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A B S T R A C T

Successful training of convolutional neural networks (CNNs) requires a substantial amount of data. With small
datasets, networks generalize poorly. Data Augmentation techniques improve the generalizability of neural
networks by using existing training data more effectively. Standard data augmentation methods, however,
produce limited plausible alternative data. Generative Adversarial Networks (GANs) have been utilized to
generate new data and improve the performance of CNNs. Nevertheless, data augmentation techniques for
training GANs are underexplored compared to CNNs. In this work, we propose a new GAN architecture for
augmentation of chest X-rays for semi-supervised detection of pneumonia and COVID-19 using generative
models. We show that the proposed GAN can be used to effectively augment data and improve classification
accuracy of disease in chest X-rays for pneumonia and COVID-19. We compare our augmentation GAN model
with Deep Convolutional GAN and traditional augmentation methods (rotate, zoom, etc.) on two different X-ray
datasets and show our GAN-based augmentation method surpasses other augmentation methods for training a
GAN in detecting anomalies in X-ray images.
1. Introduction

In recent years, Convolutional Neural Networks (CNNs) have shown
excellent results on several tasks using sufficient training data [1–3].
One of the main reasons for poor CNN performance and overfitting on
training data remains limited-sized datasets in many domains such as
medical imaging. Improving the performance of CNNs can be achieved
by using the existing data more effectively. Augmentation methods
such as random rotations, flips, and adding various noise profiles have
been proposed [4,5] as some methods of augmentation. Typical data
augmentation techniques use a limited series of invariances that are
easy to compute however (rotation, flips, etc.), limited in the amount
of new data they can generate.

Generative Adversarial Networks (GANs) [6] have been used for
data augmentation to improve the training of CNNs by generating new
data without any pre-determined augmentation method. Cycle-GAN
was used to generate synthetic non-contrast CT images by learning
the transformation of contrast to non-contrast CT images [7]. This
improved the segmentation of abdominal organs in CT images using
a U-Net model [8]. Using Deep Convolutional-GAN (DCGAN) [9] and
Conditional-GAN [10] to augment medical CT images of liver lesion
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and mammograms showed improved results in classification of lesions
using CNNs [11,12]. Data Augmentation GAN (DAGAN) [13] was
able to improve the performance of basic CNN classifiers on EMNIST
(images of handwritten digits), VGG-Face (images of human faces) and
Omniglot (images of handwritten characters from 50 different alpha-
bets) datasets by training DAGAN in a source domain and generating
new data for the target domain. There has not been any study on
data augmentation using GANs for training other GANs. The challenge
with using a GAN to augment data for another GAN is that newly
generated images with the trained generator of the GAN follow the
same distribution as the training images, and hence there is no new
information to be learned by another GAN that is trained on the original
images combined with the newly generated (augmented) images.

In this paper, we propose Inception-Augmentation GAN (IAGAN)
model inspired by DAGAN [13] for the task of data augmentation that
specifically improves the performance of another GAN architecture.
While a growing number of supervised Deep Learning models have
achieved promising results in the diagnostic medical imaging domain,
they require large amounts of labeled data to learn and generalize to
classify diseases, such as Pneumonia and COVID-19, accurately. Using
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the covid-chestxray [14] and COVIDx [15] datasets, multiple studies
have built supervised models to detect COVID-19 markers using X-ray
images of the chest [15–20]. Wang et al.’s CNN-based COVID-NET [15]
achieved a 93.3% test accuracy for multi-class classification on a test
cohort of 100 Normal, 100 Pneumonia and 100 COVID-19 from the
COVIDx dataset with the rest of the images of each class being used
to train their model. Ozturk et al.’s DarkNet [16] carried out both
multi-class classification (Pneumonia vs. COVID-19 vs. No Findings)
and binary classification (COVID-19 vs. No Findings). They reported
a multi-class classification with accuracy of 0.87% on 25 COVID-19,
100 Normal, and 100 Pneumonia images and binary classification
accuracy of 98.08%. Hemdan et al.’s COVIDX-Net [18], comprised of
multiple architectures such as DenseNet121, VGG19, and InceptionV3,
was tested on 50 X-ray images from the covid-chest X-ray dataset.
25 COVID-19 negative and 25 COVID-19 positive. Their reported ac-
curacy is anywhere between 50% (InceptionV3) to 90% (VGG19 and
DenseNet201), for each investigated architecture. Afshar et al. used
capsule networks to detect COVID-19 positive cases using COVIDx
dataset. Their model was pre-trained using non-COVID chest X-ray im-
ages from other datasets. They report an Accuracy of 95.7%, Sensitivity
of 90%, Specificity of 95.8%, and the area under the ROC curve (AUC)
of 0.97. The number of test images from each class is not disclosed in
their paper. A recent study by DeGrave et al. [21] showed the effects
of supervised models, trained on imbalanced covid-chestxray [14] and
COVIDx [15] datasets, demonstrating the overfitting of these models
and failure to generalize to ocher datasets. With recent success of GANs
in detecting anomalies in medical images [22,23] For these reasons,
we explored data augmentation methods to improve the performance
of GAN based networks.

