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Abstract

Various proteins form nanostructures exhibiting unique functions, making them attractive as

next-generation materials. Ferritin is a hollow spherical protein that incorporates iron ions.

Here, we found that hydrogels are simply formed from concentrated apoferritin solutions by

acid denaturation and subsequent neutralization. The water content of the hydrogel was

approximately 80%. The apoferritin hydrogel did not decompose in the presence of 1 M HCl,

2-mercaptoethanol, or methanol but was dissolved in the presence of 1 M NaOH, by heating

at 80˚C, or by treatment with trypsin or 6 M guanidine hydrochloride. The Young’s modulus

of the hydrogel was 20.4 ± 12.1 kPa according to local indentation experimentes using

atomic force microscopy, indicating that the hydrogel was relatively stiff. Transition electron

microscopy measurements revealed that a fibrous network was constructed in the hydrogel.

The color of the hydrogel became yellow-brown upon incubation in the presence of Fe3+

ions, indicating that the hydrogel adsorbed the Fe3+ ions. The yellow-brown color of the Fe3

+-adsorbed hydrogel did not change upon incubation in pure water, whereas it became pale

by incubating it in the presence of 100 mM ethylenediaminetetraacetic acid (EDTA). The

apoferritin hydrogel also adsorbed Co2+ and Cu2+ ions and released them in the presence of

EDTA, while it adsorbed less Ni2+ ions; more Fe3+ ions adsorbed to the apoferritin hydrogel

than other metal ions, indicating that the hydrogel keeps the iron storage characteristic of

ferritin. These results demonstrate a new property of ferritin: the ability to form a hydrogel

that can adsorb/desorb metal ions, which may be useful in designing future biomaterials.

Introduction

Various proteins form nanostructures with unique functions, making them attractive as next-

generation materials for various fields, including medicine and industry. Natural protein

nanostructures have been applied to biomineralization, semiconductor production, gene

transfer vectors, and drug delivery systems [1–4], whereas artificial protein nanostructures

have been constructed for improved and novel functions [5–23]. Protein hydrogels are an

improved functional material that can be obtained by accumulating and immobilizing proteins

with various methods [24–27]. Functions have been added to collagen and elastin-like protein
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hydrogels by chemical modification [28–30]. Functional protein hydrogels have also been con-

structed by ligation of a protein with a polymer [31] or by self-assembling a coiled-coil protein

motif [32].

Ferritin is an iron storage protein, which is widely present in prokaryotes and eukaryotes

[1, 3]. Ferritin forms a 12-nm diameter hollow spherical structure consisting of 24 subunits [1,

33, 34]. The intact hollow spherical ferritin core is stable over the pH range 2.1–10.0 according

to small-angle X-ray scattering measurements, whereas the ferritin subunits undergo aggrega-

tion below pH 0.8 [35]. The spherical ferritin structure only recovers to a headset-shaped

structure from disassembled rod-like oligomers by restoring the pH condition to neutral from

pH 1.96 [35]. Ferritin incorporates approximately 4500 iron atoms in its interior space [1], as

well as cobalt, copper, and other transition metal ions [36–41]. Due to its hollow spherical

structure and/or metal-binding properties, ferritin is one of the most promising candidates for

future functional materials, such as drug delivery systems, cancer treatment, and memory

devices [42–46].

The function of a protein is usually associated with the three-dimensional structure of the

protein. When the protein loses its three-dimensional structure in hydrogels, it may lose its

function. Functional protein hydrogels have been constructed with three-dimensional proteins

utilizing chemical modification or polymer attachment. However, protein hydrogels comprising

only proteins are ideal biocompatible materials; thus, we envisaged to construct an apoferritin

(ferritin without metal coordination) hydrogel utilizing the subunit interactions, maintaining

the three-dimensional structure of the subunit in the hydrogel. The hydrogel appeared to be

formed by a network of incomplete intermolecular interaction among ferritin subunits. The

apoferritin hydrogel was heat stable and resistant to acidic pH conditions and a reducing agent.

The hydrogel also exhibited metal ion adsorption/desorption properties, similar to ferritin.

Materials and methods

Preparation of recombinant horse apoferritin and its hydrogel

Recombinant horse ferritin was expressed as reported previously [47]. Escherichia (E.) coli
Nova blue cells (Novagen, USA) containing plasmid pKIT8, encoding the gene of horse L apo-

ferritin without eight N-terminal residues (Fer8), were grown in LB broth at 37˚C for 24 h.

