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Abstract

Epithelial–mesenchymal transition (EMT) is an important biological process through which 

epithelial cells undergo phenotypic transitions to mesenchymal cells by losing cell–cell adhesion 

and gaining migratory properties that cells use in embryogenesis, wound healing, and cancer 

metastasis. An important research topic is to identify the underlying gene regulatory networks 

(GRNs) governing the decision making of EMT and develop predictive models based on the 

GRNs. The advent of recent genomic technology, such as single-cell RNA sequencing, has opened 

new opportunities to improve our understanding about the dynamical controls of EMT. In this 

article, we review three major types of computational and mathematical approaches and methods 

for inferring and modeling GRNs driving EMT. We emphasize (1) the bottom-up approaches, 

where GRNs are constructed through literature search; (2) the top-down approaches, where GRNs 

are derived from genome-wide sequencing data; (3) the combined top-down and bottom-up 

approaches, where EMT GRNs are constructed and simulated by integrating bioinformatics and 

mathematical modeling. We discuss the methodologies and applications of each approach and the 

available resources for these studies.
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1 INTRODUCTION

Epithelial–mesenchymal transition (EMT) is an important cellular process, during which 

epithelial cells (E) convert to mesenchymal cells (M) by changing their morphology from 

cobblestone shape to spindle shape, losing tight cell–cell adhesion, and gaining motility and 

invasiveness [1, 2]. EMT and its reverse process, mesenchymal–epithelial transition (MET), 

have been shown to play a crucial role in multiple biological phenomena, such as embryonic 

development, wound healing, and cancer metastasis [3]. It is worth noting that recent studies 

have identified a spectrum of hybrid EMT states, featuring the coexistence of both E and M 

traits [4, 5]. In a hybrid state, cells retain cell–cell adhesion and meanwhile become motile, 

thus allowing collective cell migration, a phenomenon related to cancer invasiveness [6].

To understand the properties of the EMT-related state transitions, many experimental and 

computational studies have been undertaken to elucidate the gene regulatory mechanisms 

driving EMT. In particular, substantial efforts have been made with computational systems 

biology approaches to model EMT gene regulatory networks (GRNs). A high-quality GRN 

model can enhance our understanding of the molecular drivers of EMT, the relationship 

between various EMT states, and the coupling of EMT with other biological processes. 

GRN models also allow us to generate new predictions, such as the outcomes of gene 

knockdown, which lead to testable hypotheses for new experimental studies. So far, the 

existing network modeling studies can be categorized into three types: (1) the bottom-up 

approach, where GRNs are derived from the analysis and synthesis of literature data, 

followed by mathematical modeling for network dynamics simulations; (2) the top-down 

approach, where GRNs are derived from genomics data, such as gene expression, by 

bioinformatics methods featuring statistical analysis; (3) a more recent methodology that 

integrates both the bottom-up and top-down approaches, typically involving both 

bioinformatics and network simulations (Figure 1). Here, we will explain and review these 

types of computational and theoretical studies on EMT GRN modeling. For each approach, 

we will discuss the methodology and its applications and the currently available resources 

for its studies.

2 THE BOTTOM-UP APPROACH

The most common and popular approach for modeling EMT GRNs relies on an extensive 

literature search for biological evidence of gene regulatory interactions, from which 

researchers assemble a gene network. Mathematical modeling is then applied to the 

constructed GRNs to evaluate their gene expression dynamics. A good GRN model can not 

only capture the essential dynamical behavior of a biological system, but also provides new 

testable predictions for experimental validation, shedding new insights and permitting a 

deeper understanding of the system. Due to extensive previous studies on EMT [7, 8], 

abundant biological evidence for gene regulatory interactions during EMT is available, 

particularly in the area of cancer research [9, 10] and developmental biology [11]. These 

experimental studies have led to some successful modeling efforts on EMT GRNs [12–14], 

where literature-based GRNs were simulated to elucidate the heterogeneity of EMT states 

and the control mechanism of the cellular state transitions between them. These simulation 

studies have generated new predictions, which can then be tested experimentally.
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GRN models in the bottom-up approach can be of three categories: those that focus on a 

core gene regulatory circuit of EMT master regulators, those that model a large GRN of 

detailed gene regulators and/or upstream signaling pathways, and those that investigate the 

coupling of EMT circuit with circuits of other biological processes. In the following, we will 

describe the research efforts in those directions.