We trained our proposed IAGAN on two chest X-rays datasets,
one containing normal and pneumonia images and the other dataset
containing normal, pneumonia and COVID-19 images. We showed that
a trained IAGAN model can generate new X-ray images, independent
of image labels, and improve the accuracy of generative models. We
evaluated the performance of IAGAN model by training a DCGAN for
anomaly detection (AnoGAN) [22] and showed improved results in
classifying pneumonia and COVID-19 positive cases with improved
area under the receiver operating characteristic (ROC) curve (AUC),
sensitivity, and specificity. We showed our trained IAGAN is able to
generate new domain specific data regardless of the class of its input
images. This allowed for an unsupervised data augmentation, in the
case of not having labels for a subset of the images in the dataset. By
training the same DCGAN model on the augmented data using tradi-
tional augmentation methods and generating new data using another
DCGAN for the task of augmentation, we showed the ineffectiveness
of these methods in successful augmentation of data for training a
generative model compared to our IAGAN for detecting pneumonia and
COVID-19 images.

2. IAGAN architecture

Fig. 1 shows the architecture of the proposed IAGAN’s Generator.
At each iteration 𝑖, as input, the generator (G) takes a Gaussian noise
vector 𝑧𝑖 and a batch of real training image 𝑥𝑖. By encoding the
input images 𝑥𝑖 using convolution and attention layers to a lower-
dimensional representation, before concatenating this representation of
the image with the projected noise vector 𝑧𝑖 (concatenation happens
after 𝑧𝑖 goes through a dense layer and non-linearity), we aim to not
only use the full image representation using the discriminator, but also
get a lower representation of images fed through the generator for
better generalizability of G in generating images. The dual input to the
generator also allows the trained generator to use images from different
classes and generate a broader range of images to augment our specific
training data class. The use of attention layers in GANs (Fig. 2) has
shown to capture long-range dependencies in the image [24] where
simple convolution layers focus on local features restricted by their
2
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receptive field, self-attention layers capture a broader range of features
within the image. The attention layer uses three 1 × 1 convolutions.
1 × 1 convolution helps to reduce the number of channels in the
network. Two of the convolution outputs, as suggested by Fig. 2, are
multiplied (matrix multiplication) and fed to a softmax activation,
which results in producing the attention map. The attention map acts
as the probability of each pixel affecting the output of the third con-
volution layer. Feeding a lower-dimensional representation of an input
image 𝑥 allows for the trained generator to use images from different
classes to produce similar never-before-seen images of the class it was
trained on.

Using inception and residual architectures [25] increase GAN’s
ability to capture more details from training image-space without losing
spatial information after each convolution and pooling layer. Making
G’s network deeper is theoretically a compelling way to capture more
details in the image, however deep GANs are unstable and hard to
train [9,26]. A trained generator learns the mapping 𝐺(𝑧) ∶ 𝑧 ⟼ 𝑥
from latent space representations 𝑧 to realistic, 2𝐷, chest X-ray images.

The discriminator (D) (Fig. 3) is a 4-layer CNN that maps a 2D image
to a scalar output that can be interpreted as the probability of the given
input being a real chest X-ray image sampled from training data or
image G(z) generated by the generator G. Optimization of D and G can
be thought of as the following game of minimax [6] with the value
function 𝑉 (𝐺,𝐷):

min
𝐺

max
𝐷

𝑉 (𝐷,𝐺) = E𝑥∼𝑃 𝑑𝑎𝑡𝑎(𝑥)
[log𝐷(𝑥)] + E𝑧∼𝑃 𝑧(𝑧)

[log(1 −𝐷(𝐺(𝑧)))] (1)

uring training, generator G is trained to minimize the accuracy of
iscriminator D’s ability in distinguishing between real and generated
mages while the discriminator is trying to maximize the probability
f assigning real training images the ‘‘real’’ and generated images from
, ‘‘fake’’ labels. During the training, G improves at generating more

ealistic images while D gets better at correctly identifying between real
nd generated images.