The cells were harvested by centrifugation, and suspended in 50 mM Tris-HCl buffer, pH 8.5,

at 4˚C. After sonication with an ultrasonic irradiator (VC 505, Sonics & Materials, USA), the

cell lysate was centrifuged to remove cell debris. The supernatant was heated at 60˚C for 20

min to remove unnecessary proteins by heat denaturation, and subsequently centrifuged. The

obtained supernatant was purified with a Q Sepharose anion exchange column (GE Health-

care, USA) with 50 mM Tris-HCl buffer, pH 8.5, at 4˚C. Fer8 was eluted with 300 mM NaCl.

The eluted solution was diluted with 50 mM Tris-HCl buffer, pH 8.5, at 4˚C and subsequently

purified with a HiTrap Q HP anion exchange column (GE Healthcare) with a 0–500 mM NaCl

gradient using a fast protein liquid chromatography (FPLC) system (Biologic DuoFlow 10,

Bio-Rad, USA), and the absorbance was monitored at 280 nm. Subsequently, Fer8 was purified

by size exclusion chromatography (SEC, HiPrep 26/600 Sephacryl S300, GE Healthcare) using

the FPLC system at 4˚C with 50 mM Tris-HCl buffer, pH 8.5, containing 150 mM NaCl, and

the absorbance was monitored at 280 nm. The molecular mass of Fer8 was confirmed by

matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF

MS) (Autoflex II, Bruker, USA) using sinapinic acid as a matrix. The purified Fer8 solution

was concentrated with an Amicon Ultra ultrafiltration tube (Merck Millipore, 100,000

NMWL) to desired Fer8 concentrations. The concentration of Fer8 was calculated from the

absorbance at 280 nm using the absorption coefficient 1.4 × 104 M-1cm-1 [48].
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For hydrogel formation, purified Fer8 in 50 mM Tris-HCl buffer, pH 8.5, was adjusted to

concentrations of 6, 12, and 24 mM (subunit concentration). A small volume of 1 M HCl was

added to the Fer8 solution to adjust the pH to 0.5, 0.6, 0.7, and 0.8 for acid denaturation, and

the same volume of 1 M NaOH was added for neutralization. The components of the apoferri-

tin hydrogel were investigated by MALDI-TOF MS (Autoflex-II, Bruker).

Properties of apoferritin hydrogel

The water content of the apoferritin hydrogel was investigated by comparing the weights of

dried and reswelled hydrogels. The hydrogels were dried by incubation at 50˚C in a drying

oven for 3 h. The stability of the apoferritin hydrogel was investigated by incubation in 1 M

HCl, 1 M NaOH, 2-mercaptoethanol (2-ME), methanol, 43 μM trypsin, and 6 M guanidine

hydrochloride (Gdn-HCl) at room temperature. The thermal stability of the apoferritin hydro-

gel was investigated by incubating the hydrogel in pure water at 20–100˚C for 30 min. After

the apoferritin hydrogel was heated at 90˚C for 30 min, the heat-decomposed solution of the

hydrogel was investigated by SEC (Superdex 200 increase 10/300 GL, GE Healthcare) using

the FPLC system (Biologic DuoFlow 10, Bio-Rad) with 50 mM potassium phosphate buffer,

pH 7.0, at 4˚C, and the absorbance was monitored at 280 nm. The heat-decomposed solution

of the hydrogel was also investigated by MALDI-TOF MS (Autoflex II, Bruker) using sinapinic

acid as a matrix.

Circular dichroism spectroscopy

The secondary structures of the heat-decomposed apoferritin hydrogel were investigated by

circular dichroism (CD) spectroscopy with a J-725 spectrometer (Jasco, Japan) using a 0.1-cm-

path length quartz cell at 25˚C with 50 mM potassium phosphate buffer, pH 7.0.

Atomic force microscopy for Young’s modulus evaluation

The modulus of the apoferritin hydrogel was assessed using a laboratory-built atomic force

microscope (AFM) operated in ultra-pure water. A cantilever used had the dimensions with

10-μm long, 2-μm wide, and 90-nm thick (AC-10, Olympus) and the typical spring constant of

this cantilever was 0.1 N/m. An amorphous carbon pillar with the end radius of ~5 nm, which

was determined by scanning-electron -microscope observation, was used as the AFM tip.

Force-distance curves were measured on the hydrogel surface. The Young’s moduli were esti-

mated by fitting the force curves with the Hertz model using the tip radius of 5 nm and Pois-

son’s ratio of 0.5. Finally, a statistical histogram with a bin size of 5 kPa was produced for the

Young’s moduli obtained from 1267 curves and fitted with a Gaussian distribution.

