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Review Article

There has been significant interest in big data analysis and 
artificial intelligence (AI) in medicine. Ever-increasing medical 
data and advanced computing power have enabled the number 
of big data analyses and AI studies to increase rapidly. Here we 
briefly introduce epilepsy, big data, and AI and review big data 
analysis using a common data model. Studies in which AI has 
been actively applied, such as those of electroencephalography 
epileptiform discharge detection, seizure detection, and fore
casting, will be reviewed. We will also provide practical sug
gestions for pediatricians to understand and interpret big data 
analysis and AI research and work together with technical 
expertise.
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Key message

· Big data analysis, such as common data model and artificial 
intelligence, can solve relevant questions and improve clinical 
care.

· Recent deep learning studies achieved 0.887–0.996 areas under 
the receiver operating characteristic curve for automated 
interictal epileptiform discharge detection.

· Recent deep learning studies achieved 62.3%–99.0% accuracy 
for interictal-ictal classification in seizure detection and 75.0%–
87.8% sensitivity with a 0.06–0.21/hr false positive rate in 
seizure forecasting.

Introduction

Digital transformation of medical information has changed the 
hospital environment tremendously over the last 20–30 years. 
With the implementation of the order communication system and 
laboratory information system (LIS), medical order slips and lab 

result papers started to disappear from the hospital environment. 
In addition, the digitalization of image results and continuous 
physiologic monitoring data such as electroencephalograms 
(EEGs) made imaging films and EEG or electrocardiogram strips 
obsolete. This change, called a “paperless hospital,” was not just 
a transformation of data storage; rather, it has ushered in a new 
era of digitalizing all different kinds of patient care data. Most of 
the tertiary hospitals in the Republic of Korea utilize some form 
of hospital information system, and there are even cloud systems 
that local clinics can use without constructing expensive and 
labor-intensive computer servers.

Advances in computer systems, data storage, and computing 
superpowers have made big data analysis and artificial intelli
gence (AI) applications possible in various parts of science. AI is 
utilized in many regions in medicine, such as diagnosis, treatment 
decision support, prognosis forecasting, and even public health 
decision-making.1-3) Rapidly expanding research using big data 
analysis and AI applications can provide new opportunities 
and solutions to unsolved relevant clinical and basic research 
questions. A basic understanding of big data analysis and AI will 
help pediatricians follow fast changes in clinical and research 
fields that are already underway. This review will briefly intro
duce big data analysis and AI and detail their strengths and 
limitations. Next it will introduce a common data model (CDM) 
and CDM applications in clinical research. After that we will 
review the most recent studies in the field of epilepsy that have 
applied deep learning (DL); AI in EEG for spike detection, 
seizure detection, and seizure forecasting. Finally, we will make 
suggestions and describe relevant issues for pediatricians for 
future studies.

Epilepsy

Epilepsy is a condition characterized by a predisposition to 
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(volume, velocity, and variety). This means high-volume, high-
velocity, and high-variety information assets that demand cost-
effective innovative forms of information processing that enable 
enhanced insight, decision-making, and process automation. 
With the advent of big data in academic and industrial research, 
big data terminology is continuously changing.11) IBM divides 
big data into 4 dimensions, adding veracity elements to Gartner’s 
3V, known as 4V (volume, velocity, variety, and veracity). 
Veracity is an indication of data integrity and an organization’s 
ability to trust and use the data to make critical decisions. In 
addition, big data today is commonly referred to as 5V (volume, 
velocity, variety, veracity, and value), adding a value element 
that means the creation of new values through big data. As the 
demand for big data processing has increased, platforms for 
storing and analyzing it have also been developed. As a result, 
big data is now rapidly being applied across all scientific and 
industrial domains, including healthcare.12,13)

The source of medical big data includes electronic health 
record (EHR) data, various information stored in hospital infor
mation systems, including diagnosis, test results, prescription, 
and even structured medical records. Recent advances in dia
gnostic technology have produced big data, including diagnostic 
imaging, EEG, and genetic testing. The strength of big data 
research using data stored in the HIS or the national insurance 
data has increased statistical power compared to previous 
studies that used a limited sample to estimate the findings of a 
population. Using time series and digital imaging bid data, we 
can perform ML or DL to construct AI algorithms. Using time 
series big data such as EEG, we can predict seizures using DL 
techniques from multiple channels of intracranial EEG with 
4096 data points/s over a couple of days. DL algorithms detect 
lesions from chest x-rays, brain computed tomography, and 
magnetic resonance imaging using image big data. Relevant 
issues in using big data for medical research include digitalization 
of data, unifying the data format, and data validation.14) We will 
introduce the CDM analysis in epilepsy as a sample of HIS big 
data research.

