neumann, W.-J., et al., 2019. Deep brain 
stimulation induced normalization of the human functional connectome in 
Parkinson’s disease. Brain 142 (10), 3129–3143. https://doi.org/10.1093/brain/ 
awz239. 

Middlebrooks, E.H., Tuna, I., Grewal, S.S., Almeida, L., Heckman, M., Lesser, E., et al., 
2018. Segmentation of the globus pallidus internus using probabilistic diffusion 
tractography for deep brain stimulation targeting in Parkinson disease. Am. J. 
Neuroradiol. 39 (6), 1127–1134. https://doi.org/10.3174/ajnr.A5641. 

Gunalan, K., Chaturvedi, A., Howell, B., Duchin, Y., Lempka, S., Patriat, R., et al., 2017. 
Creating and parameterizing patient-specific deep brain stimulation pathway- 
activation models using the hyperdirect pathway as an example. PLoS ONE 12 (4), 
1–19. 

Johnson, K., Duffley, G., Foltynie, T., Hariz, M., Zrinzo, L., Joyce, E., et al., 2020. Basal 
ganglia pathways associated with therapeutic pallidal deep brain stimulation for 
Tourette syndrome. Biological Psychiatry: Cognitive Neuroscience and 
Neuroimaging 16 (10), 961–972. https://doi.org/10.1016/j.bpsc.2020.11.005. 

Hartmann, C.J., Lujan, J.L., Chaturvedi, A., Goodman, W.K., Okun, M.S., McIntyre, C.C., 
Haq, I.U., 2016. Tractography activation patterns in dorsolateral prefrontal cortex 
suggest better clinical responses in OCD DBS. Front. Neurosci. 9, 519. https://doi. 
org/10.3389/fnins.2015.00519. 

K. Butenko et al.                                                                                                                                                                                                                                

https://doi.org/10.1016/j.nicl.2022.103185
https://doi.org/10.1093/brain/awp315
https://doi.org/10.1097/00001756-200405190-00011
https://doi.org/10.1097/00001756-200405190-00011
http://refhub.elsevier.com/S2213-1582(22)00250-9/h0025
http://refhub.elsevier.com/S2213-1582(22)00250-9/h0025
http://refhub.elsevier.com/S2213-1582(22)00250-9/h0025
http://refhub.elsevier.com/S2213-1582(22)00250-9/h0030
http://refhub.elsevier.com/S2213-1582(22)00250-9/h0030
http://refhub.elsevier.com/S2213-1582(22)00250-9/h0030
https://doi.org/10.1002/ana.24974
https://doi.org/10.1093/brain/awz239
https://doi.org/10.1093/brain/awz239
https://doi.org/10.3174/ajnr.A5641
http://refhub.elsevier.com/S2213-1582(22)00250-9/h0055
http://refhub.elsevier.com/S2213-1582(22)00250-9/h0055
http://refhub.elsevier.com/S2213-1582(22)00250-9/h0055
http://refhub.elsevier.com/S2213-1582(22)00250-9/h0055
https://doi.org/10.1016/j.bpsc.2020.11.005
https://doi.org/10.3389/fnins.2015.00519
https://doi.org/10.3389/fnins.2015.00519


NeuroImage: Clinical 36 (2022) 103185

10

Howell, B., Choi, K.S., Gunalan, K., Rajendra, J., Mayberg, H.S., McIntyre, C.C., 2019. 
Quantifying the axonal pathways directly stimulated in therapeutic subcallosal 
cingulate deep brain stimulation. Hum. Brain Mapp. 40 (3), 889–903. 

Goftari, M., Kim, J., Johnson, E., Patriat, R., Palnitkar, T., Harel, N., 2020. 
Pallidothalamic tract activation predicts suppression of stimulation-induced 
dyskinesias in a case study of Parkinson’s disease. Brain Stimul. 13 (6), 1821–1823. 
https://doi.org/10.1016/j.brs.2020.09.022. 

