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Background: The role of pattern of circulating endothelial cell-, platelet-, andmonocyte-derivedmicroparticles in
metabolic syndrome (MetS) patients with chronic heart failure (CHF) is not still understood.
The aim of the study was to investigate a pattern of circulating MPs in MetS patients with CHF in relation to
neurohumoral and inflammatory activation.
Methods: The study retrospectively involved 101 patients withMetS (54 subjects with CHF and 47 patients with-
out CHF) without documented coronary artery stenosis N50% at least of one artery and 35 healthy volunteers.
Biomarkers were measured at baseline of the study. Circulating MPs were phenotyped by flow cytometry
technique.
Results: The results of the study have shown that numerous of the circulating platelet-derived and monocyte-
derivedMPs in subjectswithMetS (with orwithout CHF)were insufficiently distinguished from the level obtain-
ed in healthy volunteers. We found an elevated level of CD31+/annexin V+ MPs in association with a lower
level of CD62E+ MPs. All these led to decreased CD62E+ to CD31+/annexin V+ ratio among patients with

MetS in comparison with healthy volunteers, as well as in MetS patients with CHF compared with those who
did not demonstrated CHF. Therefore, we found that biomarkers of biomechanical stress (NT-proBNP) and in-
flammation (hs-CRP, osteoprotegerin) remain statistically significant predictors for decreased CD62E+ to
CD31+/annexin V+ ratio in MetS patients with CHF.
In conclusion, decreased CD62E+ to CD31+/annexin V+ ratio reflected impaired immune phenotype of MPs
may be discuss surrogate marker of CHF development in MetS population.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The traditionally recognized metabolic syndrome (MetS) is defined
as risk factor clustering related to the development of type 2 diabetes
mellitus (T2DM) and cardiovascular disease [1]. MetS includes ab-
dominal obesity, insulin resistance, dyslipidemia, and elevated
blood pressure and associates with other co-morbidities including
the prothrombotic and proinflammatory states [2]. Accumulating
evidences have been shown that MetS is a powerful risk factor for
cardiovascular disease (CVD) event, as well as all-cause and CVD
mortality in total population [3–5]. The underlying pathophysiolog-
ical mechanisms resulting in the MetS, i.e. insulin resistance (IR),
associate with activation of neurohumoral mechanisms, immunity,
cytokine production, systemic pro-inflammatory response, and
. This is an open access article under
oxidative stress [6–8]. All these factors may affect the development
of CVD through inducing endothelial dysfunction [9–10] and micro-
vascular inflammation [11].

Recent studies have shown a controversial role ofMetS in patients at
high risk of chronic heart failure (CHF) and in subjectswithdocumented
CHF. AlthoughMetS associates with cardiovascular risk factors and CVD
outcomes [12–15], prognostic impact of MetS on CHF progression is not
fully confirmed andwidely discussed [16,17]. Therefore, it is still unclear
whetherMetSmay induce development and progression of cardiac fail-
ure through imbalance between endothelial injuries and repair [18,19].
Probably microparticles (MPs) corresponding to cell-to-cell coopera-
tion, immunity, tissue reparation, and vascular function, are key factors
that coordinate microvascular integrity and function [20].

Extracellular microparticles are microvesicles with sizes ranging be-
tween 50 and 1000 nm released from the plasma membrane of a wide
variety of cells, including endothelial cells,mononuclear cells, and plate-
lets, by specific (cytokine stimulation, apoptotic agents, mononuclear
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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cooperation, coagulation, etc.) and non-specific (shear stress) stimuli
[21]. Circulating endothelial-derived microparticles (EMPs) depending
on their origin (apoptotic-derived or activated endothelial cell produc-
tion) are capable of transferring biological information (regulating pep-
tides, hormones) or even genetic material, as well as proteins and lipid
components, from one cell to another without direct cell-to-cell contact
to maintain cell homeostasis [22,23]. EMPs derived from activated en-
dothelial cells may have pro-angiogenic and cardio-protective proper-
ties [24]. In opposite, apoptotic EMPs that originated from damaged
endothelial cells are discussed as marker of endothelial cell injury and
vascular aging [25].