2. Common data model

CDM is a data model that enables data owners to support 
observational health studies through a distributed research 

recurrent spontaneous seizures. There are various kinds of 
epileptic seizures (focal, generalized, and unknown) and various 
epilepsies and epilepsy syndromes.4) Its causes were recently 
classified as structural, genetic, infectious, metabolic, immune, 
and unknown.5) It is well known that epilepsy is a heterogeneous 
and diverse condition. In fact, it is among the most common 
chronic neurological conditions in the field of pediatric neurology 
and affects an estimated 50 million people worldwide.6,7)

Seizure control using various antiseizure medications (ASMs) 
without adverse reactions is the initial goal of epilepsy mana
gement. More than 50% of patients achieve and maintain seizure 
freedom with ASM treatment, while the remaining 30%–40% 
have medication-refractory epilepsy.8) Various comorbidities, 
such as behavioral and psychiatric issues, are of significant con
cern in epilepsy. There are relevant issues such as learning and 
cognitive development in the pediatric population and speci
fic subjects for women with epilepsy and elderly patients. Due 
to its chronic nature, large amounts of medical records, pre
scription data, and laboratory results, such as brain imaging and 
electrophysiological studies, are produced. These data are used 
as substrates for big data analysis and AI algorithm construction. 
Some examples of the desired goals of such studies include 
improving seizure control, decreasing ASM adverse events, 
and predicting outcomes. Another area of active research is 
medication-refractory seizures. Uncontrolled seizures are detri
mental to both patients and their caregivers, as seizures are 
unpredictable events that cause significant physical and mental 
harm. Significant efforts have been made to identify the causative 
lesions in the brain to improve surgical outcomes and detect 
and forecast seizures to prevent further seizures or subsequent 
injury. Recent advances in machine learning (ML) have helped 
improve outcomes in handling big data, such as continuous EEG 
monitoring data using scalp and intracranial EEG.9)

Big data analysis using CDM

1. Big data analysis

In 1997, Michael Cox and David Ellsworth first used big data 
to describe large volumes of scientific data for visualization.10) 
According to Gartner, big data is traditionally defined as 3V 
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network while protecting patient health information by main
taining the data in the institution. The CDM standardizes differ
ent data types of each institution with the same structure and 
terminology, allowing research participants to share analytics 
codes and collect analysis results to enable scalable large-scale big 
data research. The standardization ensures that research methods 
and analytics can be systematically applied to generate mean
ingfully comparable and reproducible results.15) By converting 
EHR data and claims data to CDM, interest and opportunities for 
generating reliable and reproducible evidence from real-world 
health data are increasing. There are several types of CDMs: 
Sentinel, i2b2, Clinical Data Interchange Standards Consortium 
Study Data Tabulation Model, National Patient-Centered Clini
cal Data Research Network, and Observational Medical Out
comes Partnership (OMOP) depending on the purpose of the 
data utilization and the leading institution.16-20) OMOP CDM is 
differentiated in that it seeks to ensure semantic interoperability 
by adopting international standard terminology.

Observational Health Data Sciences and Informatics (OHDSI) 
maintains OMOP CDM as an open international community 
and supports pharmacovigilance research, clinical characteri
zation, population-level estimation, and patient-level prediction 
studies by collaboratively developing data standards, research 
methodologies, and open-source analytic tools that can generate 
scientific evidence from observational health data.20-23) More 
than 200 institutions worldwide have been converting EHR or 
claims data to OMOP CDM and are registered with the OHDSI 
data network.24)

CDM standardization has the advantage that reproducible 
studies can be performed using standardized analysis metho
dology from the federated data network. Especially for rare 
diseases, statistical power can be acquired using multicenter pa
tient data. In CDM-based AI research, the possibility of model 
generalization can be confirmed by evaluating the external 
validation of the data of another institution for a predictive 
model learned from data from one institution. In addition, 
federated learning can be utilized for distributed data networks.

The limitation of CDM is that it requires a lot of time and 
manpower to build and intensive cooperation in various fields 
such as domain experts, vocabulary experts, software developers, 
data scientists, and time-consuming code mapping for vocabulary 
standardization. Another challenge is that there may be differ
ences in the granularity and vocabulary mapping for each 
institution depending on the level of continuous maintenance 
and management according to the continuous upgrade of 
CDM versions and vocabularies. In particular, there is concern 
that the vocabulary mapping method or mapping granularity 
for each institution may differ, so that the mapping process can 
cause information loss and may affect the data analysis results.25) 
Nevertheless, conversion to OMOP CDM will increase the 
opportunities for healthcare big data research in various diseases.