2.1 Small EMT circuits

In a typical study using the bottom-up approach, one synthesizes the literature data to 

construct a small circuit model, from which one elucidates its regulatory mechanism. Some 

early modeling studies on EMT GRNs focused on core gene regulatory circuits, consisting 

of the EMT master regulators: two microRNA families miR34 and miR200 and two 

transcription factor families ZEB and SNAIL [15, 16]. These models incorporated signaling 

nodes such as transforming growth factor beta (TGF-β) to drive the circuits and some 

targeted genes such as CDH1 and VIM as circuit readout. Because of the essential role of 

microRNAs in the translational regulation of key transcription factors [17], new 

mathematical formalisms were introduced [15, 18] to model microRNA-mediated 

translational inhibition and mRNA degradation. A typical way to model a GRN is to first 

write down the chemical rate equations (typically ordinary differential equations) and then 

apply nonlinear dynamics methods, such as nullcline and bifurcation, to identify the possible 

stable steady states of the GRN. These ordinary differential equation (ODE)-based modeling 

studies predicted not only the epithelial (E) and mesenchymal (M) states, but also a hybrid 

state (E/M) with features of both epithelial and mesenchymal phenotypes. The predicted 

hybrid E/M state was later identified experimentally [6], and its important role was found in 

tumorigenesis [19, 20]. Core EMT circuit models have also been carefully evaluated [21] 

and validated experimentally, for example, by flow cytometry measurement of E-cadherin 

and vimentin in TGF-β1-induced EMT of MCF10A cell line [22]. Furthermore, energy 

landscape analysis has been applied to the core EMT circuit, from which access to a hybrid 

state was shown to depend on the extracellular environment [23].

These circuit models have further been extended to incorporate additional genes, such as 

OVOL2, GRHL2, Np63α, NFATc, and NRF2, with a research focus on their role in 

stabilizing/destabilizing the hybrid state in cancer metastasis [18, 24–28]. Recently, Celia-

Terrassa et al. characterized two distinct types of EMT dynamics (hysteretic and 

nonhysteretic) through their ODE/PDE-based modeling of a small EMT circuit (TGF-β, 

Zeb1/2, miR-200, and E-cadherin) and identified their association with metastasis and 

clinical outcomes using mouse models [29].

Overall, these studies of the EMT circuits demonstrate the usefulness of investigating small 

circuit models, typically constructed based on expert knowledge in the EMT literature. 

Mathematical modeling of these small EMT circuits sheds light on a mechanistic 

understanding of EMT. However, in some cases certain regulators of interest may not be 

captured by a small EMT circuit, therefore researchers are also interested in constructing 

and modeling larger EMT GRNs.
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2.2 Large EMT networks

Construction of large EMT GRNs relies on more extensive literature search, typically 

incorporating (1) more detailed gene components, including factors from the same gene 

families, (2) signaling pathways upstream to EMT master regulators, and (3) in some cases, 

readout nodes representing the downstream EMT-related processes.

In particular, Steinway et al. synthesized existing literature data and constructed a 70-node 

EMT network representing the conserved regulation of EMT [30]. They gathered 

interactions primarily from hepatocellular carcinoma (HCC) EMT and secondarily from 

other tissue types, which produced an EMT GRN incorporating different molecular 

processes involving growth factors, signal transduction pathways, and transcription 

regulators. They simulated the GRN using a Boolean network model to understand the 

signaling abnormalities in the HCC progression [30] and their implication of combinatorial 

therapy by gene perturbation [31]. Here, Boolean network models describe the node status 

(gene expression or activity of a biological process) with two discrete values (i.e., 0 and 1) 

and simulate the network dynamics by updating the node status using Boolean functions 

