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A B S T R A C T   

Classification of live or fixed cells based on their unlabeled microscopic images would be a 
powerful tool for cell biology and pathology. For such software, the first step is the generation of a 
ground truth database that can be used for training and testing AI classification algorithms. The 
Application of cells expressing fluorescent reporter proteins allows the building of ground truth 
datasets in a straightforward way. In this study, we present an automated imaging pipeline uti-
lizing the Cellpose algorithm for the precise cell segmentation and measurement of fluorescent 
cellular intensities across multiple channels. We analyzed the cell cycle of HeLa–FUCCI cells 
expressing fluorescent red and green reporter proteins at various levels depending on the cell 
cycle state. To build the dataset, 37,000 fixed cells were automatically scanned using a standard 
motorized microscope, capturing phase contrast and fluorescent red/green images. The fluores-
cent pixel intensity of each cell was integrated to calculate the total fluorescence of cells based on 
cell segmentation in the phase contrast channel. It resulted in a precise intensity value for each 
cell in both channels. Furthermore, we conducted a comparative analysis of Cellpose 1.0 and 
Cellpose 2.0 in cell segmentation performance. Cellpose 2.0 demonstrated notable improvements, 
achieving a significantly reduced false positive rate of 2.7 % and 1.4 % false negative. The cellular 
fluorescence was visualized in a 2D plot (map) based on the red and green intensities of the FUCCI 
construct revealing the continuous distribution of cells in the cell cycle. This 2D map enables the 
selection and potential isolation of single cells in a specific phase. In the corresponding heatmap, 
two clusters appeared representing cells in the red and green states. Our pipeline allows the high- 
throughput and accurate measurement of cellular fluorescence providing extensive statistical 
information on thousands of cells with potential applications in developmental and cancer 
biology. Furthermore, our method can be used to build ground truth datasets automatically for 
training and testing AI cell classification. Our automated pipeline can be used to analyze thou-
sands of cells within 2 h after putting the sample onto the microscope.   

1. Introduction 

The regulatory network controlling the eukaryotic cell cycle is now well-established. Previous research predominantly focused on 
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single-celled organisms or immortalized cultured cells capable of indefinite proliferation with adequate nutrients and growth factors 
[1]. However, in multicellular organisms like animals and plants, a cell’s destiny - whether it divides, remains quiescent, or exits the 
cell cycle for differentiation - is intricately influenced by interactions with neighboring cells and physiological signals from diverse 
body regions. Understanding how cellular proliferation is governed by the cellular microenvironment is pivotal for addressing 
fundamental challenges in the development, regeneration, and transformation of normal cells into malignant ones. 

Traditional cell cycle markers, such as nucleotide analogs (BrdU, EdU) or replication proteins (PCNA, Ki-67), rely on immuno-
fluorescent detection that necessitates sample fixation [2,3]. Consequently, analyzing proliferating cells in intact organisms poses 
challenges. However, observing individual cell behavior during the cell cycle in live organisms offers insights into various develop-
mental processes like pattern formation, morphogenesis, cell differentiation, growth, migration, and apoptosis. The introduction of the 
Fluorescent Ubiquitination-Based Cell Cycle Indicator (FUCCI) by Sakaue-Sawano et al., in 2008 revolutionized the visualization of 

Fig. 1. Composite visualization of HeLa cells captured using a standard motorized microscope. (a) Phase contrast image, (b) Fluorescent Red image, 
(c) Fluorescent Green image. The composite image (d) combines all three channels for enhanced visualization. Scale bar: 100 μm. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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cell cycle progression in live cells, subsequently adopted by researchers [4–9]. 
The FUCCI method leverages Cdt1 and Geminin’s distinct characteristics at different cell cycle phases. For the G1 phase, a fusion 

protein of Cdt1 (amino acids 30–120) and mKO2 fluorescent protein is utilized. To visualize the S, G2, and M phases, a fusion protein of 
Geminin (amino acids 1–110 or 1–60) and mAG1 fluorescent protein is employed [4]. By exploiting the ubiquitin-proteasome system 
to degrade replication licensing factors selectively and rapidly, FUCCI enables effective cell cycle visualization. Traditionally, fluo-
rescence microscopy tracked DNA replication and repaired protein activity like Proliferating Cell Nuclear Antigen (PCNA) to distin-
guish between cell cycle phases [8,10]. 