3. CDM research on epilepsy

A study from the OHDSI research network performed a big 

data analysis to address the recent issue of angioedema with the 
increased use of levetiracetam. They analyzed 10 databases to 
collect the data of 276,665 patients who used levetiracetam and 
74,682 patients who used phenytoin to compare the incidence 
of angioedema. An increased incidence of angioedema with 
levetiracetam was seen in some databases; a meta-analysis of 
all databases did not show a significant difference compared 
to phenytoin.26) This study is a good example considering the 
limited number of pediatric patients in the adult population. 
We can utilize CDM analysis for multiple institutions or regions 
to determine the actual raw data of the population. Our group 
recently performed CDM research to review ASM-related 
hematologic adverse drug reactions at our institution.27) Our 
routine practice in epilepsy care is to perform regular blood tests 
to detect common hematologic adverse drug reaction at least 
annually. We built a query to identify patients who had regular 
outpatient visits, ASM prescriptions, and annual laboratory tests. 
To exclude the effects of polytherapy, the query was designed to 
select only the time periods when a single ASM was used.

Because the laboratory results are stored as a structured data
base in our LIS, we could easily collect the test results. From 
1,344 pediatric epilepsy patients, we calculated the actual inci
dence of hyponatremia, leukocytopenia, thrombocytopenia, 
liver enzyme elevations, and thyroid function test abnormalities 
that occurred with oxcarbazepine, levetiracetam, valproic acid, 
topiramate, and lamotrigine monotherapy. We plan to apply 
the same query to other hospitals using the same CDM format 
to calculate regional and even national incidence. Another study 
using CDM was performed to apply the treatment pathways 
in ASM treatment. Many studies have analyzed large-scale 
treatment patterns in common chronic diseases such as hyperten
sion, diabetes mellitus, and depression.28) We also analyzed the 
treatment pathways in pediatric epilepsy patients.29) We con
structed a query to include pediatric epilepsy patients who 
underwent treatment for at least 2 years and attended regular 
follow-up and searched for their ASM treatment regimen. 
Sunburst diagrams of 1,192 patient treatment pathways are 
shown in Fig. 1. To demonstrate the applicability of this analysis 
in epilepsy care, we estimated the medication refractoriness 
based on our results. Since medication refractoriness is defined as 
failure of more than 2 most efficient ASM in a 6-month period, 
we applied the same definition and estimated a rate of 23.8% 
compared to various historical controls. We could even visualize 
annual ASM prescription pattern changes.

Because the CDM database is completely anonymized and 
the data cannot be identified, it has great strength in personal 
information protection. However, there are critical issues in the 
successful CDM analysis. Outcome data and risk factors must be 
accurately available in the CDM database. Based on the research 
question and hypothesis, search and analysis queries must be 
accurate and adaptable for data retrieval. Careful consideration 
of these key issues can lead to successful CDM big data analysis.
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AI in epilepsy electrophysiology

1. AI and DL

According to Gartner, AI meant applying advanced analysis 
and logic-based techniques, including ML, interpreting events, 
supporting and automating decisions, and taking actions. In other 
words, AI can be broadly classified into reasoning and learning 
systems. ML is a field of AI defined by Tom Mitchell in which a 
computer program is said to learn from experience E for some 
class of tasks T and performance measure P if its performance 
at tasks in T as measured by P improves with experience E. In 
general, there are 3 types of ML: supervised learning, unsupervis
ed learning, and reinforcement learning. Supervised learning 
is the same as unsupervised learning methods based on input 
data, but the difference requires labeling of the input data. 
Reinforcement learning is learning how to map situations to 
actions to maximize a numerical reward signal.30) In an actual 
ML system, a phenomenon called ‘overfitting’ may occur, model 
only memorizing the training data rather than finding a general 
predictive value.31) Hence, ML is also an optimization problem 
that it attempts to solve using the correct objective function. The 
definitions of AI, ML, DL, and big data and their hierarchy and 
relationships are schematically shown in Fig. 2.

The origin of the term AI was reportedly introduced by John 
McCarthy in a workshop proposal held at Dartmouth University 
in 1956. AI research has since gained popularity in academia, 
but it went through 2 dark ages called “AI winter” in the 1970s 
and the late 1980s, respectively. With recent advancements 
in computer hardware, computing power has increased. The 

existing AI algorithm can be executed, and DL techniques that 
use more complicated arithmetic can emerge. DL methods are 
subfields of ML, a representation learning method with multiple 
levels of representation obtained by composing simple but non
linear modules that each transform the representation at one level 
(starting with the raw input) into a representation at a higher but 
slightly more abstract level.32) These methods have dramatically 
improved the state-of-the-art of speech recognition, visual object 
recognition, object detection, and many other domains such as 
drug discovery and genomics. For instance, in the field of image 

Fig. 1. Treatment pathways of all 1,192 pediatric epilepsy patients. Specific antiseizure 
medications used and their sequence is shown in the sunburst plot.