Transmission electron microscopy

The apoferritin hydrogel was suspended in pure water and fragmented by sonication with an

ultrasonic irradiator (US cleaner, Asone, Japan). The fragmented apoferritin hydrogel suspen-

sion was spread onto a carbon-coated 200-mesh copper grid (1606, JEOL, Japan), and nega-

tively stained with 5% (w/w) phosphotungstic acid, pH 7.0. Transmission electron microscopy

(TEM) images of the apoferritin hydrogel were taken with a JEM-3100FEF microscope (JEOL)

at 300 kV.

Metal adsorption measurements

To investigate metal ion adsorption to the apoferritin hydrogel, the hydrogel was swelled in

pure water and subsequently incubated in 20 mM Fe(III)Cl3, Co(II)Cl2, Co(II) acetate, Ni(II)

PLOS ONE Construction of ferritin hydrogels utilizing subunit–subunit interactions

PLOS ONE | https://doi.org/10.1371/journal.pone.0259052 November 3, 2021 3 / 14

https://doi.org/10.1371/journal.pone.0259052


Cl2, Ni(II) acetate, or Cu(II)Cl2 solution at room temperature. The soaked hydrogel was trans-

ferred to pure water and subsequently treated with a 100 mM ethylenediaminetetraacetic acid

(EDTA) solution. The hydrogel was monitored with a stereomicroscope (SZX16, Olympus,

Japan). To obtain the metal ion:apoferritin subunit ratio in the ion-adsorbed hydrogels, the

weight of the swelled hydrogel was measured. Subsequently, Fe3+, Co2+, Ni2+, and Cu2+ ions

were dosed to the hydrogel. After washing the metal ion-dosed hydrogels with pure water, the

hydrogels were denatured with aqua regia and the quantities of the metal ions were deter-

mined with a P-6000 microwave-induced plasma mass spectrometer (Hitachi, Japan) at 25˚C.

Results and discussion

Preparation and water content of apoferritin hydrogel

We found that Fer8 forms hydrogels at room temperature by a simple denaturation procedure

with the addition of 1 M HCl and subsequent neutralization with the addition of 1 M NaOH.

The hydrogel formed when the Fer8 concentration was higher than 12 mM (subunit unit) and

the acid denaturation pH was lower than 0.6, but not when the Fer8 concentration was 6 mM

(subunit unit) or the denaturation pH was 0.7. Ferritin subunits are reported to undergo

aggregation below pH 0.8 [35], indicating that denaturation of the subunit is necessary for the

hydrogel formation. Apoferritin does not fully recover its hollow spherical structure by

increasing the pH from acidic to neutral [35]. These results suggest incomplete refolding of the

ferritin subunits by the pH recover from acidic to neutral, causing incomplete interactions

between subunits and formation of a hydrogel. Refolding at high protein concentrations may

cause three-dimensional domain swapping between subunits, which has been detected for

cytochrome c and other globular proteins [49, 50].

The weights of swelled, dried, and reswelled apoferritin hydrogels were 12.1 ± 1.4, 2.3 ± 0.1,

and 11.6 ± 1.0 mg, respectively (Fig 1), showing that the water content of the swelled hydrogel

was approximately 80%. The weight of the reswelled hydrogel was almost the same as that

before the drying process, indicating that the hydrogel is stable enough to repeat the drying

and swelling procedure, although approximately 4% of the hydrogel may decompose by the

procedure. The composition of the hydrogel was investigated by MALDI-TOF MS (Fig 2A);

the peak at m/z = 19147, corresponding to the mass of the Fer8 subunit (theoretical value for

[Fer8 subunit + H+] = 19148), was observed in the mass spectrum of the hydrogel, supporting

the hypothesis that the hydrogel was constructed with Fer8 subunits.

Fig 1. Microscopic images of apoferritin hydrogels. (A) Swelled, (B) dried, and (C) reswelled.

https://doi.org/10.1371/journal.pone.0259052.g001
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Properties of apoferritin hydrogel

The stability of the apoferritin hydrogel was investigated by incubating the hydrogel at room

temperature for 1 h under various conditions: 1 M HCl, 1 M NaOH, 2-ME, methanol, 43 μM

trypsin, and 6 M Gdn-HCl. The shape of the hydrogel was not altered by incubation in 1 M

HCl or 2-ME (Fig 3A and 3B), but decomposed in 1 M NaOH. The resistance of the hydrogel

to 2-ME shows that the gel was not formed by disulfide bonds. The hydrogel was dehydrated

by incubation in methanol, and the dehydrated hydrogel recovered its shape upon reswelling

in pure water (Fig 3C). However, the hydrogel decomposed within 2 h by incubation in the

presence of 43 μM trypsin or 6 M Gdn-HCl. These results are consistent with the hypothesis

that the hydrogel was constructed from perturbed Fer8 subunits that decompose in the pres-

ence of proteases and unfold in the presence of high concentrations of denaturants.