Miocinovic, S., Lempkam, S.F., Russo, G.S., Maks, C.B., Butson, C.R., Sakaie, K.E., 
Vitek, J.L., McIntyre, C.C., 2009. Experimental and theoretical characterization of 
the voltage distribution generated by deep brain stimulation. Exp. Neurol. 216 (1), 
166–176. https://doi.org/10.1016/j.expneurol.2008.11.024. 

Butenko, K., van Rienen, U., 2022. Chapter 7 - dbs imaging methods iii: Estimating the 
electric field and volume of tissue activated. In: Horn, A. (Ed.), Connectomic Deep 
Brain Stimulation. Academic Press, pp. 147–168. https://doi.org/10.1016/B978-0- 
12-821861-7.00021-X. 

Vorwerk, J., Brock, A.A., Anderson, D.N., Rolston, J.D., Butson, C.R., 2019. 
A retrospective evaluation of automated optimization of deep brain stimulation 
parameters. J. Neural Eng. 16 (6) https://doi.org/10.1088/1741-2552/ab35b1. 

Wenzel, G., Roediger, J., Brücke, C., Marcelino, A., Gülke, E., Pötter-Nerger, M., et al., 
2021. CLOVER-DBS: Algorithm-guided deep brain stimulation-programming based 
on external sensor feedback evaluated in a prospective, randomized, crossover, 
double-blind, two-center study. J. Parkinson’s Disease 11 (4), 1887–1899. https:// 
doi.org/10.3233/JPD-202480. 

Merello, M., Gerschcovich, E.R., Ballesteros, D., Cerquetti, D., 2011. Correlation between 
the movement disorders society unified Parkinson’s disease rating scale (MDS- 
UPDRS) and the unified Parkinson’s disease rating scale (UPDRS) during l-dopa 
acute challenge. Parkinsonism & Related Disorders 17 (9), 705–707. 

Ewert, S., Plettig, P., Li, N., Chakravarty, M., Collins, D., Herrington, T., et al., 2018. 
Toward defining deep brain stimulation targets in MNI space: A subcortical atlas 
based on multimodal MRI, histology and structural connectivity. NeuroImage 170, 
271–282. 

Horn, A., Kühn, A.A., 2015. Lead-DBS: A toolbox for deep brain stimulation electrode 
localizations and visualizations. NeuroImage 107, 127–135. https://doi.org/ 
10.1016/j.neuroimage.2014.12.002. 

Horn, A., Li, N., Dembek, T., Kappel, A., Boulay, C., Ewert, S., et al., 2019. Lead-DBS v2: 
Towards a comprehensive pipeline for deep brain stimulation imaging. NeuroImage 
184, 293–316. 

Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.-P., Frith, C.D., Frackowiak, R.S.J., 
1994. Statistical parametric maps in functional imaging: A general linear approach. 
Hum. Brain Mapp. 2 (4), 189–210. https://doi.org/10.1002/hbm.460020402. 

B. Avants, C. Epstein, M. Grossman, J. Gee, Symmetric diffeomorphic image registration 
with cross-correlation: Evaluating automated labeling of elderly and 
neurodegenerative brain, Medical Image Analysis 12 (1) (2008) 26–41, special Issue 
on The Third International Workshop on Biomedical Image Registration – WBIR 
2006. doi: 10.1016/j.media.2007.06.004. 

Husch, A., Petersen, M.V., Gemmar, P., Goncalves, J., Hertel, F., 2018. PaCER - a fully 
automated method for electrode trajectory and contact reconstruction in deep brain 
stimulation. NeuroImage: Clinical 17, 80–89. https://doi.org/10.1016/j. 
nicl.2017.10.004. 

Ashburner, J., Friston, K.J., 2005. Unified segmentation. NeuroImage 26 (3), 839–851. 
https://doi.org/10.1016/j.neuroimage.2005.02.018. 

Zhang, S., Arfanakis, K., 2018. Evaluation of standardized and study-specific diffusion 
tensor imaging templates of the adult human brain: Template characteristics, spatial 
normalization accuracy, and detection of small inter-group FA differences. 
NeuroImage 172, 40–50. https://doi.org/10.1016/j.neuroimage.2018.01.046. 