Platelet-derivedmicroparticles (PMPs) are a heterogeneous popula-
tion of microvesicles that are secreted from chemokine and cytokine
activated platelets. PMPs that mediate multiple cellular responses
predominantly affected protein and lipid metabolism, coagulation and
inflammation [26]. Elevated PMPs show a relation to clinical outcomes
and mortality in several patient populations [27].

Numerous studies have shown that monocyte-derived microparti-
cles (MMPs) are realized from activated and/or apoptotic monocytes
in response to various stimuli, i.e. antigen stimulation, growth factors,
inflammatory interleukins, and chemokines and cytokines [28–30].
Elevated levels of circulating MMPs are documented in almost all
thrombotic diseases, infective, rheumatic and autoimmune diseases,
stroke, myocardial infarction, atrial fibrillation, as well as in metabolic,
ischemic/hypoxic states, and critical conditions [31–33]. However, the
significance of MPs in MetS patients as an inductor of development
and progression of CHF remains controversial. An example of this con-
troversy is that it is still unknown if circulatingMPs found in peripheral
blood cause injury of the endothelium and worsening of CHF whether
they are the result of disease progression in response to endothelial
dysfunction and vascular dysintegrity [34,35]. The aim of the study
was to investigate the pattern of circulating endothelial cell-, platelet-,
and monocyte-derived MPs in MetS patients with CHF in relation to
neurohumoral and inflammatory activation.

2. Methods

The study retrospectively evolved 101 patients with MetS (54
subjects with CHF and 47 patients without CHF) without documented
coronary artery stenosis N50% at least of one artery and 35 healthy
volunteers who were examined between February 2013 and
November 2013. The study was approved by the local ethics com-
mittee of the State Medical University, Zaporozhye, Ukraine. The
study was performed in conformity with the Declaration of Helsin-
ki. All the patients have given their informed written consent for
participation in the study.

MetS was diagnosed based on the National Cholesterol Education
Program Adult Treatment Panel III criteria [36]. Patients were enrolled
in the MetS cohort when at least three of the following components
were defined: waist circumference ≥90 cm or ≥80 cm in men and
women respectively; high density lipoprotein (HDL) cholesterol
b1.03 mmol/L or b1.3 mmol/L in men and women respectively; tri-
glycerides ≥1.7 mmol/L; blood pressure ≥130/85 mm Hg or current
exposure of antihypertensive drugs; and fasting plasma glucose
≥5.6 mmol/L. Subjects with defined T2DM or treatment with oral an-
tidiabetic agents or insulin were not enrolled in the study. Current
smoking was defined as consumption of one cigarette daily for
three months. Anthropometric measurements were made using
standard procedures.

2.1. Methods for visualization of coronary arteries

Contrast-enhanced multispiral computed tomography angiography
has been performed for all the patients with dysmetabolic disorder
prior to their inclusion in the study on Optima СТ660 scanner (GE
Healthcare, USA) using non-ionic contrast Omnipaque (Amersham
Health, Ireland) [37]. Subjects with atherosclerotic lesions N50% of di-
ameter at least of one coronary artery were excluded for further enroll-
ment in the study.

2.2. Transthoracic echocardiography

Transthoracic echocardiography was performed according to a con-
ventional procedure on ultrasound scanner ACUSON (SIEMENS,
Germany) in В-mode and Tissue Doppler Imaging with phased probe
of 2.5–5 МHz. Left ventricular (LV) end-diastolic and end-systolic
volumes, LV ejection fraction (LVEF) were measured by modified
Simpson's method [38].

2.3. Calculation of glomerular filtration rate

Glomerular filtration rate (GFR) was calculated with the CKD-EPI
formula [39].

2.4. Measurement of circulating biomarkers

To determine circulating biomarkers, blood samples were collected
at baseline in the morning (at 7–8 a.m.) into cooled silicone test tubes
wherein 2 mL of 5% Trilon B solution was added. Then they were
centrifuged upon permanent cooling at 6000 rpm for 3 min. Plasma
was collected and refrigerated immediately to be stored at a tem-
perature −70 °С. Serum N-terminal brain natriuretic peptide
(NT-proBNP), adiponectin, RANKL and osteoprotegerin (OPG)
were measured by high-sensitive enzyme-linked immunosorbent
assays using commercial kits (R&D Systems GmbH, Wiesbaden-
Nordenstadt, Germany) according to the manufacturers' recom-
mendations. The inter-assay coefficients of variation were as
follows: NT-proBNP: 4.5%, adiponectin: 5%, RANKL: 7.0%; OPG:
8.2%.