The apoferritin hydrogel was swelled in pure water and incubated for 30 min at 20, 40, 60,

80, and 100˚C. The shape of the hydrogel did not change during incubation at 20–60˚C, but

slowly decomposed at 80–100˚C. The thermostable character of the apoferritin hydrogel was

similar to that of ferritin (denaturing temperature >80˚C) [51], indicating that most of the

three-dimensional structure of the Fer8 subunit and, in addition, the subunit–subunit interac-

tions were maintained in the apoferritin hydrogel. The Young’s modulus of the hydrogel

Fig 2. MALDI-TOF MS spectra of apoferritin hydrogel. (A) MALDI-TOF MS spectra of apoferritin hydrogel and (B) MALDI-TOF MS spectra of Fer8

solution after heating the apoferritin hydrogel at 90˚C for 30 min. Wide range (top) and expanded range (m/z 17,000–21,000) (bottom). Sinapinic acid was

used as a matrix.

https://doi.org/10.1371/journal.pone.0259052.g002
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measured using AFM was 20.4 ± 12.1 kPa (Fig 4), showing that the hydrogel was relatively stiff

compared to synthetic polyethylene glycol hydrogels [52, 53].

Structure of apoferritin hydrogel

The heat (90˚C)-decomposed solution of the hydrogel was analyzed with MALDI-TOF MS,

and a peak corresponding to the mass of the Fer8 subunit (m/z = 19149) was observed in the

spectrum (Fig 2B). In the SEC chromatogram of the heat-decomposed solution of the hydro-

gel, a peak corresponding to spherical ferritin with 24 subunits was observed (Fig 5). Addi-

tional peaks corresponding to the subunit and subunit oligomers of Fer8 were observed in the

chromatogram, as were peaks corresponding to the dimer and trimer of spherical ferritin. The

secondary structures of the heat-decomposed hydrogel were investigated with CD spectros-

copy (Fig 6). The intensity of two negative peaks at 209 and 222 nm of the heat-decomposed

hydrogel decreased compared to those of Fer8. These results indicate that Fer8 was partially

unfolded in the hydrogel and the partially unfolded ferritin subunits refold into a spherical fer-

ritin by the heating at 90˚C.

Fig 3. Microscopic images of apoferritin hydrogels before and after incubation in various solutions. (A) 1 M HCl and (B)

2-ME, and methanol. The hydrogels were incubated for1 h.

https://doi.org/10.1371/journal.pone.0259052.g003
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The microstructure of the apoferritin hydrogel was investigated with TEM, and network

structures were observed (Fig 7). The high-resolution TEM images showed that the network

structure contained spherical and fibrous structures (Fig 7B). The diameter of the spherical

structure was 12 nm, which was close to that of spherical 24-mer ferritin. The diameter of the

Fig 4. Young’s modulus of the swelled apoferritin hydrogel measured with AFM.

https://doi.org/10.1371/journal.pone.0259052.g004

Fig 5. SEC analysis of the solution obtained after heating the apoferritin hydrogel at 90˚C for 30 min. (A) Chromatograms of the solution obtained after

heating the apoferritin hydrogel and of standard proteins (ferritin, 440 kDa; aldolase, 158 kDa; conalbumin, 75 kDa; ovalbumin, 44 kDa; cytochrome c, 12

kDa). (B) Standard curve obtained by least-square fitting of the partition coefficient (Kav) plots of standard proteins (closed circles). Peaks obtained in the

chromatogram of the solution obtained by heating the apoferritin hydrogel are labeled with the molecular size (kDa) estimated by the standard curve. The plots

of the apoferritin hydrogel after heating (open circles) are depicted with the estimated molecular weight (kDa).

https://doi.org/10.1371/journal.pone.0259052.g005
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Fig 6. Circular dichroism spectra of Fer8 solution. Fer8 solution obtained after heating the apoferritin hydrogel at

90˚C for 30 min (solid line) and purified Fer8 solution (broken line).

https://doi.org/10.1371/journal.pone.0259052.g006

Fig 7. Negative-stain TEM images of apoferritin hydrogel. (A) Low and (B high resolution.

https://doi.org/10.1371/journal.pone.0259052.g007

PLOS ONE Construction of ferritin hydrogels utilizing subunit–subunit interactions

PLOS ONE | https://doi.org/10.1371/journal.pone.0259052 November 3, 2021 8 / 14

https://doi.org/10.1371/journal.pone.0259052.g006
https://doi.org/10.1371/journal.pone.0259052.g007
https://doi.org/10.1371/journal.pone.0259052


fibrous structure was relatively constant (~4 nm), corresponding to the width of two Fer8 sub-

units. Heat-set gels of globular proteins, such as β-lactoglobulin, lysozyme, and other proteins,

contain partially folded structures [54]. Similarly, Fer8 exhibited partially disrupted fibrous

structures in the apoferritin hydrogel (Fig 7). The partially unfolded Fer8 subunits may inter-

act intermolecularly at various sites on their surfaces, forming the network structure of the

hydrogel (Fig 8).