Various image processing techniques such as nearest neighbor, level-set segmentation, support vector machine (SVM), intensity 
histogram, and intensity surface curvature have been used for fluorescence intensity image segmentation [11,12]. Recent advance-
ments in deep learning and convolutional neural networks have facilitated cell cycle tracking in individual cell fluorescence images, 
albeit requiring labeled datasets for training [13]. Calculating cellular fluorescence intensity is crucial for generating ground truth 
datasets involving microscopic image segmentation and cellular mask creation. 

Fluorescence microscopy image segmentation commonly employs Voronoi and seeded watershed techniques [14–16]. While the 
watershed method is versatile, modifications have been made to address splitting or merging issues [17]. Its efficacy heavily relies on 
initial seeds; without proper background seeding, accurate cell outlines are challenging to generate (similar to the Voronoi algorithm). 
Region-based segmentation techniques are well-suited due to relatively uniform statistical features of foreground and background in 
fluorescence microscopy images [18]. Although region-growing segmentation techniques exist in image processing and computer 
vision fields, their direct application to fluorescent microscopy imaging is limited [19]. Recent studies have displayed deep con-
volutional neural networks’ effectiveness in addressing segmentation challenges unresolvable by conventional methods [20–22]. 

2. Methods 

In this study, we propose an automated approach for segmenting cells in phase contrast images, generating masks and outlines, and 
measuring cell fluorescence intensity in both the red and green channels. Classification of live or fixed cells based on their unlabeled 

Fig. 2. Illustrating the automated pipeline employed for measuring cellular fluorescent intensities. The process consists of two primary stages: (a) 
Segmentation and outline generation; and (b) Post-Processing involving the removal of contaminants and non-fluorescing cells to ensure accurate 
quantification. 
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microscopic images would be a powerful tool for cell biology and pathology. Fig. 1 provides an example of the image data analyzed in 
this study. 

We present an automated pipeline for cell segmentation utilizing the Cellpose algorithm [23]. This algorithm proves to be a 
versatile tool capable of accurately segmenting cells and generating cell outlines. Our study focuses on analyzing the cell cycle of 
HeLa–FUCCI cells, which express fluorescent red and green reporter proteins. The automated pipeline consists of several key steps. 
Following the preparation of HeLa–FUCCI cells, we acquired a dataset by scanning 37,000 cells using a standard motorized microscope 
to capture images in phase contrast, as well as fluorescent red and green channels. To segment the cells and create outlines and masks, 
we leverage the Cellpose algorithm, as shown in Fig. 2a. We refined cell segmentation and purified the image dataset in several 
postprocessing steps. Ultimately, we integrate the fluorescent pixel intensity of each cell using the masks derived from the phase 
contrast channel, as depicted in Fig. 2b. 

2.1. HeLa FUCCI cell preparation 

HeLa–FUCCI cells (RCB2812, RIKEN BRC) [4] were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM, 21885025 Gibco) 
supplemented with 10 % Fetal Bovine Serum (Biowest SAS, France) and a mixture solution of 100 U/mL penicillin and 100 (μg /mL)
streptomycin (Merck, Germany). The cells were maintained in a humidified incubator at 37 ◦C with 5 % CO2. For imaging purposes, 
the cells were seeded in 33 mm glass bottom Petri dishes (Greiner, Hungary) and incubated overnight. Once the cells adhered to the 
dish, the medium was replaced with 20 mM 2-[4-(2-hydroxyethyl) piperazin-1-yl] ethanesulfonic acid (HEPES, Merck, Germany) in 
Hank’s balanced salt solution (HBSS, Merck, Germany) with a pH of 7.4. Alternatively, cells were fixed with 4 % paraformaldehyde 
following the overnight incubation. 