High-sensitive C-reactive protein (hs-CRP) was measured by com-
mercially available standard kit (R&D Systems GmbH, Wiesbaden-
Nordenstadt, Germany). The intra-assay and inter-assay coefficients of
variation were b5%.

Fasting insulin level was measured by a double-antibody sandwich
immunoassay (Elecsys 1010 analyzer, F. Hoffmann-La Roche Diagnos-
tics, Mannheim, Germany). The intra-assay and inter-assay coefficients
of variationwere b5%. The lower detection limit of insulin levelwas 1.39
pmol/L.

Insulin resistance was assessed by the homeostasis model assess-
ment for insulin resistance (HOMA-IR) [40] using the following
formula:

HOMA-IR (mmol/L × μU/mL) = fasting glucose (mmol/L) × fasting in-
sulin (μU/mL)/22.5.

Concentrations of total cholesterol (TC), cholesterol of low-density
lipoproteins (LDL-C) and cholesterol of high-density lipoproteins
(HDL-C) were measured by enzymatic method.

2.5. Assay of circulating endothelial-derived microparticles

Circulating MPs were isolated from 5 ml of venous citrated blood
drawn from the fistula-free arm. To prevent contamination of samples
platelet-free plasma (PFP) was separated from whole blood. PFP was
centrifugated at 20,500 × rpm for 30 min. MP pellets were washed
with DMEM (supplemented with 10 μg/mL of polymyxin B, 100 UI of
streptomycin, and 100 U/ml of penicillin) and centrifuged again
(20,500 rpm for 30 min). The obtained supernatant was extracted,
and MP pellets were re-suspended into the remaining 200 μL of super-
natant. PFP, MPs, and supernatant were diluted five-, 10-, and five-
fold in PBS, respectively.
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MPs were labeled and characterized by flow cytometry by phycoer-
ythrin (PE)-conjugatedmonoclonal antibody against CD31 (platelet en-
dothelial cell adhesion molecule [PECAM]-1), CD41a, CD64, CD105,
CD144 (vascular endothelial [VE]-cadherin), CD62E (E-selectin), and
Annexin V (BDBiosciences, USA) followed by incubationwithfluoresce-
in isothiocyanate (FITC)-conjugated Annexin V (BD Biosciences, USA)
per HD-FACS (High-Definition Fluorescence Activated Cell Sorter)
methodology independently after supernatant diluted without freeze
[41]. The samples were incubated in the dark for 15 min at room tem-
perature according to the manufacturer's instructions. The analysis of
area, height, and width forward scatter (FSC) and side scatter (SSC) pa-
rameters aswell as side scatterwidth (SSC-W)was performed. The gate
for MPs was defined by size, using 0.5 and 1.0 μm beads (Sigma, St.
Louis, MO, USA). For each sample, 500 thousand events have been ana-
lyzed. Compensation tubes were used with similar reagents as were
used in the sample tubes. Data were constructed as numerous MPs de-
pend on marker presentation (positive or negative) and determination
of MP populations.
2.6. Determination of MP populations

CD41a+ was used as a more specific marker of platelets, and
CD64+was considered amore specific marker of monocytes. CD31 an-
tigenwas determined as essentialmarker for endothelial cells, platelets,
and leukocytes. CD144+ was used to identify a pure population of en-
dothelial cells. CD31+/annexin V+ and CD144+/CD31+/annexin
V+ microparticles were defined as apoptotic endothelial cell-derived
MPs, MPs labeled for CD105+ or CD62E+ were determined as MPs
produced due to activation of endothelial cells [42].
Table 1
General characteristic of patients participating in the study.