Metal adsorption of apoferritin hydrogel

Ferritin can store metal ions by metal–amino acid coordination [36–41]. Since Fer8 partially

maintains its three-dimensional structure, we expected the apoferritin hydrogel to exhibit

metal adsorption. The color of the hydrogel became yellow-brown upon incubation in the

presence of Fe3+ ions for 1 h, indicating that the hydrogel adsorbs Fe3+ ions (Fig 9), similar to

spherical ferritin. The yellow-brown color of the Fe3+-adsorbed hydrogel did not change upon

washing the hydrogel with pure water but became pale upon incubation in the presence of 100

mM EDTA, suggesting that the Fe3+ ions were released from the hydrogel by EDTA coordina-

tion (Fig 9). Upon incubation in the presence of Co2+, Ni2+, or Cu2+ ions, the hydrogel became

purple, pale yellow, or green, respectively, demonstrating that the apoferritin hydrogel may

adsorb various metal ions, although the amount varied among ions. The adsorbed metal ion

(μg) / apoferritin hydrogel (mg) values were 1.09, 0.55, 0.08, and 0.66 μg/mg for Fe3+, Co2+,

Ni2+, and Cu2+ ions, respectively, according to the microwave-induced plasma mass analysis

(Table 1). The Ni2+ ion did not bind strongly to the hydrogel, and more Fe3+ ions adsorbed to

the apoferritin hydrogel than other metal ions, suggesting that the hydrogel keeps the iron

storage characteristic of ferritin. However, the Fe3+ ion:apoferritin molar ratio was 1.9, indicat-

ing that only a small amount of ferritin was correctly folded. Ni2+ ions did not bind strongly to

the apoferritin hydrogel when using either Ni(II)Cl2 or Ni(II) acetate, whereas Co2+ ions

bound to it when using Co(II) acetate but not strongly when using Co(II)Cl2. These results

show that the counter ions affect the metal binding ability of the hydrogel, presumably because

the ligation of the counter ion, such as an acetate, to the metal ion may assist the metal ion

Fig 8. Schematic image of apoferritin hydrogel formation.

https://doi.org/10.1371/journal.pone.0259052.g008
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binding to the amino acids in the hydrogel. The color of these metal ion-adsorbed hydrogels

became pale upon incubation in the presence of 100 mM EDTA (Fig 9), showing that the apo-

ferritin hydrogel adsorbs various metal ions and can release them in the presence of EDTA.

These results support the hypothesis that the apoferritin hydrogel was constructed with ferritin

subunits, maintaining their three-dimensional structures in metal binding.

Fig 9. Metal adsorption of apoferritin hydrogel. Fe3+, Co2+, Ni2+, and Cu2+ ions are investigated. The apoferritin hydrogel was incubated sequentially in the presence of

100 mM metal ions for 1 h, in pure water for 3 h, and in 100 mM EDTA for 1 h. Fe(III)Cl3, Co(II) acetate, Ni(II)Cl2, and Cu(II)Cl2 solutions were used. The pictures of the

hydrogel before the addition of the metal ions were taken under air, whereas other figures were taken under solutions.

https://doi.org/10.1371/journal.pone.0259052.g009
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Conclusion

Apoferritin forms a relatively stiff (Young’s modulus, 20.4 ± 12.1 kPa) hydrogel upon simple

acid denaturation and subsequent neutralization. The hydrogel was stable up to 60˚C and

resistant to acidic pH conditions and a reducing agent (2-ME). The resistance of the hydrogel

to 2-ME showed that the gel was not formed by disulfide bonds. The hydrogel formed a net-

work of fibrils with relatively constant diameters (~4 nm), corresponding to the width of two

Fer8 subunits, which indicated that the hydrogel was achieved by incomplete intermolecular

interactions between Fer8 subunits. The hydrogel also exhibited metal ion adsorption/desorp-

tion properties, similar to spherical ferritin. These results show a new property of ferritin for

future biomaterials.
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