Fig. 2. Diagram showing definitions of AI, ML, DL, and big data and their 
hierarchy and correlations.
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and those without IEDs (IED-negative).39)

A study that used both CNN and LSTM to detect IEDs on 
human scalp EEG recordings implemented classification models 
based on 1-dimensional (1D) CNN, 2-dimensional (2D) CNN, 
LSTM, 1D CNN with LSTM, and 2D CNN with LSTM using 
1,815 IEDs annotated by clinicians from 50 EEG recordings to 
automatically detect IEDs, including spikes, sharp waves, spike-
slow-waves, and polyspikes. They achieved an AUROC of 0.940 
for the binary classification of IEDs and non-IEDs using the 
2D CNN with LSTM, which outperformed the other models. 
The 2D CNN with LSTM model showed sensitivity, specificity, 
and a false-positive rate (FPR) of 47.4%, 98.0%, and 0.60/min, 
respectively. Moreover, it showed a specificity of 99.9% with 
an FPR of 0.03/min for additional validation data of 12 normal 
EEG recordings.40)

Abou Jaoude et al.41) adopted a CNN to detect IEDs on human 
intracranial EEG recordings. They implemented a CNN-based 
classification model using 13,959 IEDs annotated by clinicians 
from 46 patients to automatically detect IEDs, including spikes, 
sharp waves, and polyspikes. They achieved an AUROC of 0.996 
for the binary classification of IEDs and non-IEDs. In addition, 
they showed a partial AUROC of 0.981 with a specificity higher 
than 90.0% and a sensitivity of 84.0% with an FPR of 1/min. 
Another study that used a CNN-based classification model to 
detect IEDs in human intracranial EEG recordings used 13,218 
IEDs annotated by clinicians from 18 patients to automatically 
detect IEDs, including spikes, sharp waves, broadly distributed 
sharp waves, and broadly distributed spike-and-wave complexes. 
They achieved an AUROC of 0.900 for the multiclass classifi
cation of the 4 types of IEDs and non-IEDs and 0.887 for the 
binary classification of IEDs and non-IEDs.42) In addition, 
Fürbass et al.43) proposed a semisupervised approach based on 
a fast region-based CNN to detect IEDs in human scalp EEG 
recordings with a sensitivity of 89.0% and a specificity of 70.0%, 
while Hao et al.44) proposed a semiautomatic IED detector based 
on CNN using EEG-functional magnetic resonance imaging 
recordings with a sensitivity of 84.2%.

As shown above, many detectors and algorithms have been 
developed to detect IEDs. However, they are not widely used 
in the clinical setting. There are different IEDs, such as focal and 
generalized discharges. The distribution of the focal discharges 

recognition, DL models showed fewer recognition errors than 
humans throughout the 2015 ImageNet Large Scale Visual 
Recognition Challenge competition.33) Moreover, in 2015, 
Google’s DeepMind became the first computer program to beat 
a human professional Go player through AI called AlphaGo.34) 
In healthcare areas, AI research is rapidly accelerating to 
demonstrate its potential applicability in many different domains 
of medicine.35) Recently, explainable AI studies have also been 
actively underway to solve the black-box problem, known as 
the structural limitations of DL models.36-38) We will present 
examples of AI application to EEG research aimed at spike de
tection, seizure detection, and seizure forecasting. To capture 
the intrinsic spatiotemporal dynamics of EEG, convolutional 
neural networks (CNNs) and long short-term memory (LSTM) 
networks, a specific type of recurrent neural network, have been 
widely suggested to handle detection and forecasting problems. 
The definitions of the recent DL algorithms are described in 
Table 1.

2. Application of AI to EEG

1) Automated detection of interictal epileptiform discharges
Detecting interictal epileptiform discharges (IEDs) on the 

EEGs of patients with epilepsy is critical. The current practice of 
EEG interpretation is a visual analysis that significantly depends 
on reader skillfulness. Numerous IEDs vary greatly, and it is 
crucial that skillful interpreters have extensive knowledge and 
experience. Automatic IED detection can help clinicians detect 
IEDs easily and precisely. It is helpful for quantifying the number 
of IEDs for further clinical care and research.

A recent study adopted a CNN to detect IEDs on human scalp 
EEG recordings. They implemented a CNN-based classification 
model, called SpikeNet, using 13,262 IEDs annotated by 
clinicians from 9571 EEG recordings to automatically detect 
IEDs, including spikes, sharp waves, periodic discharges, spike-
and-wave discharges, and polyspikes. They achieved an area 
under the receiver operating characteristic curve (AUROC) 
of 0.980 for the binary classification of IEDs and non-IEDs, 
which surpassed both expert-level interpretation and industry-
level performance (0.882) based on commercial software. In 
addition, they achieved an AUROC of 0.847 for another binary 
classification of whole EEG recordings with IEDs (IED-positive) 

Table 1. Definitions of deep learning algorithms

Algorithm Definition

Multilayer perceptrons A class of feedforward artificial neural network, a quintessential deep learning model. The goal of a feedforward 
network is to approximate some function, f.