Healthy volunteers
(n = 35)

Entire cohort of enrolle
(n = 101)

Age, years 46.12 ± 4.22 48.34 ± 7.80
Males, n (%) 23 (65.7%) 64 (63.3%)
BMI, kg/m2 21.5 (16.1–23.5) 28.4 (16.5–32.4)*
Waist circumference, sm 78 (63–89) 93 (76–103)*
Hypertension, n (%) – 68 (67.3%)*
I NYHA class CHF – 17 (16.8%)*
II NYHA class CHF – 22 (21.9%)*
III NYHA class CHF – 15 (14.9%)*
Dyslipidemia, n (%) – 59 (58.4%)*
Adherence to smoking, n (%) 6 (17.1%) 31 (30.7%)*
Framingham risk score, % 2.55 ± 1.05 8.12 ± 2.88*
Systolic BP, mm Hg 122 ± 5 138 ± 6*
Diastolic BP, mm Hg 72 ± 4 87 ± 6*
Heart rate, beats per 1 min. 66 ± 6 75 ± 7*
LVEF, % 66.8 (61.2–73.5) 50.6 (42.5–55.3)*
GFR, mL/min/1.73 m2 102.1 (91.4–113.2) 93.1 (79.5–109.7)
HbA1c, % 4.75 (4.36–5.12) 6.7 (5.3–8.2)*
Fasting blood glucose, mmol/L 4.52 (4.43–4.76) 6.50 (5.8–7.0)*
Insulin, μU/mL 4.98 (1.5–14.1) 15.45 (13.69–16.62)*
HOMA-IR, mmol/L × μU/mL 1.01 (0.91–1.07) 4.46 (4.17–5.20)*
Creatinine, μmol/L 62.1 (55.7–82.4) 71.2 (59.9–87.2)
Total cholesterol, mmol/L 4.76 (4.21–5.05) 5.3 (4.6–6.0)*
LDL-C, mmol/L 3.10 (2.78–3.21) 3.60 (3.20–4.18)*
HDL-C, mmol/L 1.13 (1.05–1.17) 0.94 (0.92–1.06)*
TG, mmol/L 1.18 (1.07–1.30) 1.68 (1.44–1.98)*
hs-CRP, mg/L 4.11 (0.97–5.03) 7.96 (4.72–9.34)*
sRANKL, pg/mL 16.10 (2.1–30.1) 29.10 (15.2–56.7)*
Osteoprotegerin, pg/mL 88.3 (37.5–136.6) 804.5 (579.9–1055.3)*
Adiponectin, mg/L 6.17 (3.44–10.15) 13.65 (10.12–24.93)*
NT-proBNP, pg/mL 96.1 (64.5–125.8) 687.5 (84.7–1244.5)*

Note: Data are presented asmean and±SE;median and 25–75% IQR. Categorical variables are e
variables (ANOVA test).
Abbreviations: *— significant difference between healthy subjects and entire cohort of enrolled
— standard error; IQR— inter quartile range; BMI— bodymass index, TG— triglycerides, BP— b
ejection fraction, GFR— glomerular filtration rate, HDL-C— high-density lipoprotein cholestero
sRANKL — serum receptor activator of NF-κB ligand.
2.7. Statistical analysis

Statistical analysis of the results obtainedwas performed in the SPSS
system for Windows, Version 22 (SPSS Inc., Chicago, IL, USA). The data
were presented as mean (М) and standard deviation (±SD); as well
as median (Ме) and 25%–75% interquartile range (IQR). To compare
the main parameters of patient cohorts, two-tailed Student t-test or
Mann–Whitney U-test was used. To compare categorical variables be-
tween groups, Chi2 test (χ2) and Fisher exact testwere used. Univariable
and multivariable regression analysis was used for determination of
predictors of decreased CD62E+ to CD31+/annexin V+ ratio. All suffi-
cient predictors with P value b0.2 obtained by univariable regression
analysis were included in the multivariate regression model. A two-
tailed probability value of b0.05 was considered as significant.

