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Consumption of fructose has dramatically increased in past few decades in children 
and adults. Increasing evidence indicates that added sugars (particularly fructose) 
have adverse effects on metabolism and lead to numerous cardiometabolic diseases. 
Although both fructose and glucose are components of sucrose and high fructose corn 
syrup, the sugars have different metabolic fates in the human body and the effects of 
fructose on health are thought to be more adverse than glucose. Studies have also 
shown that the metabolic effects of fructose differ between individuals based on their 
genetic background, as individuals with specific SNPs and risk alleles seem to be more 
susceptible to the adverse metabolic effects of fructose. The current review discusses the 
metabolic effects of fructose on key complex diseases and discusses the heterogeneity in 
metabolic responses to dietary fructose in humans.
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INTRODUCTION

Increasing evidence indicates that added sugars (particularly fructose) have adverse effects on 
metabolism leading to diseases such as obesity, hyperuricemia, hypertension, gout, type 2 diabetes 
(T2D), non-alcoholic fatty liver disease (NAFLD), and cardiovascular diseases (CVD) (Vos et al., 
2008; Lim et al., 2010; Aeberli et al., 2011; Herman and Samuel, 2016; Softic et al., 2016; Hannou 
et al., 2018). Consumption of fructose has dramatically increased in past few decades (Vos et al., 
2008; Marriott et al., 2009). Americans consumed about 15 g/day (60 calories) fructose mainly from 
fruits and vegetables before 1900, about 24 g/day before World War II, 37 g/day by 1977, and 55 
g/day by 1994 (Softic et al., 2016). In 2004, an average of 50 g/day (10% of calories) consumed 
were attributed to fructose. Among the age groups, adolescents (12–18 years) consumed the most 
fructose, more than 72.8 g/day (~290 calories) of fructose (Vos et al., 2008; Lim et al., 2010). 
Notably, a recent scientific statement from the American Heart Association (AHA) (Johnson 
et al., 2009) recommended consuming ≤ 100 calories for women and children over 2 years of age, 
and ≤ 150 calories for men from added sugars per day to avoid the detrimental metabolic effects of  
added sugars.

Fructose, commonly known as fruit sugar, is a simple monosaccharide with a 6-carbon 
polyhydroxyketone backbone and makes up 50% of the composition of sucrose. While natural sources 
of fructose include fruits, root vegetables, and honey, industrial sources use a highly processed and 
concentrated form of crystalline fructose for production of sugar-sweetened beverages (SSBs) and 
energy drinks (Hanover and White, 1993; Klurfeld et al., 2016). Compared to glucose, the low cost 
and high relative sweetness of fructose (as in high fructose corn syrup-HCFS) makes it a commercial 
favorite for imparting added sweetness and flavor to processed foods and beverages (Hanover and 
White, 1993; Zosia, 2012; Klurfeld et al., 2016).
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Fructose and glucose have different metabolic fates in the 
human body (Figure 1), in particular with respect to hepatic 
metabolism (Mayes, 1993; Basciano et al., 2005; Sun and Empie, 
2012). Additionally, multiple studies have also shown that the 
metabolic effects of fructose differ between individuals based 
on their genetic background. Individuals with specific single 
nucleotide polymorphisms (SNPs) and risk alleles seem to be 
more susceptible to the adverse metabolic effects of fructose 
than those without them (Goran et al., 2012; Dalbeth et al., 2013; 
Dalbeth et al., 2014a; Dalbeth et al., 2014b; Kong et al., 2017). 
Several genetic studies provide evidence that individuals not only 
differ in their fructose and glucose metabolism but also differ 
in their metabolic response to fructose based on their genetic 
variations. These differences are particularly pertinent in light 
of the recent AHA sugar intake recommendations. This review 
discusses the metabolic effects of fructose on key risk factors of 
complex diseases and discusses the heterogeneity in metabolic 
responses to dietary fructose in humans.