[32]. Font-Clos et al. extended the GRN to a 72-node network and performed Boolean 

network modeling to construct a topographic map [33]. They studied the phenotypic stability 

of the topographic landscape using Ising model, where they identified a series of metastable 

hybrid EMT states, a prediction that is supported by RNA-seq data from both lung 

adenocarcinoma and embryonic differentiation. In a recent study, Silveira et al. constructed 

an 18-node literature-based EMT GRN to simulate EMT using Boolean network modeling 

[34]. In addition, some researchers augmented the literature-based approach by 

incorporating bioinformatics methods to construct larger EMT networks [35, 36] (details in 

Section 6).

Besides, Huang et al. [37] extended a core EMT circuit [15, 16] to a 22-node GRN by 

incorporating EMT factors from Ingenuity Pathway Analysis [38] and additional literature 

data [30, 31, 39, 40]. Instead of using Boolean network modeling as in many other large 

network studies, they devised a modeling method named random circuit perturbation 

(RACIPE), an ODE-based modeling method to generate an ensemble of kinetic models 

corresponding to a fixed GRN topology. Because RACIPE allows to model the time 

dynamics of continuous gene expression levels, it can better capture the intermediate levels 

of gene expression and is more effective to characterize hybrid states of a GRN, as supported 

by a recent study that compared RACIPE and Boolean simulations for various EMT GRNs 

of different sizes [41]. Also, with the RACIPE framework, Kohar and Lu showed that 

stochasticity in gene regulation and cell-to-cell variability can stabilize these hybrid EMT 

states [42].

In summary, by carefully integrating an extensive collection of literature data, researchers 

have developed large size EMT GRNs, from which the dynamic features of cellular state 

transitions can be identified. However, EMT is not a standalone process, but tightly 

associated with other biological processes, including, but not limited to, intercellular 

communication by Notch signaling pathway, cell motility, metabolism, cell proliferation, 

stem cell differentiation, and immunity.
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2.3 EMT circuits coupled with other processes

Many efforts have been made to understand the role of Notch signaling pathway in 

regulating EMT-induced cell motility during normal development and cancer metastasis 

[43–45]. These led to modeling the coupling between the Notch–Delta signaling pathway 

and the EMT core circuit, which provided a mechanistic understanding of how the hybrid 

E/M state induces and maintains the metastatic cellular clusters via intercellular 

communication [46, 47]. Cohen et al. developed a 30-node Boolean network to study 

synergistic combination of Notch overexpression and p53 deletion in cancer metastasis [39].

Furthermore, several studies modeled the coupling between metabolic pathways, EMT, and 

metastasis. Yu et al. constructed a coarse-grained 4-node network model of two metabolic 

pathways glycolysis and oxidative phosphorylation (OXPHOS) to study the interplay 

between the two pathways and the gene regulation of metabolic plasticity [48], with the 

implication of their roles in cancer metastasis. Jia et al. further extended the network with 

detailed interactions among regulatory genes and metabolites; their modeling predictions of 

metabolic plasticity were experimentally validated using several cancer cell lines [49]. 

Subsequently, Kang et al. [50] modeled, with a landscape approach, a 16-node metabolism-

EMT-metastasis network that integrates metabolism circuit [48], EMT core circuit [15, 51, 

52], and metastasis circuit [53]. Some recent mathematical models focused on mechanical 

interactions to understand the gene regulation of cells losing cellular cohesion during EMT 

[54–56].

In summary, researchers employed the bottom-up approaches to construct EMT GRNs of 

different sizes, whose mathematical modeling elucidated the regulatory mechanism of EMT 

and its coupling with other pathways. Despite its success in modeling EMT GRN, the 

bottom-up approach is typically limited by the following factors: (1) literature synthesis can 

be quite tedious and time consuming; (2) because of the involvement of significant manual 

curation, it is not straightforward to reproduce literature-based GRNs; (3) there may not be 

sufficient literature data to investigate the EMT process in a particular biological context. 

Additional information on the bottom-up approach can also be found in some recent reviews 

[14, 57–59].