2.2. Image collection of HeLa FUCCI cells 

HeLa–FUCCI cells were employed to create a comprehensive image dataset specifically designed for our analysis. This dataset 
comprises 324 images, each including phase contrast images along with corresponding fluorescent red and green channel images. The 
images were automatically captured using a standard motorized ZEISS microscope (Axio Observer) with a 20x objective magnification 
to ensure consistency and efficiency in data acquisition. A PCO Edge 4.2 camera was utilized for image acquisition, capturing images 
with a resolution of 3152 pixels/mm. To enhance image quality and contrast, particular attention was given to this dataset’s gener-
ation, with an exposure time of 3 s for each fluorescent image. We utilized this high-quality imaging setup to ensure that our analysis is 
based on accurate and reliable data. 

2.3. Cell segmentation and outline generation using cellpose 

In our research, we focused on accurately segmenting cells and generating mask images and outlines from unlabeled phase-contrast 
images. To achieve this, we employed the powerful Cellpose algorithm, known for its precise cell segmentation capabilities and ability 
to produce accurate outlines. The algorithm utilized topological maps derived from ground truth masks that were manually annotated 
by a human expert. Through training a U-Net-based neural network [24], we successfully predicted the horizontal and vertical gra-
dients of these topological maps, along with a binary map indicating whether a pixel belonged to a region of interest (ROI) or not. 
During testing, the neural network accurately predicted the vector fields representing these gradients. By merging pixels that 
converged to the same location, we were able to distinguish individual cells and capture their unique morphologies. 

To further refine the cell shapes, we eliminated pixels projected by the network to be outside of cells. Utilizing the Cellpose al-
gorithm, we generated masks and outlines for all the images in our dataset. For a visual demonstration of the cell segmentation and 
outline generation process, please refer to Fig. 2. 

2.4. Post processing stage 

The post-processing stage consists of three sublevels aimed at refining the accuracy and reliability of our results. These steps are 
Edge Cell Identification, Handling Saturated Cells, and Contamination Identification. Each sublevel addresses specific challenges 
encountered during the cell identification process, ensuring the generation of clean data. Through the implementation of these three 
sublevels, we achieved more accurate results in fluorescence intensity analysis. This comprehensive post-processing approach is vital 
in producing high-quality data for further analysis and interpretation, enabling us to draw meaningful insights and conclusions in our 
research.  

1. Edge Cell Identification 

In the image processing pipeline, the accurate calculation of fluorescence intensity values is crucial. However, one challenge arises 
from cells located at the image edges, which provide inaccurate intensity readings due to their incomplete morphology. We devised a 
strategy to identify and handle these edge cells. By investigating the overlap between cell coordinates and edge coordinates, we 
excluded cells with more than three common pixels from the analysis. This approach allowed us to avoid incorporating intensity data 
from edge cells, thereby preserving the accuracy and integrity of the calculations. 
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2. Handling Saturated Cells 

In microscopic imaging, prolonged fluorescence exposure can lead to cells with saturated pixel values equal to 255 in the case of 8- 
bit images. Such high-intensity cells introduce artifacts in the analysis. To address this issue, we implemented a strategy during the 
post-processing stage to handle saturated cells. By excluding cells with pixel values equal to 255 from the calculation process, we 
ensure accurate fluorescence intensity measurements. Fig. 2 (b) provides an example of a saturated cell.  

3. Small Particle Removal 

We encountered images with Petri dish contaminations including small particles with only a few detected pixels. These contam-
inations were mistakenly identified as cells by the Cellpose 1.0 algorithm. To address this issue, we took a proactive approach by 
training the Cellpose 2.0 algorithm using 52 randomly selected images. This training process allowed us to teach the network to 
differentiate between actual cells and contaminations, improving the accuracy of cell identification. 