OBESITY/ADIPOSITY

Dietary fructose seems to increase the risk for obesity both at 
central as well as peripheral levels. At a central level, fructose 
affects appetite by upregulating hypothalamic cannabinoid mRNA 
and decreasing the activity of brain satiety centers whereas at the 
peripheral level it modulates the concentrations of ghrelin and 
leptin (Lindqvist et al., 2008; Lowette et al., 2015). Additionally, 
SSB and fructose consumptions have been positively associated 
with higher caloric intake, which contributes to increased 
adiposity (Tappy and Le, 2010). Several studies and meta-analyses 

have reported positive relationships between fructose intake and 
obesity in children, adolescents, and adults (Johnson et al., 2007; 
Forshee et al., 2007; Tappy and Le, 2010). Berkey et al. (2004) 
showed that every increase in sugar serving/d was associated 
with an increase of 0.16 units of BMI. A study in two large 
Swedish cohorts with more than 26,000 participants found that 
SSB consumption was positively associated with BMI (Brunkwall 
et al., 2016). SSB intake was categorized into quartiles and each 
successive category was associated with 0.18 units increase in 
BMI (Brunkwall et al., 2016). However, several studies included 
in the meta-analysis in adults or children reported no difference 
in BMI based on SSB consumption (Libuda et al., 2008; Vanselow 
et al., 2009; Reid et al., 2010; Malik et al., 2013). These conflicting 
findings between studies regarding the relationship between 
SSB intake and BMI could be attributed to different population 
characteristics including age, gender, physical activity, ethnicity, 
and genetic variation, or study design differences like exposure 
assessments and covariates adjustment in data analysis.

The genetic contribution to obesity has been extensively 
studied and several loci with significant effects have been 
identified (Qi and Cho, 2008; Speliotes et al., 2010; Brunkwall 
et al., 2016; Olsen et al., 2016). However, the genetic loci account 
for a small proportion of heritability, pointing to the role of 
gene × environment interactions in the variation in obesity 
phenotypes (Heianza and Qi, 2017). For example, the POUNDS 
Lost trial has identified heterogeneity in body fat composition 
and central adiposity response to SSB/fructose intake that 
includes interaction effects of rs838147 at fibroblast growth 
factor 21 (FGF21) gene with carbohydrate/fat consumption 
(Heianza et al., 2016). The authors found that rs838147 C allele 
carriers had a greater reduction in waist circumference, total 

FIGURE 1 | Differences in fructose vs. glucose metabolism. Key players are bolded.
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body fat, and trunk fat as compared to other allele carriers 
(Heianza et al., 2016).

Since individual SNPs may not explain a large proportion 
of the variance in a phenotype, some studies have investigated 
the cumulative effects of multiple SNPs using genetic risk scores 
(GRSs). A GRS is calculated by adding the number of alleles in 
significant SNPs, either unweighted or weighted by their effect 
sizes with the goal of improving risk prediction. In two large 
Swedish cohorts (Brunkwall et al., 2016), a GRS was computed 
using 30 genetic loci associated with BMI. They found that the 
association of BMI with SSB intake was stronger in individuals 
who had a higher GRS (i.e. genetically predisposed to obesity) than 
those with a lower GRS, which is consistent with another study in 
the US (Qi et al., 2012). Similarly, a Finnish study has shown that 
there was a stronger association between SSBs and weight gain 
in people with higher GRS for high BMI. Interestingly, this study 
also found that there was an attenuated association between SSBs 
and weight gain in people with a genetic predisposition to high 
waist circumference (Olsen et al., 2016). This may be explained 
by the differences in body fat distribution. BMI reflects the 
overall fatness and does not differentiate lean mass from fat mass, 
whereas waist circumference is more indicative of abdominal fat 
(Staiano et al., 2012). Overall, it is becoming evident that genetic 
differences in metabolism can have a substantial impact on 
energy balance.