3 THE TOP-DOWN APPROACH

Another approach to model EMT GRNs is a top-down approach of constructing networks 

from bioinformatics algorithms using genome-wide sequencing data, such as transcriptomics 

data (bulk and single-cell RNA-seq) and epigenomics data (Assay for Transposase-

Accessible Chromatin [ATAC-seq], chromatin immunoprecipitation [ChIP-seq]). These 

genome-wide data can be utilized to unbiasedly infer transcription factor (TF)-target 

relations based on statistical association (such as correlation, mutual information and 

regression) and their occurrence in experimental and literature databases (such as TF-target 

databases and TF binding motif database) [60–64]. One advantage of these top-down 

approaches is that they help tailor the GRN to the dataset of interest by emphasizing 

interactions reflected in the (epi)genomics data [65–68]. Compared to bottom-up 

approaches, top-down approaches also streamline the network construction process, making 

GRN modeling analysis more efficient and reproducible. On the other hand, the top-down 
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approaches usually lead to large GRNs, therefore the network construction is more liable to 

overfitting and is more adversely affected by sparsity and noise in the data [69]. Moreover, 

most bioinformatics-based GRNs are not evaluated according to their ability to capture 

network dynamics. Below, we will summarize the basic components of top-down 

methodologies and describe some of their recent applications to EMT.

3.1 Bioinformatics algorithms for GRN construction

The increasing availability of multiple omics studies represents an opportunity to develop a 

new, more cohesive model of EMT regulation. Indeed, a rich resource of transcriptomics and 

epigenomics data are publicly available on the study of EMT GRNs, as summarized in Table 

1 [5, 65, 67, 68, 70–92]. Many bioinformatics algorithms have been developed to construct 

GRNs from these resources [60–64, 69]. In recent years, scRNA-seq data have become 

particularly popular for GRN construction, mainly because of rapid advances in genomic 

technology and computational methodologies. In the study of EMT, single-cell 

transcriptomics can be especially important for the discovery of cell phenotypic 

heterogeneity and the dynamical transitions between cellular states [5, 36, 93]. Thus, 

network construction using scRNA-seq is more likely to generate networks capturing these 

features of EMT.

Although different GRN construction methods have their own approaches, they typically 

deploy common steps of bioinformatic analyses as part of their algorithms. In the following, 

we will take scRNA-seq data as an example to illustrate these bioinformatic techniques. 

First, the raw sequencing data need to be aligned to a reference genome and converted to 

gene expression counts [94]. Second, the count data are normalized by gene length and 

library size and log-transformed [95]. The gene expression data must also be processed to 

correct batch effects and/or remove cells/genes with low counts [96]. Third, having 

preprocessed the data, one can perform certain downstream analyses such as (1) visualizing 

the transcriptomic landscape via dimensional reduction [97] (principal component analysis 

[PCA] [98], t-stochastic neighbor embedding [t-SNE] [99], uniform manifold approximation 

and projection [UMAP]) [100]; (2) identifying distinct cellular phenotypes by gene 

expression clustering [101] (k-means, hierarchical clustering, etc.); (3) identifying important 

genes, pathways, or gene ontology (GO) terms that are distinct between the cellular 

phenotypes using differential expression analysis [102] (limma [103], DESeq2) [104] and 

gene-set-based enrichment analysis (GSEA [105, 106], GSA [107], GSVA) [108]; (4) 

inferring pseudo-time [109] in the case that time series data are unavailable.

Finally, there is a growing suite of software packages designed to analyze single-cell 

sequencing data, some of which have provided functionality for GRN construction. For 

example, a package termed single-cell regulatory network inference and clustering 

(SCENIC) [60] works by identifying highly correlated modules of genes and cross-

referencing these with TF binding motifs from the cisTarget database [110]. Another 

method, Dynamic Regulatory Events Miner (DREM) [111, 112], can be used to construct 

dynamic GRNs from time series data by identifying timepoints where coexpressed genes 

diverge, using GO terms to annotate the biological mechanisms behind each split. Other 

tools like Cicero [113] are used to construct GRNs from chromatin accessibility data instead 
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of RNA-seq by identifying regulatory elements coaccessible with gene promoters [63, 114]. 