To further refine our dataset, we implemented a filtering mechanism based on a set threshold. To determine this threshold, we 
conducted an analysis of the entire cell sizes. The process involved sorting them from the smallest to the largest. During this analysis, 
we observed that cells with an area of less than 130 (μm)

2 or 1300 pixels were categorized as contaminated. 
By effectively managing the impact of contamination in our dataset, we can confidently draw meaningful conclusions and make 

informed decisions based on reliable data. The integration of Cellpose 2.0 and the exclusion of small particles strengthens the 
robustness of our analysis and enhances the quality of the results. Small particles were excluded from further analysis using the formula 
for cell area calculation, which is given by equation (1) in this study. 

Cell area(μm)
2
=

Cell area in pixels
(Resolution)2 (1)  

where the resolution depends on the microscope objective and camera. 

2.5. Calculation of total cellular intensity and cellular brightness 

The calculation of total cellular intensity and cellular brightness is a widespread method in the quantification of fluorescence levels 
within cells and the analysis of fluorescent signal distribution across cell populations [25–27]. This critical procedure commences with 
cell detection in phase images, yielding precise spatial coordinates, cellular masks, and outlines that serve as indispensable tools for 
identifying cells in the fluorescent red and green channels. By employing a pixel-wise multiplication technique, pixel values from 
fluorescent red and green signals are multiplied with corresponding masks derived from phase contrast images, effectively isolating 
and quantifying specific fluorescent intensity unique to each cell. The total cellular intensity is then determined by summing pixel 
values in the original image weighted by the corresponding mask value identified by Cellpose, ensuring accurate quantification across 
the dimensions of the cellular mask. The formulation of our approach can be summarized as follows:  

• Total Cellular Intensity (TCI): The crux of this analysis lies in the computation of Total Cellular Intensity, which stands as the 
summation of pixel values (Pij) in the original image, meticulously weighted by the corresponding mask value (Mij) identified by 
Cellpose. The summation is carried out across the height (h) and width (w) of the bounding box of the cellular mask. The formula 
adds up pixel values in the image, adjusted by mask values, to measure cell fluorescence intensity. Total Cellular Intensity (TCI) 
calculation, as defined by equation (2) in this study, plays a crucial role in quantifying cell fluorescence intensity based on pixel 
values and corresponding mask values identified by Cellpose. 

TCI =
∑h

i=1

∑w

j=1
Pij × Mij (2)    

• Cell Area (CA): The concept of Cell Area emerges as a pivotal metric, encapsulating the number of pixels nestled within each 
segmented cell, thereby portraying the spatial expanse of the cell under scrutiny: 

CA=Number of Pixels in Segmented Cell    

• Cellular Brightness (CB): The concept of Cellular Brightness (CB) is defined as the ratio of Total Cellular Intensity (TCI) to Cell 
Area (CA), providing a measure of the average intensity of fluorescent signals across individual cells. This metric is useful in 
understanding the levels of fluorescence in cells and can be calculated using equation (3) in the document. It is important to note 
that the accuracy of CB depends on the accurate measurement of TCI and CA, which in turn relies on the quality of the image and 
the effectiveness of the image processing techniques used. The use of appropriate image processing techniques and software can 
help ensure the accuracy of CB measurements, which can be valuable in various applications, such as cellular assays, live-cell 
imaging, and high-content screening. 
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CB=
TCI
CA

(3)    

• Background Noise Reduction: We conducted data visualization and identified background noise, which led to an increase in 
cellular brightness equivalent to the pixel size of a cell. To address this issue, we computed the background noise for the darkest 
cells per pixel. Subsequently, we determined the slope of the line across both axes (axis-x for the red channel and axis-y for the green 
channel) using a linear equation formed by two points on the outer side of the data. Following this, we applied equation (4) to 
mitigate the background noise effect. The experimentally calculated slope was 6.81 for the red channel and 9.9 for the green 
channel. Fig. 6 illustrates the process of reducing background noise in both the red and green fluorescent intensity signals. 