3. Results

General characteristic of patients participating in the study was re-
ported in Table 1. There was a significant difference between healthy
volunteers and entire patient cohort in BMI, waist circumference, car-
diovascular risk factors (hypertension, dyslipidemia, adherence to
smoking), CHF class, blood pressure levels, heart rate, LVEF, HOMA-IR,
lipid abnormalities, and Framingham risk score. However,MetS patients
without CHF have demonstrated lower incidence of dyslipidemia, lower
concentrations of LDL-C, hs-CRP, sRANKL, osteoprotegerin, NT-proBNP
compared with MetS subjects with CHF. Therefore, higher LVEF, TG,
HDL-C and HOMA-IR were found inMetS patients without CHF in com-
parison to MetS patients with CHF.

Table 2 reports numbers of circulating MPs in patients participating
in the study. Numerous of platelet-derived and monocyte-derived MPs
d MetS patients MetS patients without CHF
(n = 47)

MetS patients with CHF
(n = 54)

48.30 ± 3.94 48.42 ± 6.10
30 (63.8%) 34 (63.0%)
28.2 (16.7–31.0) 28.5 (16.8–32.1)
92 (77–105) 95 (90–104)
32 (68.0%) 36 (66.7%)
– 17 (31.5%)#
– 22 (40.7%)#
– 15 (27.8%)#
26 (55.3%) 33 (61.1%)#
16 (34.0%) 15 (27.7%)
8.09 ± 2.12 9.28 ± 2.32
137 ± 4 139 ± 5
87 ± 5 88 ± 4
71 ± 6 78 ± 5
52.4 (48.3–57.5) 44.2 (40.3–48.1)#
92.5 (83.1–107.4) 93.8 (80.4–106.8)
6.82 (5.61–8.37) 6.64 (5.53–8.31)
6.46 (5.73–6.86) 6.54 (5.69–6.98)
15.2 (12.5–15.7) 15.6 (12.9–16.8)
4.36 (4.12–5.18) 4.53 (4.11–5.12)
70.5 (59.6–88.3) 72.3 (56.1–86.9)
5.3 (4.5–5.9) 5.4 (4.8–5.8)
3.48 (3.30–4.07) 3.80 (3.20–4.20)#
1.01 (0.90–1.13) 0.94 (0.88–1.04)
1.77 (1.62–1.95) 1.45 (1.42–1.51)#
7.80 (4.92–9.43) 8.13 (5.90–10.85)#
24.10 (14.7–36.9) 34.20 (20.1–55.2) #
718.5 (572.1–846.2) 882.5 (697.1–1046.2) #
13.61 (9.74–22.35) 14.12 (10.12–23.10)
92.2 (55.8–133.2) 1475.3 (584.7–2293.5)#

xpressed as numerous (n) and percentages (%). P-value is a comparison ofmean ormedian

MetS patients; #— significant difference betweenMetS subjects with andwithout CHF; SE
lood pressure, BMI— bodymass index, CHF— chronic heart failure; LVEF— left ventricular
l, LDL-C— low-density lipoprotein cholesterol, hs-CRP— high sensitive C reactive protein,



Table 2
Numbers of microparticles in participators of the study.

Immune phenotype of MPs Healthy volunteers
(n = 35)

Entire cohort of enrolled MetS patients
(n = 101)

MetS patients without CHF
(n = 47)

MetS patients with CHF
(n = 54)

CD41a + MPs, n/μL 23 (19–28) 25 (16–33) 23 (15–31) 27 (19–36)
CD64+ MPs, n/μL 3.9 (3.5–4.6) 4.2 (3.2–5.1) 4.0 (3.4–4.8) 4.3 (3.6–5.2)
CD62E+ MPs, n/μL 1.35 (0.95–1.68) 1.03 (0.86–1.13)* 1.05 (0.88–1.18) 0.98 (0.89–1.12)
CD105E+ MPs, n/μL 2.32 (1.92–2.56) 2.24 (1.85–2.41)* 2.37 (1.92–2.68) 2.09 (1.58–2.50)
CD144+ MPs, n/μL 0.29 (0.22–0.36) 0.33 (0.24–0.39) 0.30 (0.22–0.37) 0.35 (0.21–0.40)
CD144+/CD31+ MPs, n/μL 0.87 (0.27–1.25) 0.92 (0.36–1.32) 0.89 (0.32–1.29) 0.93 (0.41–1.33)
Annexin V+ MPs, n/μL 4655 (3724–6237) 5495 (3988–6957) 5114 (3695–6547) 5844 (4213–7167)
CD144+/annexin V+ MPs, n/μL 0.95 (0.11–1.78) 1.15 (0.13–2.41) 1.08 (0.13–2.39) 1.17 (0.15–2.55)
CD144+/CD31+/annexin V+ MPs, n/μL 0.82 (0.27–1.55) 1.01 (0.39–1.70) 0.94 (0.38–1.52) 1.12 (0.40–1.67)
CD31+/annexin V+ MPs, n/μL 0.154 (0.03–0.21) 0.316 (0.261–0.374)* 0.285 (0.253–0.318) 0.355 (0.294–0.382)#
CD62E+ to CD31+/annexin V+ ratio, unit 8.77 (7.95–9.18) 3.26 (3.23–3.30)* 3.68 (3.47–3.81) 2.76 (2.42–3.04)#
CD105E+ to CD31+/annexin V+ ratio, unit 15.1 (8.59–23.4) 7.07 (4.85–10.90) 8.31 (6.02–10.65) 5.89 (4.11–7.67)