. Datasets

.1. Dataset I

We used the publicly available chest X-ray dataset [27] with two
ategories of Normal (1575 images) and Pneumonia (4265 images). The
mages were in JPEG format and varied in size with pixel values in
0, 255] range. We resized all images to 128 × 128 pixels. Images were
ormalized to have [−1, 1] range for tanh non-linearity activation in
he IAGAN architecture. We use our bigger cohort (pneumonia) as the
raining class. 500 images from each class were randomly selected to
valuate the models’ performance while the rest of the images were
sed for augmentation and training different models.

.2. Dataset II

Covid-chestxray dataset [14] is an ongoing effort by Cohen et al. to
ake a public COVID-19 dataset of chest X-ray images with COVID-
9 radiological readings. Wang et al. used covid-chestxray dataset,
long with four other publicly available datasets and compiled the
OVIDx [15] dataset. With the number of images growing, many deep

earning models are trained and tested on this public dataset [15,16,
8]. At the time of this study, the COVIDx dataset is comprised of 8066
ormal, 5559 pneumonia, and 589 COVID-19 images. The images are
n RGB format with pixel range of [0, 255] and have various sizes. To
rain the generative models in this study, all images were converted
o gray scale, resized to 128 × 128 pixels and normalized to have pixel
ntensities in the [−1, 1] range. 589 images from normal and pneumonia
lasses were randomly selected along with 589 COVID-19 images to test
he models while the rest of the images were used for augmentation and

raining different models.
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Fig. 1. IAGAN’s generator architecture.
Fig. 2. IAGAN’s generator specific architecture breakdown.

Fig. 3. Discriminator architecture.

3.2.1. Segmentation of COVIDx dataset

A recent study [21] using the COVIDx dataset showed that existing
markers such as annotations and arrows outside of the lung on the X-
ray images can act as shortcuts [28] in detecting COVID-19 using those
shortcuts instead of actual COVID-19 disease markers. Fig. 4 shows
annotations on the top left of COVID-19 images which are consistent
with the rest of the COVID-19 images and the R symbol positioned
on the left of pneumonia images consistent with images from the
pneumonia class in COVIDx dataset.

To mitigate the effect of non-disease markers on our model, we
segmented the lungs for the COVIDx dataset images. 900 randomly
selected images (300 from each class) were manually segmented by
an expert radiologist. A modified U-NET model [29], pre-trained on
the Montgomery chest X-ray dataset [30] was fine-tuned using the
800 COVIDx segmentations. The segmentation model was tested on
the 100 remaining ground truth images and achieved a Sørensen–Dice
coefficient of 0.835.
3

Fig. 4. Pneumonia and COVID-19 sample images from COVIDx dataset with class
consistent annotations.

4. Data augmentation

4.1. IAGAN

We trained multiple instances of IAGAN outlined below. The archi-
tecture of IAGAN was kept unchanged for each instance and learning
rates of 0.0004 and 0.0001 were used for the discriminator and gen-
erator, respectively. Experimenting with the size of the Gaussian noise
vector z showed 120 to be the optimal size. We trained our IAGAN for
250 epochs on an Nvidia GeForce RTX 2080 Ti - 11 GB with a batch
size of 32. For dataset I, IAGAN was trained on 3765 pneumonia images
and tested on 500 pneumonia vs. 500 normal cases. For dataset II, one
IAGAN was trained on 4700 Pneumonia images and one IAGAN was
trained on 7477 Normal images. After successful training of the IAGAN,
the generator has learned the distribution of the images of the training
class.

To generate new data, for each input image to IAGAN, 3 random
noise vectors were initiated and 3 new images were generated from
the generator. For dataset I, 3765 pneumonia training images were
put through G and for each image, three new images were generated
(11,295). For each normal image that was not used for testing the
model’s performance, we did the same and generated 3225 images from
1075 normal images. Similarly, for dataset II, normal and pneumonia
training images were put through the two trained generators, one
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Fig. 5. Generator’s output during training.
Table 1
IAGAN augmentation.