Convolutional neural networks 
(CNNs)

A class of neural networks for processing data that has a known grid-like topology. Convolution is a specialized 
kind of linear operation. CNNs are simply neural networks that use convolution in place of general matrix 
multiplication in at least one of their layers.

Recurrent neural networks (RNNs) A family of neural networks for processing sequential data. RNNs allow previous outputs to be used as inputs 
while having hidden states.

Long short-term memory networks 
(LSTMs)

A type of RNNs that can learn and memorize long-term dependencies. LSTMs deal with the vanishing gradient 
problem encountered by traditional RNNs.

Generative adversarial networks 
(GANs)

A type of generative modeling approach based on differentiable generator networks. GANs are based on a game 
theoretic scenario in which the generator network must compete against an adversary.
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varies widely. These issues must be solved to be widely used in 
practice. We are currently planning to develop novel DL-based 
automated IED detectors in terms of disease specificity and IED 
complexity. The detectors are expected to be applied to specific 
types of epilepsy syndromes, showing typical morphological 
characteristics of IEDs in clinical diagnosis. In addition, it is 
feasible to detect various complicated IEDs beyond the findings 
of previous studies, such as prolonged abnormal EEG activities 
including multiple IEDs through methodological modifications 
of well-known DL approaches.

2) Seizure detection
Automated seizure detectors can be used in continuous moni

toring, such as in neuro-intensive care settings and video-EEG 
monitoring. They also target seizure detection using wearable 
devices with a reduced number of electrodes. Automated seizure 
detection with increased accuracy provides precise information 
regarding seizure counts for medication adjustment. They can be 
ideally used to activate the emergency medical system in cases of 
urgent situations such as status epilepticus.

Emami et al.45) adopted a CNN to detect seizures on human 
scalp EEG recordings. They implemented CNN-based classifica
tion models using their in-house dataset, including the EEG 
recordings of 16 patients. The multichannel EEG time series 
were converted into window-based images. A series of EEG 
images were fed into the models as input data to classify the 
seizure and nonseizure EEG segments. They achieved a median 
true positive rate of 74.0% with a 1-second time window in 
image-based seizure detection, and an FPR of 0.2/hr in the 
event-based evaluation for the detection of seizures immediately 
after onset. Their true positive rates were better than those of 
commercially available software (20.0%–31.0%), whereas their 
FPR was higher than that of the software.

Muhammad et al.46) adopted a CNN to detect seizures on 
human scalp EEG recordings. They implemented classification 
models based on both 1D and 2D CNN using the Children’s 
Hospital Boston - the Massachusetts Institute of Technology 
(CHB-MIT) dataset, including EEG recordings of 23 patients. 
Band-limited EEG time series were fed into the models as input 
data. They used autoencoders to reduce the dimensionality of the 
features extracted by CNN layers to propose mobile multimedia 
healthcare systems. They achieved an accuracy of 99.02% for 
the binary classification of seizure and nonseizure segments.

Zhou et al.47) adopted a CNN to detect seizures on the human 
scalp and intracranial EEG recordings. They implemented CNN-
based classification models using time domain (EEG time series) 
and frequency domain (Fourier transform-based power spectral 
density) with the Freiburg dataset including EEG recordings of 21 
patients and the CHB-MIT dataset including the EEG recordings 
of 23 patients. The CNN-based classifier was evaluated for 2 
binary classifications (interictal-preictal and interictal-ictal states) 
and one 3-class classification (interictal, preictal, and ictal). Re
garding the time-domain classification, they achieved an accuracy 
of 91.1%, 83.8%, and 85.1% in the Freiburg dataset versus 

59.5%, 62.3%, and 47.9% in the CHB-MIT dataset for the 
3 evaluations. Regarding the frequency domain classification, 
they achieved an accuracy of 96.7%, 95.4%, and 92.3% in the 
Freiburg dataset versus 95.6%, 97.5%, and 93.0% in the CHB-
MIT dataset for the 3 evaluations, representing a pivotal role of 
the frequency information in seizure detection.

Geng et al.48) adopted a bidirectional LSTM to detect seizures 
on human intracranial EEG recordings. They implemented 
the LSTM-based classification models using the 4-second time-
frequency data transformed by the Stockwell transform with the 
Freiburg Hospital dataset, including the EEG recordings of 20 
patients. They achieved a sensitivity of 98.09% and a specificity 
of 98.69% in segment-based evaluation, and a sensitivity of 
96.30% with an FPR of 0.24/hr in event-based evaluation.