Petersen, M.V., Mlakar, J., Haber, S., Parent, M., Smith, Y., Strick, P., et al., 2019. 
Holographic reconstruction of axonal pathways in the human brain. Neuron 104 (6), 
1056–1064.e3. https://doi.org/10.1016/j.neuron.2019.09.030. 

Pujol, S., Wells, W., Pierpaoli, C., Brun, C., Gee, J., Cheng, G., et al., 2015. The DTI 
Challenge: Toward Standardized Evaluation of Diffusion Tensor Imaging 
Tractography for Neurosurgery. J. Neuroimaging 25 (6), 875–882. https://doi.org/ 
10.1111/jon.12283. 

Gabriel, S., Lau, R., Gabriel, C., 1996. The dielectric properties of biological tissues: III. 
Parametric models for the dielectric spectrum of tissues. Phys. Med. Biol. 41 (11), 
2271–2293. https://doi.org/10.1088/0031-9155/41/11/003. 

Zimmermann, J., van Rienen, U., 2021. Ambiguity in the interpretation of the low- 
frequency dielectric properties of biological tissues. Bioelectrochemistry 140, 
107773. https://doi.org/10.1016/j.bioelechem.2021.107773. 

Grant, P.F., Lowery, M.M., 2010. Effect of dispersive conductivity and permittivity in 
volume conductor models of deep brain stimulation. IEEE Trans. Biomed. Eng. 57, 
2386–2393. 

K. Butenko, C. Bahls, U. v. Rienen, Evaluation of epistemic uncertainties for bipolar deep 
brain stimulation in rodent models, in: 2019 41st Annual International Conference of 
the IEEE Engineering in Medicine and Biology Society (EMBC), 2019, pp. 
2136–2140. doi:10.1109/EMBC.2019.8857910. 

Geddes, L., Baker, L., 1967. The specific resistance of biological material – A 
compendium of data for the biomedical engineer and physiologist. Med. Biolog. Eng. 
5, 271–293. https://doi.org/10.1007/BF02474537. 

Güllmar, D., Haueisen, J., Reichenbach, J., 2010. Influence of anisotropic electrical 
conductivity in white matter tissue on the EEG/MEG forward and inverse solution. A 
high-resolution whole head simulation study. NeuroImage 51 (1), 145–163. 

Evers, J., Lowery, M., 2020. The Active Electrode in the Living Brain: The Response of 
the Brain Parenchyma to Chronically Implanted Deep Brain Stimulation Electrodes. 
Operative Neurosurgery 20 (2), 131–140. https://doi.org/10.1093/ons/opaa326. 

McIntyre, C.C., Richardson, A.G., Grill, W.M., 2002. Modeling the excitability of 
mammalian nerve fibers: Influence of afterpotentials on the recovery cycle. 
J. Neurophysiol. 87 (2), 995–1006. 

Coenen, V.A., Sajonz, B., Prokop, T., Reisert, M., Piroth, T., Urbach, H., et al., 2020. The 
dentato-rubro-thalamic tract as the potential common deep brain stimulation target 
for tremor of various origin: an observational case series. Acta Neurochir. 162, 
1053–1066. 

Liewald, D., Miller, R., Logothetis, N., Wagner, H.-J., Schüz, A., 2014. Distribution of 
axon diameters in cortical white matter: an electron-microscopic study on three 
human brains and a macaque. Biol. Cybern. 108, 541–557. https://doi.org/10.1007/ 
s00422-014-0626-2. 

Perge, J.A., Niven, J.E., Mugnaini, E., Balasubramanian, V., Sterling, P., 2012. Why do 
axons differ in caliber? J. Neurosci. 32 (2), 626–638. https://doi.org/10.1523/ 
JNEUROSCI.4254-11.2012. 

Howell, B., Isbaine, F., Willie, J.T., Opri, E., Gross, R.E., De Hemptinne, C., et al., 2021. 
Image-based biophysical modeling predicts cortical potentials evoked with 
subthalamic deep brain stimulation. Brain Stimul. 14 (3), 549–563. https://doi.org/ 
10.1016/j.brs.2021.03.009. 
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