Normal Pneumonia COVID-19
(Training/Test) (Training/Test) (Training/Test)

Dataset I 0/500 3,765/500 N/A
Augmented Dataset I 0/500 19,360/500 N/A
Dataset II 7,477/589 4,700/589 0/589
Augmented Dataset II 48,708/589 48,708/589 0/589

generator from the IAGAN trained on normal images and one trained
on pneumonia images. Similar to dataset I, each generator generated 3
new images using pneumonia and normal images that are not used in
testing the model. Fig. 5 shows the generator’s output at early, mid and
later stages (from left to right respectively) of the training on datasets
I and II.

Table 1 shows the number of images for each class, before and after
data augmentation using IAGAN. Dataset I does not have any COVID-19
images and does not use any normal images for training. Dataset II uses
all COVID-19 images (589) for testing the model and hence, no aug-
mentation is done using this class. Both normal and pneumonia class
images are used for training the model and therefore, 589 randomly
selected images are fixed to test the model from each class, the rest of
the images are augmented using two separately trained IAGANs. One
IAGAN trained on normal images, uses normal and pneumonia images
to generated more normal images. The other IAGAN, uses normal and
pneumonia images to generate more pneumonia images.

4.2. DCGAN

To understand the effect of our input image to IAGAN’s generator,
which allows using images from all classes to be fed into a trained
generator for augmentation, we trained a DCGAN [9] that uses only
the traditional Gaussian noise vector input to the generator. We used
the same hyper-parameters and number of epochs as IAGAN. The only
difference in the number of generated images is that images from
4

Table 2
DCGAN augmentation.

Normal Pneumonia COVID-19
(Train/Test) (Train/Test) (Train/Test)

Augmented Dataset I 0/500 15,060/500 N/A
Augmented Dataset II 29,908/589 18,800/589 0/589

classes other than what the DCGAN’s Generator was trained on cannot
be fed to the trained G for generating new images. For this reason,
we generate 3 images for each image the DCGAN was trained on; for
dataset I, 3 images were generated for each pneumonia training image
(3 similar images were generated using the anomaly score defined by
Schlegl et al. [22] and for dataset II, two DCGANs were trained similar
to IAGAN, 3 images were generated for each normal training image
with the G trained on normal images and 3 images were generated
for each pneumonia training images with the G trained on pneumonia
images. Table 2 shows the number of images for each class, before and
after data augmentation using DCGAN .

4.3. Traditional augmentation

Based on recent literature on data augmentation for chest X-ray
pathology classification using CNNs [31], we used Keras’ data generator
function for data augmentation by using random rotations in the range
of 20 degrees, width and height shift in the range of 0.2 and zoom
in the range of 0.2. For each training image, 8 new images were
randomly generated using the aforementioned augmentation methods.
Fig. 6 shows the sample output of this function. Table 3 shows the
number of images for each class, before and after data augmentation
using traditional augmentation methods.

5. Experiments

Schlegl et al. [22] proposed AnoGAN for detecting anomalies in op-
tical coherence tomography images of the retina. The AnoGAN architec-
ture follows DCGAN [9] in terms of overall generator and discriminator
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Fig. 6. Traditional augmentation output sample.
Table 3
Traditional augmentation.

Normal Pneumonia COVID-19
(Train/Test) (Train/Test) (Train/Test)

Augmented Dataset I 0/500 33,885/500 N/A
Augmented Dataset II 67,293/589 42,300/589 0/589

architecture. They trained the AnoGAN model on one class of images.
With the trained generator G at hand, in order to find anomalies in test
image x, back-propagation (using Eq. (4) with 𝜆 = 0.2) was used to
find a point 𝑧𝑖 that generates an image that looks similar to x. Upon
finding a point z after a set number of iterations (800 iterations in
our experiments), the anomaly score 𝐴(𝑥) (Eq. (5)) is defined using
residual and discrimination losses as shown below, calculated at point
𝑧. 𝐿𝑅 and 𝐿𝐷 are the residual and discriminator loss that enforce visual
and image characteristic similarity between real image 𝑥 and generated
image 𝐺(𝑧𝑖). The discriminator loss captures image characteristics using
the output of an intermediate layer of the discriminator, 𝑓 (.), making
the discriminator act as an image encoder.