Recently, Pratapa et al. [69] developed a framework entitled BEELINE to evaluate the 

quality of network construction algorithms using scRNA-seq data based on criteria including 

accuracy, scalability, and the level of detail they output. The authors benchmarked 12 

network construction algorithms with several simulated and experimental datasets with 

known network topologies and identified PIDC [115], GENIE3 [116], and GrnBoost2 [117] 

as having the best overall performance. They also found that inaccurate pseudo-time labels 

can be detrimental, and that many methods infer edges where only an indirect relationship 

exists, creating unintended feedforward structures. In summary, computational methods for 

GRN construction are growing in number and sophistication. Although sparsity and noise 

remain challenging obstacles, these tools provide an accessible framework to infer 

regulatory links from transcriptomics and epigenomic data.

3.2 EMT GRN Construction

An example that encapsulates the top-down approach to EMT modeling is a 2016 work from 

Chang et al. [118] where the authors uncovered synergistic behavior of three EMT 

regulators: ETS2, HNF4A, and JUNB. The authors first performed RNA-seq on TGF-β 
treated A549 cells over a period of 96 h, identifying three distinct, sequentially activated 

groups of genes, which they associate to E, hybrid, and M phenotypes. GO terms confirmed 

these findings, as the gene sets enriched in the hybrid and M cells were increasingly related 

to cell motility and adhesion. Interestingly, however, certain canonical EMT markers like 

SNAI1/2, TWIST1/2, and ZEB1/2 did not appear to be key regulators in this dataset. 

Hypothesizing that important transcription factors (TFs) may have been as yet unknown, the 

authors performed binding motif enrichment for putative EMT TFs based on the time series 

data. They then examined ChIP-seq data, finding additional evidence that the candidate TFs 

indeed bind to the locations of hundreds of differentially expressed genes in the experiment. 

Finally, the authors applied DREM to the time series data to pinpoint temporal changes in 

regulation. Major splitting points were identified at the 6-h and 48-h timepoints and included 

regulatory changes among the previously indicated TFs, possibly reflecting transitions from 

E to hybrid and hybrid to M states, respectively. The approach adopted by Chang et al. 

permitted a thorough and contextual analysis of EMT in A549 cells, despite the apparent 

lack of activity among many canonical EMT factors. By examining EMT on the basis of 

multi-gene signatures and quantified trends in gene expression, top-down approaches thus 

stand to improve the accuracy and applicability of EMT GRNs.

Top-down approaches can also reveal context specific (i.e., dependent on tissue type, time, 

input signal, etc.) EMT regulatory mechanisms, by applying inference tools to 

transcriptomic data or epigenetic sequencing like ATAC-seq [65, 67, 68]. Cook and 

Vanderhyden recently examined four cancer cell lines undergoing EMT induced via three 

different signaling conditions, using time series measurements to observe distinct 

trajectories and patterns of TF activity according to the context of the EMT [65]. Only a 

small number of the genes that responded to the three signals were shared across all 

conditions, demonstrating how much context can influence the EMT regulatory network. In 

another study, Wouters et al. [92] constructed GRNs based on SOX10 KD-induced EMT in 

melanoma at various timepoints by taking the consensus results of SCENIC over 100 runs, 
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supplementing SCENIC’s use of TF binding motifs with ATAC-seq chromatin accessibility 

information. The authors found that much of the data could be explained by a spectrum of 

melanocytic, intermediate, and mesenchymal-like phenotypes, noting that the consensus 

GRN for intermediate states was a stable mixture of regulations from both extreme 

phenotypes. The authors leveraged software tools and public repositories to map the EMT 

trajectory in melanoma with a high degree of detail. Although algorithmic GRN inference 

has far to go, in the case of EMT many of these tools have proven capable of recapitulating 

known findings and identifying new and/or cell type-specific regulatory interactions.