TYPE 2 DIABETES

As of 2015, about 9% of Americans (30.3 million adults and children) 
had diabetes, of which 29 million had type 2 diabetes (T2D) (http://
www.diabetes.org/diabetes-basics/statistics/). Like many other 
complex diseases, diabetes is a multifactorial disease affected 
by genes, environment (mainly diet), and gene–environment 
interaction (Ortega et al., 2017). Fructose was initially thought to be 
an appropriate substitute for glucose in diabetic patients as it does 
not stimulate insulin secretion. However, chronic fructose feeding 
seems to cause insulin resistance and results in higher plasma 
insulin (Basciano et al., 2005; Teff et al., 2009; Tappy and Le, 2010). 
Similar results were obtained from a meta-analysis on intervention 
trials with respect to HbA1c when fructose intake was restricted 
to < 90 g/day in adults (Livesey and Taylor, 2008). Stanhope et al. 
(2009) found that fructose, but not glucose, supplementation for 
10 weeks increased fasting glucose and insulin concentrations and 
decreased insulin sensitivity. Additionally, a meta-analysis found 
that higher SSB intake by one serving per day was associated with 
a greater incidence of type 2 diabetes by 18% and 13% before and 
after adjustment for adiposity, respectively (Imamura et al., 2016). 
However, study results have been controversial with respect to 
effects of fructose on diabetes. A systematic review of 18 feeding 
trials found that the isocaloric exchange of fructose with other 
carbohydrates had no effect on circulating glucose and insulin 
concentrations (Cozma et al., 2012). Similar result was found in an 
intervention study in adults where adults were given either low-fat 
unsweetened milk or low-fat milk sweetened with fructose or low-
fat milk sweetened with glucose for 10 weeks (Lowndes et al., 2015).

The search for genes affecting T2D and/or related risk factors 
has extended for more than two decades. Key genes that have 
been reported to be associated with T2D-related phenotypes are 
transcription factor family 7, member 2 (TCF7L2), peroxisome 
proliferator-activated receptor gamma (PPARG), and potassium 
voltage-gated channel subfamily J, member 11 (KCNJ11) (Franks, 
2012). Candidate gene association studies have shown that SNPs 
in solute carrier family 2, member 2 (SLC2A2) are associated 
with beta-cell function, insulin action and higher risk of 
developing type 2 diabetes (Barroso et al., 2003; Laukkanen et al., 
2005; Willer et al., 2007). Since both glucose and fructose are 
transported by SLC2A2, both glucose homeostasis and fructose 
homeostasis could be affected by SLC2A2 polymorphisms, which 
may magnify the development of adverse health outcomes. 
Moderate to vigorous physical activity has been found to modify 
the association of SLC2A2 with glucose levels and the conversion 
from impaired glucose tolerance to type 2 diabetes (Kilpeläinen 
et al., 2007). Given the association of fibroblast growth factor 
21 (FGF21) variants with adiposity and glucose metabolism, a 
recent meta-analysis analyzed 11 genes in fructose metabolism 
and carbohydrate response element-binding protein (ChREBP)-
FGF21 pathways (McKeown et al., 2018). They found that SSB 
intake was associated with higher fasting glucose and insulin. 
However, they did not find any interaction effects of SNPs in 
these genes and SSB intake on glycemic traits (McKeown et al., 
2018). Instead, they found only a suggestive interaction of a SNP 
in the beta-Klotho (KLB) locus with SSB intake on fasting insulin 
in the discovery cohort that was not replicated in replication 
cohorts or meta-analysis (McKeown et al., 2018).