3) Seizure forecasting
Seizure forecasting is a highly challenging area of big data and 

AI research in the field of epilepsy. It is helpful for patients with 
intractable epilepsy whose seizures are not controlled by various 
ASMs. If we can accurately recognize upcoming seizures in less 
than a minute, we can prevent injuries that result from falls or 
body stiffening. Rescue medications such as rectal, intranasal, 
buccal, or sublingual benzodiazepines can prevent seizures if they 
can be forecasted a few minutes before onset. Although there are 
problems with false alarms, the consequences of unpredictable 
seizures are more detrimental to patients and their caregivers. 
The status of seizure forecasting research is just the beginning 
phase, and many researchers are currently working to develop 
an algorithm or system to predict seizures.

Truong et al.49) adopted a CNN to predict seizures in human 
scalp intracranial EEG recordings and canine intracranial EEG 
recordings. They implemented CNN-based prediction systems 
using 30-second time-frequency EEG data transformed by the 
short-time Fourier transform (STFT) with publicly available 
datasets, including 23 patients from the CHB-MIT dataset 
(human scalp EEG), 21 patients from the Freiburg Hospital 
dataset (human intracranial EEG), and 5 dogs and 2 patients 
from the American Epilepsy Society Seizure Prediction Chal
lenge (Kaggle) dataset. In the event-based evaluation for the 
prediction of upcoming seizures, they achieved a sensitivity 
of 81.2%, 81.4%, and 75.0% and an FPR of 0.16/hr, 0.06/hr, 
and 0.21/hr with a 5-minute seizure prediction horizon and a 
30-minute seizure occurrence period (SOP) in the CHB-MIT, 
Freiburg Hospital, and Kaggle datasets, respectively. They ex
ploited deep convolutional generative adversarial networks 
(DCGANs) as an unsupervised feature extraction technique to 
minimize laborious and time-consuming labeling tasks. They 
implemented DCGAN-based classification models using the 
time-frequency EEG data under similar experimental conditions 
and achieved AUROCs of 0.777 and 0.755 for the binary 
classification of seizure and nonseizure segments in the CHB-
MIT and Freiburg datasets, respectively.50)

Khan et al.51) adopted a CNN to anticipate the occurrence of 
seizures on human scalp EEG recordings. They implemented 
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CNN-based prediction systems using EEG wavelet tensors 
transformed by the continuous wavelet transform with 204 
EEG recordings from their in-house and CHB-MIT datasets. An 
optimal preictal length of 10 minutes was estimated based on the 
probability distributions of interictal and preictal features. They 
achieved a sensitivity of 87.8% and an FPR of 0.142/hr with a 
10-minute SOP in the event-based evaluation.

Kiral-Kornek et al.52) adopted a CNN to predict seizures 
on human intracranial EEG recordings. They implemented 
CNN-based prediction systems using time-frequency EEG data 
transformed by STFT with their in-house dataset collected by an 
implanted seizure advisory system.14) They achieved a sensitivity 
of 69.0% in the event-based evaluation and demonstrated the 
feasibility of the deployment of their prediction models onto an 
ultra-low power neuromorphic chip in a wearable device.

Nejedly et al.53) adopted a CNN to predict seizures on canine 
intracranial EEG recordings. They implemented CNN-based 
prediction systems using 30-second time-frequency EEG data 
transformed by STFT with their in-house dataset, including 
75 seizures collected over 1,608 days in 4 dogs. They achieved 
a sensitivity of 79.0% with an average prediction horizon of 87 
minutes in event-based evaluations.

Tsiouris et al.54) adopted LSTM to predict seizures on human 
scalp EEG recordings. They extracted the time domain, fre
quency domain, and graph theory-based features from the 
EEG recordings of 23 patients from the CHB-MIT dataset as 
input data for the LSTM. In the segment-based evaluation, they 
achieved a sensitivity and specificity of 99.28%–99.84% and 
99.28%–99.86%, respectively. In the event-based evaluation, 
they achieved an FPR of 0.11–0.02/hr at a 15- to 120-minute 
preictal duration. They demonstrated an advantage of the 
LSTM-based models for seizure prediction versus conventional 
ML-based models, suggesting that LSTM is a suitable approach 
to handle chaotic EEG characteristics.

Daoud and Bayoumi55) proposed 4 different ML-based models 
to compare their performance for the binary classification of in
terictal and preictal states. The multichannel EEG time series 
were fed into the classification models as input data. They showed 
an accuracy of 83.6%, 94.1%, 99.7%, and 99.7% for multilayer 
perceptron (MLP), CNN with MLP, CNN with bidirectional 
LSTM, and deep convolutional autoencoder (DCAE) with 
bidirectional LSTM, respectively. They also suggested a channel-
selection algorithm based on entropy to enhance the model 
efficiency. The training time of the DCAE with the bidirectional 
LSTM model was reduced to almost half (from 4.25 minutes to 
2.20 minutes) using the channel-selection algorithm.