𝑅(𝑧𝑖) =
∑

|𝑥 − 𝐺(𝑧𝑖)| (2)

𝐷(𝑧𝑖) =
∑

|𝑓 (𝑥) − 𝑓 (𝐺(𝑧𝑖))| (3)

(𝑧𝑖) = (1 − 𝜆) × 𝑅(𝑧𝑖) + 𝜆 × 𝐷(𝑧𝑖) (4)

𝐴(𝑥) = (1 − 𝜆) × 𝑅(𝑧) + 𝜆 × 𝐷(𝑧) (5)

5.1. Identifying information statement

Datasets used in this study are publicly available and have been
anonymized to protect any identifying patient information.

5.2. Dataset I

We used the AnoGAN architecture to evaluate the effects of different
approaches to data augmentation. We trained 4 AnoGAN models; one
trained on pneumonia images from dataset I and the other 3 were
trained on augmented pneumonia images with IAGAN, DCGAN and
traditional augmentation methods.
5

5.3. Dataset II

To detect COVID-19 positive from COVID-19 negative images, one
AnoGAN was trained on normal images and another identical network
was trained on pneumonia images. After calculating two anomaly
scores for each test image, one calculated by each AnoGAN, the sum
of two anomaly scores was assigned as the final anomaly score for the
test image. The idea is that the AnoGAN trained on normal images
will result in lower anomaly score for normal images during test while
AnoGAN trained on pneumonia images results in lower scores for
pneumonia images. In both networks, the COVID-19 images produce
higher anomaly scores hence the COVID-19 final anomaly score will be
higher than the normal and pneumonia classes.

The AnoGAN pair model were trained similar to AnoGAN on dataset
I; trained on normal and pneumonia training images without augmenta-
tion, normal and pneumonia images augmented using IAGAN, DCGAN
and traditional augmentation methods.

6. Results

We calculated the area under the ROC curve (AUC) for each model
trained on datasets I and II, before and after data augmentation. For
dataset I, AUC represents the classification capability of detecting
pneumonia vs. normal chest X-rays. For dataset II, we classify COVID-
19 positive from COVID-19 negative images. With 589 test images
from each class (normal, pneumonia and COVID-19) in dataset II,
we calculated the AUC for the balanced COVID-19 negative class vs.
COVID-19 positive test images. The balanced COVID-19 negative class
was created by randomly sampling 294 normal and 295 pneumonia
images from 589 normal and 589 pneumonia test images.

Table 4 shows the calculated AUC for datasets I and II. It can
be seen that our proposed IAGAN augmentation method outperforms
all other three models for both Dataset I and II: no augmentation,
DCGAN, and traditional augmentation methods. DeLong test [32] was
used to compare the AUC of the models by calculating the p-value
for significance difference. The p-values are added next to the AUC of
each augmentation method and measures the significance of the model
compared to the model trained with no augmentation.

We calculated the accuracy of each model at the highest sensitiv-
ity/specificity pair points (with minimum 0.80 sensitivity and speci-
ficity) for each model trained on datasets I and II. Table 5 shows the
sensitivity, specificity and accuracy of different trained models on both
datasets where it can be seen that our proposed IAGAN outperforms all
other models in both sensitivity and specificity.
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Fig. 7. IAGAN’s generator output at different epochs of the model training with random generated input images.
Table 4
AUC and 𝑝-value for datasets I and II.

No augmentation IAGAN DCGAN Traditional augmentation

Dataset I 0.87 0.90 (p = 3.17 × 10−7) 0.87 (p = 0.5) 0.88 (p = 0.08)
Dataset II 0.74 0.76 (p = 0.01) 0.75 (p = 0.43) 0.75 (p = 0.57)
Table 5
Sensitivity, Specificity and Accuracy for datasets I and II, respectively.

Model (Datasets I/II) Sensitivity Specificity Accuracy

No augmentation 0.80/0.67 0.81/0.68 0.80/0.67
IAGAN 0.82/0.69 0.84/0.69 0.80/0.69
DCGAN 0.80/0.67 0.81/0.67 0.80/0.67
Traditional augmentation 0.80/0.68 0.81/0.68 0.80/0.68

7. Discussion

Harnessing GANs’ ability to generate never-before-seen data, by
learning the distribution of images, allows for augmentation of data
that is not limited to applying different transformations to existing
images. By using the proposed IAGAN, not only are we able to generate
new images for the same class used to augment data (e.g., using normal
images to augment normal dataset), but also generate new images of
any class withing that domain of images using one class of images
(e.g., generating chest X-rays with pneumonia, COVID-19 or healthy
cases using normal images).