Note: Data are presented asmedian and 25–75% IQR. P-value is a comparison ofmean ormedian variables between both cohorts (ANOVA test). *— significant difference between healthy
subjects and entire cohort of enrolled patients; # — significant difference between MetS subjects with and without CHF.
Abbreviations: IQR — inter quartile range; MPs — microparticles.

Table 3
Univariable and multivariable associations with decrease of CD62E+ to CD31+/annexin
V+ ratio.

Univariable analysis Multivariable analysis

B coefficient P value B coefficient P value

Framingham risk score, % −0.014 0.34 – –
eGFR 0.012 0.22 – –
HOMA-IR 0.018 0.26 – –
Waist circumference 0.052 0.38 – –
BMI 0.16 0.046 0.142 0.036
NT-proBNP −0.46 0.001 −0.42 0.012
osteoprotegerin −0.36 0.001 −0.32 0.026
hs-CRP −0.28 0.001 −0.21 0.044
adiponectin −0.015 0.22 – –
TG −0.032 0.42 – –
creatinine −0.025 0.36 – –

Notes: The multivariate regression model included all variables with P value b0.2.
Abbreviations: BMI — body mass index; eGFR — estimated glomerular filtration rate;
HOMA-IR— homeostasismodel assessment for insulin resistance; NT-proBNP— N-termi-
nal pro-brain natriuretic peptide; hs-CRP — high sensitive C-reactive protein; TG —
triglycerides.
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with immune phenotypes labeled as CD41a+ and CD64+were similar
in healthy volunteers and entire patient cohort. Controversially, there is
lower circulating level of activated endothelial cell-derived MPs with
phenotype CD62E+ and CD105E+ in MetS patients compared with
healthy volunteers (P b 0.001 for all cases). There were no significant
differences between numbers of circulating MPs labeled as CD144+
and CD144+/CD31+ originated from endothelial cells obtained from
healthy volunteers and MetS patients. Although circulating levels of
Annexin V+, CD144+/annexin V+, and CD144+/CD31+/annexin
V+ MPs derived from apoptotic cells including endothelial cells were
similar in both cohorts, CD31+/annexin V+MPs were significantly el-
evated in MetS patient (P b 0.001). CD62E+ to CD31+/annexin V+
ratio was significantly elevated in healthy persons when compared
with MetS patients (P b 0.001), while CD105E+ to CD31+/annexin
V+ ratio was not. Interestingly, similarities of circulating levels of MPs
different origin were determined in both MetS patient cohorts apart
fromCD31+/annexin V+MPs. Therefore, CD62E+ to CD31+/annexin
V+ ratio was found to be higher in theMetS patients without CHF com-
pared with MetS patients with CHF.