Top-down, bioinformatic-based approaches to model EMT have proven useful in 

characterizing the transcriptomic landscape of EMT and even in algorithmically constructing 

GRNs. This approach permits a thorough analysis of the phenotypic space, with single-cell 

sequencing providing the necessary granularity to construct GRNs that accurately reflect the 

observed distribution of cell states. Additionally, computational tools can make GRN 

construction more efficient, scalable, and reproducible. However, despite many available 

tools and datasets, constructing highly accurate EMT GRNs from bioinformatics results 

alone has proven challenging. Feature measurements are often noisy, impacting the accuracy 

of downstream analyses. Additionally, it remains challenging to distinguish, directly from 

the data, different types of regulation (e.g., methylation, transcriptional, translational) and 

identify key regulators. As a result, automatically constructed networks are prone to contain 

redundant structures or spurious links between genes that may be in shared modules, but do 

not directly interact [64, 69]. Although top-down analyses are especially useful for 

examining phenotypic heterogeneity, algorithmically constructed GRNs can benefit greatly 

from additional validation or optimization. Mathematical network modeling is thus a natural 

progression from bioinformatics approaches; inferred GRNs can be integrated into 

dynamical models and interactions iteratively refined by examining their dynamical 

properties in comparison to experimentally observed behaviors.

4 COMBINED TOP-DOWN AND BOTTOM-UP APPROACH

To overcome the limitations of both the bottom-up and top-down approaches, some recent 

studies seek to combine mathematical modeling with bioinformatic network construction. 

This approach offers a number of potential advantages as follows. First, EMT transition 

paths and key regulators can depend on the system in which they occur, so networks pulled 

together from general databases and literature search may not be relevant to a particular 

system of interest [65, 78, 119]. In these scenarios, bioinformatic analysis on associated 

transcriptomics and epigenetic data can contribute to incorporate context-specific regulatory 

relationships [35, 66, 91]. Second, the combined approach can improve the quality of the 

GRNs constructed by bioinformatics methods, as mathematical modeling can evaluate 

whether the GRNs can capture the gene expression dynamics of the biological process. 

Ideally, this approach combines the features of simplicity and predictivity from the bottom-

up approach and the features of reproducibility and robustness to literature bias/errors from 

the top-down approach. Examples of studies with combined approaches and their 

corresponding methodology are summarized in Table 2 [35, 36, 42, 66, 91, 120–123].
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One approach that combines top-down and bottom-up methodologies is to first construct a 

large network, then identify subnetworks that describe EMT in different contexts. Khan et al. 

[35] constructed an 879-node, 2278-edge network for the E2F TF family based on extensive 

manual review of published literature, characterizing its role in processes including EMT, 

cell cycle, DNA repair, and apoptosis. This large network, while comprehensive, would be 

unwieldy to investigate in the context of specific tumor types. Therefore, the authors 

identified subnetworks that described EMT in breast and bladder cancer by identifying the 

most important network structures in each type. Motifs were ranked on multiple metrics 

including involvement in cancer pathways, fold-change between invasive and noninvasive 

specimens, and topological properties. They conducted Boolean simulations on 41- and 35-

node subnetworks for bladder and breast cancer respectively, finding unique combinatorial 

EMT-inducing signals, each associated with more aggressive tumors of their respective 

tissue type in The Cancer Genome Atlas (TCGA) cohort data [35]. By ranking key network 

motifs according to multiple factors including transcriptomics data and topological 

properties, Khan et al. facilitate the construction of GRNs that are highly representative of 

specific biological conditions.