Preictal states are known to exhibit noticeable electrophy
siological characteristics that are distinguishable from interictal 
states.56-58) Therefore, proper selection of the length of preictal 
states has been a crucial factor for seizure forecasting despite 
some previous studies solving this issue.51,59) Hardware imple
mentation of DL-based seizure prediction models is expected 
to facilitate their clinical application similar to responsive neuro
stimulation systems.60) In this regard, we investigated interictal-

preictal classification performance by varying the preictal length, 
number of electrodes, and sampling frequency to explore prac
tical conditions to sufficiently discriminate preictal and interictal 
states in terms of EEG dynamics and data efficiency.

We implemented classification models based on 2D CNN 
using the 30-second time-frequency EEG data transformed by 
STFT with our in-house dataset, including intracranial EEG 
recordings of 9 patients with focal cortical dysplasia type II. We 
observed 3 main findings. The 5-minute preictal length showed 
the best interictal-preictal classification performance (higher 
than 13% accuracy compared to the 120-minute preictal length). 
Four electrodes showed considerably high accuracy, similar to 
all electrodes (approximately 1% reduction) with a 5-minute 
preictal length. The performance variability was substantially 
weak at the 128–512 Hz sampling frequencies. Regarding pati
ent-specific evaluations, the preictal length affected performance 
enhancement (higher than 28% for 3 patients) stronger than the 
other factors, suggesting the importance of pre-examinations 
for optimal preictal lengths to devise clinically feasible seizure 
prediction systems.61)

Recent DL-based studies of IED detection, seizure detection, 
and seizure forecasting are summarized in Tables 2–4. They 
achieved 0.887–0.996 AUROCs for automated IED detection; 
62.3%–99.0% accuracy for interictal classification in seizure 
detection; and 75.0%–87.8% sensitivity with a 0.06–0.21/hr 
FPR for seizure forecasting.

Suggestions for clinicians

There is no doubt that big data and AI have changed our 
everyday lives. They have also started to change the field of 
medical research and open a new arena. In addition to previous 
medical studies that has greatly improved patient well-being 
and treatment, we hope that new tools such as big data analysis 
and AI application will answer unsolved questions and broaden 
the knowledge of human diseases. New methodologies are 
not suitable for previous research. However, they complement 
previous tools. The vague fear that AI will replace humans 
in various aspects of society is also present in medicine. The 
application of AI in medical research and practice is aimed at 
improving the performance or outcome in addition to human 
effort. The algorithms are designed and programmed by hu
mans and modified by human researchers and developers to 
enhance their functions. The transition to digital healthcare 
has generated and accumulated different kinds of big data. The 
development of wearable devices to monitor blood pressure, 
electrocardiography, glucose levels, EEGs, and many other bio-
signals produces other forms of big data.

To adapt to current changes, clinicians should be aware of 
the changes that have been around us for the last few decades. 
We should have basic knowledge of big data and AI to help us 
understand and interpret related research accordingly. It is also 
valuable to understand the structure and design of AI algorithms 
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Table 2. Recent studies on the deep learning-based IED detection

Study Year   Type of EEG Method No. of IEDs Types of IEDs Performance

Jing et al.39) 2020 Human scalp 
EEG

CNN 13,262 IEDs from 9,571 
EEG recordings

Spikes, sharp waves, periodic 
discharges, spike-and-wave 
discharges, and polyspikes

Binary classification of IED and non-IED
- AUROC = 0.980

Binary classification of whole EEG recordings
- AUROC = 0.847

Tjepkema-
   Cloostermans 
   et al.40)

2018 Human scalp 
EEG

1D CNN
2D CNN
LSTM
1D CNN with LSTM
2D CNN with LSTM

1,815 IEDs from 50 
EEG recordings

Spikes, sharp waves, spike-
slow-waves, and polyspikes

Binary classification of IED and non-IED (2D CNN 
with LSTM)
- AUROC = 0.940
- Sensitivity = 47.4%
- Specificity = 98.0%
- FPR = 0.60/min

Binary classification of whole EEG recordings (12 
patients)
- Specificity = 99.9%
- FPR = 0.03/min

Abou Jaoude 
   et al.41)

2020 Human iEEG CNN 13,959 IEDs from 46 
patients

Spikes, sharp waves, and poly
spikes

Binary classification of IED and non-IED
- AUROC = 0.996
- Partial AUROC = 0.981 (specificity ≥90.0%)
- Sensitivity = 84.0%
- FPR = 1/min