We showed that a traditional DCGAN with a single random noise
vector input to the generator fails to effectively augment data for a
GAN. Traditional augmentation methods showed improved prediction
in a subset of the tasks (AUC of 0.75 vs 0.74 for dataset II), yet failed to
effectively improve the accuracy of the overall models with statistical
significance. Our proposed IAGAN architecture, however, improves the
models’ accuracy when used for augmentation of the training cohort,
with statistical significance. We used the AnoGAN [22] architecture to
show when the training data is augmented using our proposed IAGAN
method, the AUC improves by 3% and 2%, compared to no augmen-
tation, for dataset I and II, respectively. IAGAN also showed improved
sensitivity/specificity for the AnoGAN model (2%–3% for dataset I and
2%–1% for dataset II in sensitivity and specificity respectively).

IAGAN architecture allows for semi-supervised augmentation of
data for a specific class of labels. We showed that by training IAGAN
on a specific class, we were able to use all classes to generate new
data for that specific class. Effective training of generative models for
medical imaging can be specially helpful to detect anomalies in classes
where we do not have enough data/labels for effectively training CNN
models. The COVID-19 pandemic is a great example for the importance
of generative models, where no images are required for this class of im-
ages in order to detect images of this class [23]. Advances in generative
models for detection of anomalies can allow for fast deployment of such
models at a time where adequate number of labeled images for the new
disease are not available for the effective training of CNNs. It is worth
mentioning that while an architecture like CycleGAN [33] uses images
as input to its generator, to train a CycleGAN, images from two different
domain (i.e normal and pneumonia) are used to learn the transition of
6

one image domain to the other. While this could allow for augmenting
data from one class to the other, it would require having enough labeled
data for all classes and does not allow for single class data augmentation
(i.e augmenting normal dataset using partially labeled chest X-rays with
only available label being normal) as is enabled by IAGAN.

Early on in this study, it was not immediately clear whether the
effects of feeding real images to GAN’s generator (G) was due to image
specific information, or providing the model with a larger vector size
in the generator’s up-sampling path. Since the down-sampled image is
concatenated with G’s other input early on in the network, the effects of
the input image might be associated with the added vector size, having
the same effect as adding the same image with randomly sampled pixel
valued. We trained the IAGAN but this time, the input images were
randomly generated. The IAGAN failed to generate realistic images
using random input images. This confirms that our proposed IAGAN
architecture that encodes the input images using convolution and atten-
tion layers to a lower-dimensional representation, before concatenating
with the projected noise is an effective way to generate meaningful
images and augment data. Fig. 7 shows G’s output in epochs 5–150.

One of the disadvantages of using a dataset such as COVIDx, com-
pared to dataset I, is the multicentric nature of the images. Since images
have been collected from multiple sources and health centers with
possibly different acquisition parameters and different scanner models,
we observed that our GAN for anomaly detection does not perform as
well as dataset I, with or without augmentation. With a more consistent
dataset, we hope to achieve improved results on dataset II, compared
to dataset I.

8. Conclusion

In this paper, we presented IAGAN; a semi-supervised GAN-based
augmentation method to improve training GANs for detection of
anomalies (pneumonia and COVID-19) in chest X-rays. IAGAN showed
to be statistically significant in augmenting data, improving the AUC,
sensitivity and specificity of GAN for detection of anomalies.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This research was funded by Chair in Medical Imaging and Artificial
Intelligence, a joint Hospital-University Chair between the University of
Toronto, The Hospital for Sick Children, and the SickKids Foundation.



Informatics in Medicine Unlocked 27 (2021) 100779S. Motamed et al.
References

[1] Krizhevsky Alex, Sutskever Ilya, Hinton Geoffrey E. Imagenet classification
with deep convolutional neural networks. In: Advances in neural information
processing systems. 2012. p. 1097–105.

[2] He Kaiming, Zhang Xiangyu, Ren Shaoqing, Sun Jian. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In: Proceedings
of the IEEE international conference on computer vision. 2015. p. 1026–34.

[3] He Kaiming, Zhang Xiangyu, Ren Shaoqing, Sun Jian. Deep residual learning for
image recognition. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2016. p. 770–8.

[4] Zhang Yu-Dong, Dong Zhengchao, Chen Xianqing, Jia Wenjuan, Du Sidan,
Muhammad Khan, et al. Image based fruit category classification by 13-layer
deep convolutional neural network and data augmentation. Multimedia Tools
Appl 2019;78(3):3613–32.