CBWBN (Cellular Brightness Without Background Noise)=

TCI − (slope value ∗ CA)
CA

(4)    

• Normalization of Cellular Brightness: In the final step, we applied equation (5) to normalize cellular brightness (CB) values for 
each channel, ensuring they are constrained within the range of zero to one. The maximum cellular brightness (CBmax) observed for 
the brightest cell in the red channel was 145.81 and 159.48 for the green channel. Similarly, the minimum cellular brightness 
(CBmin) was 6.95 for the darkest cell in the red channel and 9.97 for the green channel. 

NCBWBN (Normalized Cellular Brightness Without Background Noise)=

CBWBN − CBWBNmin

CBWBNmax − CBWBNmin
(5)  

3. Results and discussion 

We aimed to devise an automated pipeline for calculating the precise fluorescent intensity of HeLa FUCCI cells. This pipeline 
encompassed cell segmentation, data refinement, and integration of fluorescent signals within individual cells. Our dataset comprised 
972 images captured across three channels: phase contrast, fluorescent red, and fluorescent green. Within this dataset, 37,000 indi-
vidual cells were meticulously segmented, yielding cell masks and outlines. Rigorous data purification stages were employed to 
eliminate false positive detections and cells unsuitable for the measurement. Ultimately, we successfully derived cellular brightness 
values for the 30,505 remaining cells. 

As shown in Fig. 3, to visually elucidate and dissect the outcomes, we provided a 2D scatter plot in conjunction with a heatmap 

Fig. 3a. 2-dimensional phase space illustrating cells in various stages of the cell cycle. The depiction showcases the normalized cellular brightness of 
two distinct cell cycle reporter proteins across a dataset encompassing 30,505 individual cells, elucidating the specific phase of each cell within the 
cell cycle. This visualization offers a comprehensive insight into the distribution of cells within the cell cycle phases. The accompanying heatmap 
(Fig. 3b) provides a visual representation of cell density within different regions of this 2D phase space, aiding in the identification of cell clusters 
and enhancing the clarity of results. 
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generated with a smoothing rate (α) set to 8. The scatter plot presents the cellular brightness of each cell in the red and green channels, 
showing a continuous distribution of cells across the cell cycle. In the heatmap, two clusters of cells can be observed. Cells that 
predominantly align close to the x-axis can be categorized as red, indicating high intensity in the red and low in the green channel. 
Conversely, cells positioned predominantly along the y-axis can be classified as green (Fig. 3a and b). 

The heatmap’s classification scheme predominantly divides cells into red and green classes based on their respective intensity 
values. To further elucidate the classification process and deepen comprehension, we present a selection of 10 random images from 
each class, as shown in Fig. 4. Panel (a) displays cells in the green state of their life, panel (b) shows cells in the red phase, and panel (c) 
exhibits cells from the dark stage of the cell cycle. This depiction unveils the different morphology of cells in 3 different stages of the 
cell cycle, thereby contributing to a more in-depth analysis of our findings. 

We employed the density heatmap as an alternative visualization method to represent the distribution of data throughout the cell 
cycle. In Fig. 5, we introduced three distinct rectangles, each representing the count of classes at different cell cycle stages. The red 
rectangle represents cells in the red class, the green rectangle signifies cells in the green stage of their life cycle, and the gray rectangle 
denotes dark cells. Any remaining cells were categorized as yellow cells. 

The pursuit of minimizing background noise from detected cells constitutes a multistep process. Commencing this process involves 
constructing a graph to visualize cell data, where the x-axis represents cell area in pixels, and the y-axis signifies total cellular intensity. 
Fig. 6 demonstrates the graph. Subsequently, we determined the slope of the line fitted to the darkest cells with a certain area. This line 
corresponds to the fluorescent background intensity, which can be subtracted from the cellular brightness values. 

Background noise reduction hinges on integrating pixel counts associated with identified cells. By multiplying pixel counts by the 
respective slope values of the x and y axes, an estimation of background noise contribution is derived. This estimation is then sub-
tracted from the overall detected cell value, as shown in Fig. 6 (a) for the red fluorescent intensity signal and Fig. 6 (b) for the green 
fluorescent intensity signal. This method corrects the fluorescent brightness of cells by subtracting background noise. The x-axis in 
both visualizations represents the pixel count for both channels. 