Udyavar et al. [36] describes another integrated study examining subtypes of small cell lung 

cancer (SCLC). Using ARACNE, a large network was generated and subsequently filtered 

by cross-referencing with multiple binding site and databases including ENCODE [124], 

TRANSFAC [125], EnrichR [126], and PubMed [127]. Subsequent Boolean simulations of 

this GRN predicted the expected NE and ML subtypes, but failed to capture a hybrid 

phenotype present in tumor samples. In a follow-up work by Wooten et al., a Boolean 

modeling approach called BooleaBayes was developed that infers the probability that each 

node is ON or OFF based on gene expression patterns of similar states, allowing more 

nuanced relationships than traditional Boolean modeling. Conducting in silico perturbations 

with BooleaBayes revealed likely stabilizers and destabilizers of each SCLC subtype, 

suggesting targets for therapies aimed at driving SCLC tumors from an aggressive subtype 

to a more tractable one [91]. These studies together illustrate the complementary nature of 

top-down with bottom-up methods: the initial top-down GRN alone, while in agreement 

with experimental data, failed to accurately recapitulate the observed phenotypic landscape 

in a simple mathematical model. Integrating systematic validation against literature and 

binding motifs improved the model’s predictive capabilities, with a more sophisticated 

mathematical model finally bringing the simulated results into close agreement with 

observed data.

Another strategy for combining top-down and bottom-up methods is to begin from a well-

supported, manually curated core topology and augment it with a context-specific set of 

interactions such that modeling can approximate the observed bioinformatic data. Kohar et 

al., integrated a literature-based GRN with networks from squamous cell carcinoma and 

modeled it with RACIPE. The GRN simulations accurately depict the E, M, and hybrid 

states observed in the gene expression data, with further improvements in accuracy when 

gene expression noise was implemented in the modeling [42]. The integration of SCC-

specific topologies and well-established EMT motifs improved the agreement between the 

steady states predicted by RACIPE and those observed in the data. Furthermore, some 

efforts have been made to systematically generate the context specific interaction set while 
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preserving the fundamental behavior of the core circuit. Ramirez et al. combined a core 

EMT topology with new interactions found by applying SCENIC to time series scRNA-seq 

data comparing EMT in four cell lines as induced by three different signaling conditions 

[65]. Considering each experimental condition separately, Ramirez et al. constructed, 

simulated, and refined context-specific GRNs by testing an ensemble of network 

construction parameters and finding the optimal GRN for each case. The primary criteria for 

inclusion in the network were (1) a correlation between regulator and target gene in the 

expression data for the relevant cell line, and (2) proximity to the core topology, as 

interactions were added incrementally moving outward from the core (both upstream and 

downstream). Although the resulting GRNs varied between experimental conditions, they 

included several highly conserved genes, suggesting that EMT may be governed by a small 

set of master regulators with flexible roles [66]. An iterative, optimization-based approach to 

network construction is expected to greatly improve the accuracy of EMT modeling studies.

This third category of studies, wherein networks are constructed using both broadly 

supported evidence from the literature and context-specific interactions from bioinformatics, 

then subsequently simulated with mathematical models, represents an evolution in quality 

and reproducibility in EMT modeling research. Integrated studies can not only identify 

genes of interest or infer individual regulatory links but can make testable predictions about 

complex dynamical behaviors and master regulators, facilitating the discovery of clinical 

tools targeting EMT. On the other hand, integrated methodologies are early in development, 

with few established best practices or formalized workflows, and some critical limitations. 

One obstacle is the breadth of background knowledge required to properly integrate 

bioinformatics with more traditional modeling approaches. Moreover, combined approaches 

tend to involve larger GRNs, which can be both more difficult to validate experimentally and 

more computationally expensive to model.

5 DISCUSSION AND PERSPECTIVES

One of the major challenges in biology is to understand the gene regulatory mechanisms that 

determine the decision making of cellular state transitions. In this paper, we reviewed three 

different types of computational systems biology approaches for modeling EMT-associated 

GRNs. The first approach relies on literature data for network construction. Being the gold-

standard methodology in the field of systems biology, the literature-based method utilizes 

network interactions derived from dedicated experimental studies in biochemistry, cell 

biology and genetics, most of them having high accuracy. Thus, the literature-based 

approach results in high-quality GRNs to recapitulate existing biology. However, it may not 

work well in the case where biology literature is incomplete and/or inconsistent (e.g., in the 

studies of cancer biology) [128]. It is also tedious, time consuming, and error-prone to 

construct a large GRN. Note that, although most literature-based GRN modeling provides a 

list of experimental evidences for GRN regulatory interactions, little is usually given to 