NAFLD AND DYSLIPIDEMIA

Fructose is unique, and distinct from glucose, in its effects with 
respect to NAFLD or dyslipidemia (Vos and Lavine, 2013). The 
rate of phosphorylation of fructose by ketohexokinase (KHK) is 10 
times higher than the phosphorylation of glucose by glucokinase 
and, in turn, fructose stimulates KHK and accelerates its own 
metabolism. Glucose does not increase de novo lipogenesis 
(DNL) at the same rate and magnitude of fructose. Fructose is 
also directly absorbed into portal vein and delivered to the liver 
without entering the systemic circulation, which exposes liver 
to a much higher fructose load than other tissues. In addition, 
fructose activates the lipogenic transcriptional factors, sterol 
regulatory element-binding protein 1c (SREBP1c) and ChREBP 
in the liver to promote DNL. Phosphorylation of fructose depletes 
liver ATP levels with a consequence of increased AMP, which is 
converted to urate via the purine degradation pathway. Urate has 
been shown to upregulate KHK and stimulate fat synthesis in the 
hepatocyte, pointing to an additional pathway through which 
fructose can induce liver lipogenesis (Stanhope, 2016; Ter Horst 
and Serlie, 2017; Chiu et al., 2018).

Fructose overconsumption stimulates lipogenesis, contributing to 
an increase in triglyceride levels and steatosis (Herman and Samuel, 
2016; Hannou et al., 2018). Numerous studies have demonstrated 
that diets high in simple sugars including fructose may result in 

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
http://www.diabetes.org/diabetes-basics/statistics/
http://www.diabetes.org/diabetes-basics/statistics/


Heterogeneous Responses to Dietary FructoseHou et al.

4 October 2019 | Volume 10 | Article 945Frontiers in Genetics | www.frontiersin.org

elevated fasting triglycerides (TGs) or hypertriglyceridemia, often 
accompanied by a decrease in high-density lipoprotein (HDL) 
cholesterol (Eckel et al., 2005; Bantle, 2009). A meta-analysis has 
also found a positive relationship between fructose intake and 
triglyceride levels (Livesey and Taylor, 2008). Increased hepatic TG 
synthesis, DNL in the liver and reduced peripheral TG clearance 
all have been attributed to increased fructose metabolism (Zhang 
et al., 2013a; Stanhope, 2016). A recent meta-analysis has reported 
that only hypercaloric but not isocaloric substitution of fructose for 
other carbohydrate sources, was associated with elevated fasting 
low-density lipoprotein (LDL) cholesterol and TGs or postprandial 
TGs (Zhang et al., 2013a). In contrast, a randomized controlled 
trial, which investigated the effect of 8, 18, and 30% of calories from 
SSBs, corresponding to 25, 50, and 90th percentile of population 
consumption of fructose, respectively (Lowndes et al., 2014), 
observed no change in LDL cholesterol and only minimal changes 
in body weight and circulating levels of HDL cholesterol and TGs. 
Thus, the effects of fructose on LDL cholesterol remain debatable. 
Clearly, more trials reflecting normally consumed levels of fructose-
containing sugars in the population are warranted. Moreover, 
several studies have shown that fructose affects lipogenesis in 
liver in a genotype-specific manner. Davis et al. (2010) found that 
Hispanic children with GG genotype of Patatin Like Phospholipase 
Domain Containing 3 (PNPLA3) SNP rs738409 were more inclined 
to accumulate fat in the liver with a diet of high sugar consumption 
or dietary carbohydrate intake as compared to children with CC or 
CG genotypes. Similarly, a group of subjects recruited based on their 
GG or CC genotypes of PNPLA3 SNP, rs738409, had differential 
responses to a low-carbohydrate hypocaloric diet. Although both 
GG and CC subjects had similar weight loss, GG subjects lost more 
hepatic fat (45%) than CC subjects (18%) (Sevastianova et al., 2011). 
In yet another study investigating the effects of sugars (oral glucose + 
fructose challenge) found that individuals with TT genotype of 
rs1260326 of glucokinase regulator (GCKR) demonstrated higher 
fractional DNL and a lower increase in fractional DNL as compared 
to CC subjects (Santoro et al., 2015).