Red triangles highlight the slope corresponding to the darkest cells with a specific pixel area. We consider their brightness as the 
fluorescent background noise. 

Fig. 4. An example of 10 randomly selected cells from the three classes. (a) cells in the green state of their life, (b) cells in the red phase, and (c) cells 
from dark stage of cell cycle. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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3.1. Comparative analysis of cellpose 1.0 and cellpose 2.0 in cell detection performance 

We employed Cellpose 2.0 to conduct a comparative analysis with its predecessor, Cellpose 1.0. Our research commenced with the 
critical task of preparing the ground truth dataset. To achieve this, we selected 52 images at random and leveraged Cellpose 1.0 for 
initial cell detection. Subsequently, a manual examination was performed to identify and annotate any contaminations and minute 
particles within the detected cells. Following this, we carefully refined the generated mask files, ensuring their accuracy. These refined 
masks were then provided to Cellpose 2.0, which served as the foundation for training our advanced model. 

In this comparative analysis, we meticulously assess the performance of two versions of the same cutting-edge cell detection model: 
Cellpose 1.0 and its successor, Cellpose 2.0. The evaluation focuses on their capacity to accurately identify cells in 52 randomly 
selected images, considering the presence of contaminations that should not be detected as cells, as well as the background regions that 
do not represent cellular structures, and undetected cells, i.e., false positive and false negative detections. Fig. 7 illustrates instances of 
the segmentation performance using Cellpose 1.0 (depicted in (a)) and Cellpose 2.0 (shown in (b)). Notably, within the image below, 
Cellpose 2.0 displays remarkable accuracy by identifying only one falsely identified cell. In contrast, using Cellpose 1.0, there are 
instances where several falsely identified cells are present. These inaccuracies are highlighted by the yellow rectangles in Fig. 7 and 
quantified in Fig. 8. 

By comparing these two models, we aim to discern the advancements and improvements in cell detection capabilities while 
addressing potential challenges posed by contaminants and non-cellular regions. As shown in Table 1, Cellpose 1.0 exhibits a false 
positive rate of 10 %, with 127 instances where non-cellular structures or contaminations were incorrectly classified as cells. This 
highlights a tendency of Cellpose 1.0 to generate false positive detections. Nonetheless, it demonstrates a commendable true positive 
rate of 97.6 % successfully identifying a substantial number of cells within the images. Conversely, Cellpose 2.0 exhibits remarkable 
improvements in performance. It highlights a significantly reduced false positive rate of 2.7 %, indicating a substantial reduction in the 
misclassification of contaminations and non-cellular regions. Furthermore, Cellpose 2.0 achieves a higher true positive rate of 98.4 % 
precisely detecting a greater number of cells while effectively managing the presence of contaminations and background regions. 

It is noteworthy that despite the advancements, both models still exhibit false negatives. Cellpose 1.0 has a 10 % false negative error 
rate, whereas Cellpose 2.0 shows a reduced false negative error rate equal to 2.7 %. These false negatives represent instances where 
actual cells were missed in the detection process. As we focus on enhancing the accuracy of cell detection, the false negative error rate 
for Cellpose 1.0 is 2.4 %, and for Cellpose 2.0, it is further reduced to 1.4 %. To summarize the quantitative assessment, Cellpose 1.0 
successfully detected 1275 cells, while Cellpose 2.0 also identified 1275 cells, highlighting comparable performance in terms of the 
total number of cells. However, Cellpose 2.0 outperforms Cellpose 1.0 in terms of false positive and false negative rates, demonstrating 
its superior accuracy in cell detection. 

The table presents a comprehensive comparison of Cellpose 1.0 and Cellpose 2.0, providing detailed information on the counts of 
false positive, true positive, and false negative for each model, facilitating a deeper understanding of their respective detection effi-
ciencies. This analysis reinforces the significance of employing Cellpose 2.0 for precise and reliable cell detection tasks, offering 
valuable insights for research and analysis in various fields of study. 