[5] Hao Ruqian, Namdar Khashayar, Liu Lin, Haider Masoom A, Khalvati Farzad.
A comprehensive study of data augmentation strategies for prostate cancer
detection in diffusion-weighted mri using convolutional neural networks. 2020,
arXiv preprint arXiv:2006.01693.

[6] Goodfellow Ian. Nips 2016 tutorial: Generative adversarial networks. 2016, arXiv
preprint arXiv:1701.00160.

[7] Sandfort Veit, Yan Ke, Pickhardt Perry J, Summers Ronald M. Data augmentation
using generative adversarial networks (cyclegan) to improve generalizability in
ct segmentation tasks. Sci Rep 2019;9(1):1–9.

[8] Ronneberger Olaf, Fischer Philipp, Brox Thomas. U-net: Convolutional networks
for biomedical image segmentation. In: International conference on medical
image computing and computer-assisted intervention. Springer; 2015, p. 234–41.

[9] Radford Alec, Metz Luke, Chintala Soumith. Unsupervised representation learning
with deep convolutional generative adversarial networks. 2015, arXiv preprint
arXiv:1511.06434.

[10] Mirza Mehdi, Osindero Simon. Conditional generative adversarial nets. 2014,
arXiv preprint arXiv:1411.1784.

[11] Frid-Adar Maayan, Diamant Idit, Klang Eyal, Amitai Michal, Goldberger Jacob,
Greenspan Hayit. Gan-based synthetic medical image augmentation for increased
cnn performance in liver lesion classification. Neurocomputing 2018;321:321–31.

[12] Wu Eric, Wu Kevin, Cox David, Lotter William. Conditional infilling gans for
data augmentation in mammogram classification. In: Image analysis for moving
organ, breast, and thoracic images. Springer; 2018, p. 98–106.

[13] Antoniou Antreas, Storkey Amos, Edwards Harrison. Data augmentation
generative adversarial networks. 2017, arXiv preprint arXiv:1711.04340.

[14] Cohen Joseph Paul, Morrison Paul, Dao Lan. Covid-19 Image data collection.
2020, arxiv:2003.11597, URL https://github.com/ieee8023/covid-chestxray-
dataset.

[15] Wang Linda, Wong Alexander. Covid-net: A tailored deep convolutional neural
network design for detection of covid-19 cases from chest x-ray images. 2020,
arXiv preprint arXiv:2003.09871.

[16] Ozturk Tulin, Talo Muhammed, Yildirim Eylul Azra, Baloglu Ulas Baran,
Yildirim Ozal, U. Rajendra Acharya. Automated detection of covid-19 cases using
deep neural networks with x-ray images. Comput Biol Med 2020;103792.
7

[17] Karim Md, Döhmen Till, Rebholz-Schuhmann Dietrich, Decker Stefan,
Cochez Michael, Beyan Oya, et al. Deepcovidexplainer: Explainable covid-19
predictions based on chest x-ray images. 2020, arXiv preprint arXiv:2004.04582.

[18] Hemdan Ezz El-Din, Shouman Marwa A, Karar Mohamed Esmail. Covidx-net:
A framework of deep learning classifiers to diagnose covid-19 in x-ray images.
2020, arXiv preprint arXiv:2003.11055.

[19] Ghoshal Biraja, Tucker Allan. Estimating uncertainty and interpretability in
deep learning for coronavirus (covid-19) detection. 2020, arXiv preprint arXiv:
2003.10769.

[20] Afshar Parnian, Heidarian Shahin, Naderkhani Farnoosh, Oikonomou Anastasia,
Plataniotis Konstantinos N, Mohammadi Arash. Covid-caps: A capsule network-
based framework for identification of covid-19 cases from x-ray images. 2020,
arXiv preprint arXiv:2004.02696.

[21] DeGrave Alex J, Janizek Joseph D, Lee Su-In. Ai for radiographic covid-19
detection selects shortcuts over signal. medRxiv. 2020.

[22] Schlegl Thomas, Seeböck Philipp, Waldstein Sebastian M, Schmidt-Erfurth Ur-
sula, Langs Georg. Unsupervised anomaly detection with generative adversarial
networks to guide marker discovery. In: International conference on information
processing in medical imaging. Springer; 2017, p. 146–57.