HYPERTENSION

While high sugar intake in general is associated with development of 
obesity and hypertension, fructose appears to have an independent 
effect on pathogenesis of these diseases (Jalal et al., 2010). 
Epidemiological observations and experimental evidence from 
animal and human studies have reported an association between 
high fructose consumption and development of hypertension 
(Johnson et al., 2007; Brown et al., 2008; Madero et al., 2011). In US 
adolescents, SSB intake was positively associated with urate levels and 
blood pressure (Nguyen et al., 2009). Similarly, results were observed 
in adults where an increase of one serving of SSB was associated with 
an increase of ~2 mm Hg of systolic (SBP) and diastolic (DBP) blood 
pressure (Brown et al., 2011). A 1.8 mm Hg reduction in SBP and a  
1.1 mm Hg reduction in DBP were also observed in US adults, who 
were administered one less SSB per day over a period of 18 months 
(Chen et al., 2010). Another study found in 7 healthy young adults 
that ingestion of fructose increases BP to a greater extent than 
glucose or sucrose ingestion (Grasser et al., 2014). Animal studies 

investigating the mechanisms of fructose-induced hypertension 
have shown that high-fructose diets increase blood pressure 
through a state of salt overload via up-regulation of sodium and 
chloride transporters, activation of vasoconstrictors, inactivation 
of vasodilators, and over-stimulation of the sympathetic nervous 
system (Wong et al., 2016).

Investigations of the relationship between SSB intake and 
metabolic responses have also shown a statistically significant 
rise in blood pressure with fructose ingestion in healthy adults 
(Cai et al., 2018). Similar findings are also corroborated in 
fructose-fed animal studies (Nakagawa et al., 2006; Crescenzo 
et al., 2018). According to Johnson et al. (2007), fructose-induced 
hyperuricemia may contribute to endothelial dysfunction 
and increased risk of hypertension. However, other studies 
have not found increase in blood pressure or urate with added 
sugar consumption levels up to 30% of Cal/d which is at about 
the 95th percentile population consumption level of fructose 
(Rippe and Angelopolous, 2015). In another randomized 
trial, administration of fructose, sucrose, or HFCS at average 
population consumption level (50th percentile) did not raise 
clinically significant blood pressure or urate when compared 
with a glucose control (Angelopoulos et al., 2016). Thus, more 
studies are required to understand the effects of intake of simple 
sugars on hypertension at average population levels.

HYPERURICEMIA AND GOUT

Another distinction between fructose and glucose is that 
the metabolism of fructose results in increased serum urate 
concentration (Kang and Ha, 2014). This is mediated by the activity 
of KHK which is distinct from other hexokinases in its ability to 
induce transient adenosine triphosphate (ATP) depletion in the 
cell as a consequence of its rapid phosphorylation of fructose to 
fructose-1-phosphate. Since the majority of fructose metabolism 
occurs in the liver, this ATP depletion impacts other hepatic 
metabolic processes. The depletion in ATP leads to intracellular 
phosphate depletion and consequently a dramatic increase in 
AMP levels. This phenomenon stimulates catabolic activity of the 
enzyme AMP deaminase resulting in the ultimate degradation of 
AMP to urate. Urate is thus the end product of purine nucleotide 
catabolism and hyperuricemia is characterized by excess 
production and deposition of urate crystals leading to painful 
gout. Clinical trial conducted by Cox et al. (2012) also found 
that fructose-sweetened beverages (25% of energy requirement) 
for 10 weeks, compared to glucose-sweetened beverages, led to 
significant increases in 24-h uric acid. Excess consumption of 
HFCS can exacerbate this condition (Sanchez-Lozada et al., 2007; 
Jamnik et al., 2016; Kanbay et al., 2016). The relationship between 
fructose metabolism-mediated hyperuricemia and development 
of the metabolic syndrome features including obesity, visceral fat 
accumulation, fatty liver, and elevated insulin and leptin levels 
has been demonstrated in fructose-fed animals (Nakagawa et al., 
2006; Crescenzo et al., 2018). This fructose-induced metabolic 
syndrome was also shown to be reduced by treating animals with 
allopurinol, a urate lowering drug (Rippe and Angelopoulos, 
2016). Similar observations were reported in adult men by 
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Perez-Pozo et al. (2010) where increase in blood pressure due 
to high dose of fructose was attenuated by allopurinol. It is also 
important to note that cellular release of fructose metabolites 
like urate can result in detrimental histopathological changes in 
some organs under high fructose conditions (Zhang et al., 2017). 
For example, high serum urate has been reported to induce 
reactive oxygen species (ROS) production, lipid accumulation, 
autophagy, and inflammatory cytokine flux while reducing 
sensitivity to insulin and leptin in brain, adipose tissue, and 
kidney through the inflammatory response and endothelial 
dysfunction. In heart, these metabolites additionally trigger 
vascular vasodilation and hypertension (Li et  al., 2016). Urate 
is also known to increase intestinal permeability through 
induction of endotoxin translocation and disruption in bacterial 
composition (Kayhan et al., 2008). Additionally, urate is known 
to mediate urine sodium retention, dysregulate renal organic 
ion transporters, and nitric oxide production in chronic kidney 
disease (CKD) (Johnson et al., 2013).