To visually depict the comparative performance of Cellpose 1.0 and Cellpose 2.0, we have prepared a bar chart Fig. 7 displaying key 
metrics. The bar chart presents the false positive, true positive, and false negative counts for both versions of the model. This visual 

Fig. 5. Density heatmap depicting data distribution in the cell cycle. The figure displays three rectangles representing the count of classes at 
different cell cycle stages. The red rectangle signifies cells in the red class, the green rectangle represents cells in the green stage, and the gray 
rectangle shows dark cells. The definition of these 3 classes includes a manual step, i.e., drawing the rectangles. According to the continuous 
distribution of cells in Fig. 3a, classifying cells into red, green, yellow, and dark phases is not straightforward. However, previous studies used these 
classes [28–30], and our heatmap enables us to define them. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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representation offers an easily interpretable overview of their detection results, enabling a direct comparison of their strengths and 
weaknesses. In the chart, the height of each bar corresponds to the respective count, making it straightforward to assess the differences 
in false positive and true positive rates between the two versions. By leveraging this bar chart, we gain valuable insights into the 
models’ abilities to manage contaminations and non-cellular background regions effectively. 

4. Conclusion 

In conclusion, our study presents a comprehensive and automated pipeline for cell segmentation and fluorescent intensity mea-
surement, addressing crucial challenges in quantitative cell biology. By leveraging the powerful Cellpose algorithm, we achieved 
precise cell segmentation and outline generation, enabling accurate measurement of fluorescence intensity in multiple channels for 
individual cells. Our focus on HeLa–FUCCI cells expressing red and green fluorescent reporter proteins allowed us to gain insights into 
the cell cycle. We found that the distribution of the cells is continuous in the cell cycle. The classification of cells into four classes (red, 
green, yellow, and dark) is rather arbitrary. 

Through the integration of deep learning techniques, convolutional neural networks, and region-based segmentation, our approach 
outperforms traditional methods and streamlines the analysis process. The use of automated segmentation not only enhances efficiency 

Fig. 6. Background noise reduction process _visualizing total cellular intensity as a function of cell area in pixels and line fitting. (a) red fluorescent 
channel and (b) green fluorescent channel. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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but also eliminates potential biases introduced by manual methods, ensuring robust and reliable results. Furthermore, our post- 
processing stage, consisting of three sublevels – Edge Cell Identification, Handling Saturated Cells, and Small Cell Removal, signifi-
cantly improved the accuracy and reliability of our analysis. By effectively managing edge cells, saturated cells, and contaminants, we 
eliminated potential distortions in the data and produced high-quality results for further analysis and interpretation. 

A key highlight of our study lies in the comparative analysis of Cellpose 1.0 and Cellpose 2.0 in cell detection performance. We 
demonstrated that Cellpose 2.0 exhibits notable improvements over Cellpose 1.0, with a significantly reduced false positive rate and a 
higher true positive rate. This higher efficiency of Cellpose 2.0 ensures more accurate identification of cells, effectively managing the 
presence of contaminations and background regions, and making it an ideal choice for cell detection tasks. 

In summary, our automated pipeline, along with the comparative analysis of Cellpose 1.0 and Cellpose 2.0, contributes to 
advancing cell biology research by providing a robust, reliable, and high-throughput approach for cell segmentation and fluorescent 
intensity measurement. We believe that our findings will not only enhance current methodologies but also inspire future investigations 
in the field of quantitative cell biology, ultimately contributing to the advancement of scientific knowledge. 

We observed distinct clusters in the 2D heatmap based on the red and green channels of the FUCCI construct. Cells in the red, and 
green states formed separate clusters, with yellow cells co-expressing both reporter proteins positioned between the red and green 
states. 

Overall, our method offers a reliable and efficient solution for quantitatively analyzing cellular fluorescence and investigating the 
cell cycle dynamics of HeLa–FUCCI cells. By automating the segmentation process and integrating precise intensity measurements, we 
enable comprehensive analysis on a large scale, paving the way for further studies in quantitative cell biology and facilitating research 
in areas such as development, regeneration, and cancer biology. 
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