[23] Motamed Saman, Rogalla Patrik, Khalvati Farzad. Randgan: Randomized gen-
erative adversarial network for detection of covid-19 in chest x-ray. Sci Rep
2021;11(1):1–10.

[24] Zhang Han, Goodfellow Ian, Metaxas Dimitris, Odena Augustus. Self-attention
generative adversarial networks. 2018, arXiv preprint arXiv:1805.08318.

[25] Szegedy Christian, Vanhoucke Vincent, Ioffe Sergey, Shlens Jon, Wojna Zbigniew.
Rethinking the inception architecture for computer vision. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2016. p. 2818–26.

[26] Kodali Naveen, Abernethy Jacob, Hays James, Kira Zsolt. On convergence and
stability of gans. 2017, arXiv preprint arXiv:1705.07215.

[27] Kermany Daniel, Zhang Kang, Goldbaum Michael. Labeled optical coherence
tomography (oct) and chest x-ray images for classification. Mendeley Data
2018;2.

[28] Geirhos Robert, Jacobsen Jörn-Henrik, Michaelis Claudio, Zemel Richard,
Wiel Brendel, Bethge Matthias, et al. Shortcut learning in deep neural networks.
2020, arXiv preprint arXiv:2004.07780.

[29] Motamed Saman, Gujrathi Isha, Deniffel Dominik, Oentoro Anton, Haider Ma-
soom A, Khalvati Farzad. A transfer learning approach for automated segmen-
tation of prostate whole gland and transition zone in diffusion weighted mri.
2019, arXiv preprint arXiv:1909.09541.

[30] Jaeger Stefan, Candemir Sema, Antani Sameer, Wáng Yì-Xiáng J, Lu Pu-Xuan,
Thoma George. Two public chest x-ray datasets for computer-aided screening of
pulmonary diseases. Quant Imaging Med Surg 2014;4(6):475.

[31] Stirenko Sergii, Kochura Yuriy, Alienin Oleg, Rokovyi Oleksandr, Gordienko Yuri,
Gang Peng, et al. Chest x-ray analysis of tuberculosis by deep learning with
segmentation and augmentation. In: 2018 IEEE 38th international conference on
electronics and nanotechnology. IEEE; 2018, p. 422–8.

[32] DeLong Elizabeth R, DeLong David M, Clarke-Pearson Daniel L. Comparing the
areas under two or more correlated receiver operating characteristic curves: A
nonparametric approach. Biometrics 1988;837–45.

[33] Zhu Jun-Yan, Park Taesung, Isola Phillip, Efros Alexei A. Unpaired image-to-
image translation using cycle-consistent adversarial networks. In: Proceedings of
the IEEE international conference on computer vision. 2017. p. 2223–32.

http://refhub.elsevier.com/S2352-9148(21)00250-1/sb4
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb4
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb4
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb4
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb4
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb4
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb4
http://arxiv.org/abs/2006.01693
http://arxiv.org/abs/1701.00160
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb7
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb7
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb7
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb7
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb7
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb8
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb8
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb8
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb8
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb8
http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1411.1784
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb11
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb11
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb11
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb11
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb11
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb12
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb12
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb12
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb12
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb12
http://arxiv.org/abs/1711.04340
http://arxiv.org/abs/2003.11597
https://github.com/ieee8023/covid-chestxray-dataset
https://github.com/ieee8023/covid-chestxray-dataset
https://github.com/ieee8023/covid-chestxray-dataset
http://arxiv.org/abs/2003.09871
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb16
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb16
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb16
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb16
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb16
http://arxiv.org/abs/2004.04582
http://arxiv.org/abs/2003.11055
http://arxiv.org/abs/2003.10769
http://arxiv.org/abs/2003.10769
http://arxiv.org/abs/2003.10769
http://arxiv.org/abs/2004.02696
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb21
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb21
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb21
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb22
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb22
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb22
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb22
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb22
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb22
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb22
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb23
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb23
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb23
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb23
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb23
http://arxiv.org/abs/1805.08318
http://arxiv.org/abs/1705.07215
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb27
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb27
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb27
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb27
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb27
http://arxiv.org/abs/2004.07780
http://arxiv.org/abs/1909.09541
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb30
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb30
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb30
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb30
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb30
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb31
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb31
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb31
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb31
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb31
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb31
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb31
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb32
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb32
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb32
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb32
http://refhub.elsevier.com/S2352-9148(21)00250-1/sb32