There was correlation between CD62E+ to CD31+/annexin V+
ratio, cardiovascular risk factors, hemodynamic performances, and
other biomarkers. We found that CD62E+ to CD31+/annexin V+
ratio were directly related with NT-proBNP (r = −0.512, P = 0.001),
BMI (r = 0.46, P = 0.001), osteoprotegerin (r = −0.412, P = 0.001),
hs-CRP (r = −0.445, P = 0.001), HOMA-IR (r = − 0.414, P = 0.001),
eGFR (r= 0.312, P= 0.001), TG (r=−0.304, P= 0.001), dyslipidemia
(r=−0.248, P=0.001), creatinine (r=−0.242, P=0.001), Framing-
ham risk score (r =−0.23, P = 0.001), waist circumference (r = 0.23,
P b 0.001), gender (r=0.228, P b 0.001 formale), age (r=−0.225, P=
0.001), and smoking (r = −0.212, P = 0.001). No significant associa-
tion CD62E+ to CD31+/annexin V+ ratio with fasting plasma glucose,
HbA1c, means of systolic and diastolic BP was found. We did not find
possible age- and gender-related correlation between metabolic status
and the presence of EMPs.

By multivariate regression analyses, NT-proBNP (B coeffi-
cient = −0.42, P = 0.012), osteoprotegerin (B coefficient = −0.32,
P = 0.026), hs-CRP (B coefficient =−0.21, P = 0.044) and BMI (B co-
efficient = 0.142, P = 0.036) were found as independent factors to
decrease CD62E+ to CD31+/annexin V+ ratio (Table 3).

4. Discussion

The results of the study have shown that numerous of the circulating
platelet-derived and monocyte-derived MPs in subjects with MetS
(with or without CHF) were insufficiently distinguished from level ob-
tained in healthy volunteers.We found elevated level of apoptotic endo-
thelial cell-derivedMPs labeled CD31+/annexin V+MPs in association
with lower level of activated endothelial cell-derived MPs phenotyped
as CD62E+MPs. All these led to decreased CD62E+ toCD31+/annexin
V+ ratio among patients with MetS in comparison with healthy volun-
teers, as well as in MetS patients with CHF compared with those who
did not demonstrate CHF. Thus, development of CHF in MetS patients
was closely related to altered balance between activated endothelial
cell-derived MPs and apoptotic endothelial cell-derived MPs. This phe-
nomenon was described as impaired phenotype of circulating MPs
thatmight probably pre-exist CHF and appear to be before clinically sig-
nificant endothelial dysfunction [20]. Whether impaired phenotype of
endothelial-derived MPs is result of early stages of endothelial injury
due to neurohumoral and inflammatory activation associated with
dysmetabolic states or CHF development or circulating MPs are able
directly induce endothelial dysintegrity is still not fully clear [35,43].

Indeed, that ability of the endothelium to release activated endothe-
lial cell-derived MPs with pro-angiogenic capacity may have a causal
role in improving clinical outcomes in CHF subjects with known MetS
in comparison to none-MetS subjects [43]. Interestingly, circulating
numbers of MPs that are phenotypically nearly identical to CD31+/
annexin V+ MPs, were closely associated with cardiovascular risk fac-
tors, while they were not elevated in dysmetabolic disorders without
known atherosclerosis or/and cardiovascular diseases [44–46]. Proba-
bly, subpopulations of MPs labeled as annexin V+ are not sensitive
markers of early endothelial injury and this requires performing mea-
surements of double- and triple-labeled annexin V+ MPs, such as
CD31+/annexin V+ MPs. The results of the study report that
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numerous of CD31+/annexin V+ MPs are not only elevated in MetS
patients, but they increase sufficiently in CHF development in MetS
population. Therefore, NT-proBNP, osteoprotegerin, hs-CRP and BMI
independently predicted decrease of CD62E+ to CD31+/annexin V+
ratio reflected impaired immune phenotype in MetS with and without
CHF.

We suggested that decreased CD62E+ to CD31+/annexin V+ ratio
and probably elevated apoptotic endothelial cell-derived MP level may
discuss surrogate markers of vascular dysfunction at early stages in
MetS patients with high risk of CHF development. In fact, apoptotic en-
dothelial cell-derivedMPs play a pivotal role in the development of vas-
cular complications in MetS and diabetes through promoting various
processes, i.e. coagulation, thrombosis, angiogenesis [46,47]. In contrast,
activated endothelial cell-derived microparticles may avoid inducing
tissue injury and worsening vasomotion via genome involved mecha-
nisms, and they are thereby able to protect the endothelium from dam-
age. Therefore, platelet- and leukocyte-derived MPs have probably no
sufficient effect on vascular integrity and vascular complications
amongMetS [48]. These findings support our hypothesis that imbalance
between activated and apoptotic endothelial cell-derived MPs may
have predicted value for [49,50].