Antoniades 
   et al.42)

2017 Human iEEG CNN 13,218 IEDs from 18 
patients

Spikes, sharp waves, broadly 
distributed sharp waves, and 
broadly distributed spike-
and-wave complexes

Binary classification of IED and non-IED
- AUROC = 0.887

Multiclass classification of the 4 types of IEDs and 
non-IED
- AUROC = 0.900

Fürbass 
   et al.43)

2020 Human scalp 
EEG

Synthetic EEG

Fast region-based 
CNN

186,000 IEDs from 116 
patients (※ Synthetic 
epochs not included 
in this table)

Not mentioned Binary classification of whole EEG recordings (100 
patients)
- Sensitivity = 89.0%
- Specificity = 70.0%
- Accuracy = 80.0%

Hao et al.44) 2018 Human scalp 
EEG

fMRI

CNN 30 Patients Not mentioned Binary classification of whole EEG recordings (37 
patients)
- Sensitivity = 84.2%
- FPR = 5/min

EEG, electroencephalography; IED, interictal epileptiform discharge; CNN, convolutional neural network; AUROC, area under the receiver operating characteristic 
curve; 1D, 1-dimensional; 2D, 2-dimensional; LSTM, long short-term memory; FPR, false-positive rate; iEEG, intracranial EEG.

Table 3. Recent studies on deep learning-based seizure detection

Study  Year Type of EEG Method Input Dataset Performance

Emami et al.45) 2019 Human scalp EEG CNN Window-based image 16 Patients 
(in-house 
dataset)

Segment-based evaluation
- True positive rates = 74.0%

Event-based evaluation
 - FPR = 0.2/hr

Muhammad 
   et al.46)

2018 Human scalp EEG 1D CNN
2D CNN

Time series (θ, α, low β, 
high β, and low γ)

23 Patients 
(CHB-MIT)

Segment-based evaluation
- Accuracy = 99.02%

Zhou et al.47) 2018 Human scalp EEG
Human iEEG

CNN Time series
STFT

21 Patients 
(Freiburg)

23 Patients 
(CHB-MIT)

Segment-based evaluation (time domain, Freiburg)
- Accuracy = 91.1 (interictal-preictal)
- Accuracy = 83.8 (interictal-ictal)
- Accuracy = 85.1% (3-class)

Segment-based evaluation (time domain, CHB-MIT)
- Accuracy = 59.5 (interictal-preictal)
- Accuracy = 62.3 (interictal-ictal)
- Accuracy = 47.9% (3-class)

Segment-based evaluation (frequency domain, Freiburg)
- Accuracy = 96.7 (interictal-preictal)
- Accuracy =95.4 (interictal-ictal)
- Accuracy = 92.3% (3-class)

Segment-based evaluation (frequency domain, CHB-MIT)
- Accuracy = 95.6 (interictal-preictal)
- Accuracy = 97.5 (interictal-ictal)
- Accuracy = 93.0% (3-class)
※ 3-class: interictal, preictal, and ictal

Geng et al.48) 2020 Human iEEG biLSTM Stockwell transform 20 patients 
(Freiburg)

Segment-based evaluation
- Sensitivity = 98.09%
- Specificity = 98.69%

Event-based evaluation
- Sensitivity = 96.30%
- FPR = 0.24/hr

EEG, electroencephalography; CNN, convolutional neural network; FPR, false-positive rate; 1D, 1-dimensional; 2D, 2-dimensional; CHB-MIT, Children’s Hospital 
Boston - the Massachusetts Institute of Technology; iEEG, intracranial EEG; STFT, short-time Fourier transform; biLSTM, bidirectional long short-term memory.
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applied in clinical practice. Another role of clinicians is to 
provide research questions and insight to researchers in these 
fields. Although the number of clinicians actively involved in this 
research is increasing, most studies have been performed with 
2 different clinicians and AI researchers. Therefore, it is critical 
that clinicians provide the correct hypothesis, adequate data, and 
clinically meaningful interpretations.

One of the most critical roles of clinicians in big data and AI 
research is to highlight research questions or unmet needs in 
practice where these new methods can provide breakthrough 
changes. Finally, constructing a structured database of medical 
records is essential. There are still significant limitations in 
utilizing medical records for big data analysis and training for 
ML algorithms. We can use text mining or natural language 
processing to retrieve relevant information and construct a 
structured database. Still, it is another area of research being 
tested in the field. As we use structured data entry in clinical 
trials, there has been an effort to create common data elements 
(CDE) for research on neurological disorders from the National 
Institute of Neurological Disorders and Stroke.62) Based on this 
movement, researchers created CDE for clinical practice in 
epilepsy for its later research use.63) This is a good example of a 

structured database of clinical information for big data analysis 
and AI applications.
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