SSB consumption is also associated with hyperuricemia-
associated disease, gout (Choi and Curhan, 2008; Choi et al., 
2008). The key urate transporter, solute carrier channel family 
2, member 9 (SLC2A9), transports both fructose and urate and 
fructose might interfere with urate transport (Witkowska et al., 
2012). Genetic variations of SLC2A9 may explain up to 1 to 2% of 
urate variation in males and 5 to 6% in females (Le et al., 2008). 
Genetic studies have found that SLC2A9 SNPs were strongly 
associated with urate levels in various populations and that there 
are gender-specific effects (Brandstätter et al., 2008; Dehghan 
et al., 2008; Wallace et al., 2008; Merriman, 2015; Voruganti et al., 
2013; Voruganti et al., 2014; Voruganti et  al., 2015; Merriman, 
2017). In our own studies, we found that minor alleles of key SNPs 
in SLC2A9 and ATP binding cassette subfamily G, member 2 
(ABCG2), another key urate transporter were associated with lower 
serum urate concentrations (Voruganti et al., 2013; Zhang et al., 
2013b; Voruganti et al., 2014; Voruganti et al., 2015). Clinical trials 
have also shown that acute serum urate and fractional excretion 
of urate responses to a fructose load were influenced by SLC2A9 
genotypes (Dalbeth et al., 2013). Since fructose plays a major role 
in the production and excretion of urate, studies have investigated 
the interaction effects of SSB/fructose with urate transporter 
SNPs on serum concentrations of urate. An observational study 
has also found a non-additive interaction effect between SSB 
consumption and SLC2A9 genotypes on gout risk, suggesting that 
simple sugar exposure from SSB consumption could affect the 
ability of SLC2A9 to transport urate (Batt et al., 2014). Clinical 
trials also found that SLC17A1 and ABCG2 genotype influence 
serum urate and fractional excretion of urate following a fructose 
load in two different populations, Europeans and New Zealand 
Maoris, respectively (Dalbeth et al., 2014a; Dalbeth et al., 2014b).

RARE GENETIC MUTATIONS AND 
RESPONSE TO FRUCTOSE INTAKE

The main disorders of fructose metabolism caused by rare 
genetic mutations are essential fructosuria, hereditary fructose 
intolerance, and fructose-1, 6-bisphosphatase deficiency.

Essential Fructosuria
Essential fructosuria is a harmless, asymptomatic disorder 
characterized by intermittent appearance of fructose in the 
urine. It is caused by a deficiency of KHK, the first enzyme of 
main fructose metabolism pathway, and the mode of inheritance 
is autosomal recessive. In a well-characterized family with 
fructosuria, two mutations in the KHK gene, G40R and A43T, 
were found to alter the same conserved region of the KHK protein 
(Bonthron et al., 1994). Ingestion of dietary fructose in people 
with essential fructosuria is followed by an increase in blood 
fructose concentration and excretion in the urine (Gitzelmann 
et al., 1989). Fructosuria depends on the time and amount of 
sucrose and fructose intake.