describe how GRNs were constructed step by step, making most of the literature synthesis 

steps irreproducible. The literature-based approach also does not work well to study GRNs 

specific to a particular experimental condition, disease type, and subjects of certain genetic 

background.
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The second approach constructs GRNs using bioinformatics analysis on genomics data from 

a specific experiment. Being a mainstream approach in current genomics and computational 

biology studies, it utilizes statistical analysis on gene expression data (e.g., bulk RNA-seq, 

scRNA-seq) and/or epigenetics data (such as ATAC-seq, Hi-C) to identify potential gene 

regulatory interactions. In some studies, literature data were also integrated, but in the 

format of a database containing curated gene regulatory interactions, biochemical/metabolic 

reactions, or from in silico prediction based on transcription factor binding sites. This 

approach addresses certain issues from the former approach—in particular, it allows 

modeling for a specific biological context and potentially identifying novel interactions. 

Because of the top-down approach, it usually results in GRNs of larger size. However, it has 

been shown that the current network construction methods are still insufficient to construct 

high-quality GRNs [69]. One of the issues is network redundancy. As many regulators and 

interactions between them are redundant in a biological system to achieve robustness, it is 

hard to reverse engineer the correct interactions back directly from data such as gene 

expression. Moreover, although bioinformatics is an ideal tool to identify regulators and 

biological pathways, it is seldom evaluated whether a GRN constructed through 

bioinformatics can operate as a dynamic biological system. This becomes a critical problem, 

particularly in the studies of cellular state transition like EMT, as network dynamics is an 

essential component of the biological process.

The third approach combines both the bottom-up and top-down approaches to construct 

GRNs. Conceptually, this is a better way to address the issues of the previous two 

approaches. By incorporating genomics data and literature databases together with 

mathematical modeling, one can model context specific GRNs that capture the dynamical 

behavior of cellular state transitions. We have seen recent studies on EMT GRN modeling 

with such a strategy, yet it remains a quite challenging task owing to the following reasons. 

First, systems biology modeling and bioinformatics belong to two very distinct research 

disciplines, making it difficult for researchers to grasp sufficient knowledge to be 

experienced in both research fields. Second, building a high-quality GRN model remains 

difficult with the combined approach. It is not uncommon that important regulators and/or 

signaling pathways, which are well known in the literature, cannot be identified from the 

genome-wide data directly. Thus, it is important to have better databases containing high-

quality regulatory interactions and signaling pathways. More sophisticated computational 

algorithms are also needed to accurately identify context specific regulatory interactions, for 

example, by integrating a variety of types of genomics data and biological evidence. Third, 

as another central component of this approach, a powerful mathematical modeling algorithm 

is needed to capture the dynamics of a large GRN in an unbiased and efficient way. In 

particular, the ensemble-based approach in some recent studies seems to be a promising 

technique [37, 42, 66]. Last but not least, experimental validation is crucial for better GRN 

modeling. As the constructed GRNs can be especially large, it is important to devise 

validations, such as high-throughput gene perturbation, that allow to evaluate the quality of a 

large system. In summary, we foresee that the combined top-down and bottom-up approach, 

although still in its infancy, could be a powerful tool in the future GRN modeling studies on 

EMT and also other biological cellular state transitions.
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FIGURE 1. 
Graphical summary of the three broad approaches discussed in this review. (A) Bottom-up 

approaches (blue shaded box): manual literature review or database search is used to 

construct a GRN, which is then modeled with mathematical modeling to elucidate the 

network gene expression dynamics and the property of network control. GRNs are usually 

constructed based on simulation outcomes. (B) Top-down approaches (red shaded box): 

algorithmic and statistical tools are used to infer GRNs from various omics assays of a 

dataset of interest. GRNs are usually constructed based on statistical test. (C) Integrated top-

down and bottom-up approaches (outermost box): these studies combine mathematical 

modeling, with an emphasis on the system dynamics, with high-throughput bioinformatics 

assays to construct GRNs that agree with both specific experimental observations and 

general understanding of EMT dynamics
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