Surprisingly, in our study independent associations of CD62E+ to
CD31+/annexin V+ ratio with cardiovascular risk factors were not
found, while association TG and lipid abnormality with CD62E+ to
CD31+/annexin V+ ratio was shown. A recent study has shown that
dyslipidemia and especially increased TG level in MetS patient popula-
tions may negatively affect the ability of endothelium to produce acti-
vated microvesicles with angiogenic capacities and secreted apoptotic-
derived microparticles [51,52]. Therefore, the question regarding
dyslipidemia-induced apoptotic-related endothelial-derived micropar-
ticle production [53] is discussed. In fact, infiltration of the subintima
by low-density lipoproteins may induce production of free radicals, ox-
idation of cytoskeleton and membrane vesiculation of endothelial cells
[54]. The oxidative-driven vesiculation of endothelial cells may relate
to low intensity inflammation in vasculature, which associates with
overproduction of cytokines i.e. hs-CRP, adiponectin, and osteoproteg-
erin [55]. Moreover, membrane vesiculation may enhance inflammato-
ry cytokines in conveying of biomechanical stress [56]. As well known
hs-CRP and osteoprotegerin appear to be sufficiently increased in
MetS and theymay be compensatorily up-regulated in the atherosclero-
sis and in microvascular inflammation [57]. Therefore there is NT-
proBNP-dependent regulation of microvesiculation in endocardial en-
dothelium [58]. The clinical significance of this phenomenon is still
not clear and planned/ongoing clinical studies with large sample popu-
lation are absent [59].

Although initially there is skepticism regarding the origin of imbal-
ance of activated and apoptotic endothelial-derived MP in patients
with impaired glucose metabolism and dyslipidemia, we suppose that
inflammatory cytokine overproduction and probably lipid abnormali-
ties may consider a possible cause of predominantly immune pheno-
type of MPs not directly related with glucose impairment. Obviously,
patients with different types of dysmetabolic disorders might have dif-
ferent patterns ofMPs [60], which contribute to the development of CHF
[61,62]. Finally, determination of impaired phenotype of endothelial
cell-derived MPs appears to be as novel biological marker of CHF devel-
opment in MetS population.

5. Study limitations

This study has some limitations. The fist limitation is lack of stan-
dardization of MP measurements, while commercial flow cytometers
exist. It is necessary to note that a large pool of MPs might be produced
after blood sampling due to destruction of platelets and blood cells. In
this study we used platelet free plasma to prevent contamination of
samples withMPs that originated from platelets. Therefore, preparation
of MP isolates from samples is the most sophisticated step for further
examination. The next limitation might relate to complicated assay
and suffers from resolution ofMPdetection technique that isworth con-
sidering. Indeed, there were several technical-related difficulties in the
measurement of MPs affected centrifugation of samples, labeling of
MPs, using HD-FACS methodology and final assay of results obtained.
Overall the definition of a blood MP using flow cytometry is still an
area of great debate. However, flow cytometry is a commonly used pro-
cedure. Although HD-FACS methodology is widely used, theoretical
overlap between two or more fluorochromes might reflect some obsta-
cles for further interpretation of obtained results.

Another limitation of the present study is that a specific role of MPs
is also possible and has not been characterized in depth in MetS
patients. However, the authors suppose that these optionally technical
restrictionsmight have no significant impact on the study data interpre-
tation. Additionally, retrospective, relative small sample size may limit
the significance of the present study.

In conclusion, decreased CD62E+ to CD31+/annexin V+ ratio
reflected impaired immunephenotype ofMPsmight discuss a surrogate
marker of CHF development in MetS population. Biomarkers of biome-
chanical stress (NT-proBNP) and inflammation (hs-CRP, osteoproteger-
in)were found significant predictors for decreased CD62E+ to CD31+/
annexin V+ ratio in MetS patients especially with CHF.
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