Hereditary Fructose Intolerance
Individuals with hereditary fructose intolerance (HFI) may 
develop severe liver and kidney failure and death with fructose 
exposure. It is caused by a deficiency of aldolase B, the second 
enzyme of the fructose pathway, resulting from homozygous 
or compound heterozygous mutations in the ALDOB gene 
(Gitzelmann et al., 1989; Esposito et al., 2002). Heterozygous 
carriers have about 50% of ALDOB activity, which is presumed 
to be sufficient for individuals to have normal fructose 
metabolism. However, studies have found an increase in urate 
concentration in response to modest fructose ingestion even 
though no significant differences in fructose metabolism 
were reported (Oberhaensli et al., 1987; Beosiger et al., 1994; 
Debray et al., 2018). The avoidance of fructose, sucrose and/or 
sorbitol from the diet is the major therapeutic step in HFI and 
most abnormalities disappear with a fructose-free diet except 
for hepatomegaly with unclear reasons (Odièvre et al., 1978; 
Gitzelmann et al., 1989).

Fructose-1, 6-Bisphosphatase Deficiency
Fructose-1, 6-bisphosphatase (FBP1) deficiency is characterized 
by impaired gluconeogenesis (Gitzelmann et al., 1989). It usually 
presents in the newborn period with profound metabolic acidosis 
and hypoglycemia. Episodes of hyperventilation, irritability, 
coma, and ketosis may occur later on (Baker and Winegrad, 
1970; Kikawa et al., 1997; Matsuura et al., 2002). It is caused 
by mutation in gene FBP1. There are also several cases with no 
mutations found within FBP1 and it is hypothesized that these 
patients have mutations within the FBP1 promoter region (Hers 
and Van Schaftingen, 1982; Gitzelmann et al., 1989). Adequate 
amounts of glucose should be given if this disorder is suspected 
and the course is usually benign with proper management 
(Gitzelmann et al., 1989).

Besides these three main fructose disorders, SLC2A2 mutations 
could result in impaired glucose and galactose utilization and SI 
defects can cause sucrase–isomaltase deficiency due to abnormal 
sucrose breakdown (Gray et al., 1976; Manz et al., 1987; Santer 
et  al., 1997). In addition to the rare genetic mutations that 
influence fructose metabolism, common polymorphisms can 
also affect inter-individual variability in fructose metabolism and 
related adverse health effects.
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DIFFERENTIAL EXPRESSION OF GENES 
IN RESPONSE TO DIETARY FRUCTOSE

Dietary fructose is also known to contribute to metabolic 
deterioration through its effects on expression of genes involved 
in the disease pathways. A transcriptomic analysis in health 
young offspring of T2D patients given a high fructose diet for 
7 days showed significant upregulation of genes implicated in 
energy and lipid metabolism (Seyssel et al., 2016). In another 
study of 5 healthy adults, transcriptomic analysis of skeletal 
muscle showed increased expression of stearoyl-CoA desaturase 
1 (SCD1) by 50% and reduced the expression of glucose 
transporter 4 (GLUT4) by 27% and acetyl-coA-carboxylase by 
48% indicating a trend towards development of insulin resistance 
(Le K. A., et  al., 2008). Similar results have been observed in 
animal studies in which dietary fructose causes perturbation 
in expression of genes associated with cardiometabolic diseases 
(Nagai et al., 2009; Meng et al., 2016; Stamatikos et al., 2016). 

In another study in rats, maternal fructose consumption was 
associated with detrimental effects on metabolism in offsprings, 
some of which may persist into adult life (Tain et al., 2016).

SUMMARY

In this review, we have described the metabolic effects of 
dietary fructose on risk factors of complex diseases and the 
heterogeneity in metabolic responses to dietary fructose. To 
a large extent, the differential response in metabolic disease 
risk factors to dietary fructose seems to depend on the 
genetic background. Individuals with specific SNPs and risk 
alleles are more susceptible to the adverse metabolic effects 
of fructose than those without them. Thus, to recommend 
a safe threshold of fructose consumption, it is necessary to 
understand the heterogeneity in metabolic responses. Limited 
studies investigated the interactions between gene and fructose 
(Table 1) of which majority are yet to be replicated.

TABLE 1 | Summary of fructose × gene interaction effects on cardiometabolic disease risk factors.

Disease/risk 
factor

Phenotype Study type Ethnicities N Diet/nutrient 
intake

SNP/GRS Outcome Reference

Obesity Weight gain 
and waist 
circumference 
(WC)

Cohort Caucasians 4765 Soft drinks GRS of 50 
SNPs

Genetic 
susceptibility 
to a high WC 
may attenuate 
the association 
between soft drink 
intake and weight 
gain, while genetic 
predisposition 
to high BMI 
may strengthen 
the association 
between soft drink 
intake and WC 
gain.

Olsen et al. (2016)

BMI Cohort Caucasians 33,097 SSB GRS of 
32 BMI 
associated-
SNPs

Genetic 
association with 
BMI was more 
pronounced in 
people with higher 
SSB intake. 

Qi et al. (2012)

Type 2 diabetes Fasting glucose 
and fasting insulin

Cohort Caucasians 34,748 SSB ChREBP-
FGF21 
pathway 
SNPs

No statistically 
significant 
interaction effects 
were found 
between SSB and 
ChREBP-FGF21 
pathway SNPs on 
fasting glucose 
and fasting insulin.

McKeown et al. 
(2018)

NAFLD/
Dyslipidemia

Liver fat Clinical trial Hispanics 153 Total sugar rs738409 
(PNPLA3)

GG carriers were 
more susceptible 
to hepatic fat 
accumulation 
when dietary 
sugar intake is 
high.

Davis et al. 
(2010)

(Continued)
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The concept of nutrigenetics is not entirely new, given the 
classic examples of phenylketonuria and lactase persistence. 
However, these two diseases are monogenic unlike most common 
diseases which are complex and involve multiple genes, gene–
gene, and gene–environment interactions. Recent advances 
in nutrigenetics have provided scientific evidence for effects 
of gene × nutrient interactions with respect to few risk factors 
of complex diseases. For example, many studies have shown 
the effects of interaction between methylenetetrahydrofolate 
reductase (MTHFR) SNP rs1801133 (C677T) and dietary 
folate to affect homocysteine levels with implications for CVD 
(Papoutsakis et  al., 2005; Nishio et al., 2008; Liew and Gupta, 
2015). With more studies that involve standardized measures of 

dietary intake, comprehensive set of validated genetic variants 
and “omics” approaches beyond genotyping, we will be able to 
achieve a greater understanding of the individual variability in 
metabolic responses to fructose.
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TABLE 1 | Continued

Disease/risk 
factor

Phenotype Study type Ethnicities N Diet/nutrient 
intake

SNP/GRS Outcome Reference

Liver fat Clinical trial Finnish 18 Hypocaloric low-
carbohydrate diet

rs738409 
(PNPLA3)

Weight loss 
is effective in 
decreasing liver 
fat by 45% in GG 
subjects and 18% 
in CC subjects.

Sevastianova et 
al. (2011)

Hyperuricemia/
Gout

Serum urate and 
gout

Case-control Caucasians/New 
Zealand Maoris/
Pacific Islanders

1,634 SSB rs6449173, 
rs11942223 
(SLC2A9) 

SLC2A9-mediated 
urate excretion 
was influenced by 
intake of SSB.

Batt et al. (2014)

Serum urate 
excretion and 
hyperuricaemic 
response

Clinical trial Caucasians/
Maoris/Pacific 
(Western 
Polynesian)

76 Fructose rs11942223 
(SLC2A9)

SLC2A9 variation 
affected urate 
excretion and 
hyperuricaemic 
response to 
fructose intake.

Dalbeth et al. 
(2013)
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