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Abstract 

The emergence and transmission of the mobile colistin resistance gene (mcr-1) threatened the extensive use of 
polymyxin antimicrobials. Accumulated evidence showed that the banning of colistin additive in livestock feed 
efficiently reduce mcr-1 prevalence, not only in animals but also in humans and environments. However, our previous 
study has revealed that a small proportion of Escherichia coli could continually carry chromosomally-encoded mcr-1. 
The chromosomally-encoded events, indicated the existence of stabilized heritage of mcr-1 and revealed a poten‑
tial threat in the antimicrobial stewardship interventions, are yet to be investigated. In this study, we systematically 
investigated the genetic basis of chromosomally-encoded mcr-1 in prevalence and potential mechanisms of lineage, 
plasmid, insertion sequence, and phage. Our results demonstrated that the emergence of chromosomally-encoded 
mcr-1 could originate from multiple mechanisms, but mainly derived through the recombination of ISApl1/Tn6330. 
We reported a specific transmission mechanism, which is a phage-like region without lysogenic components, could 
associate with the emergence and stabilization of chromosomally-encoded mcr-1. These results highlighted the 
potential origin and risks of chromosomally-encoded mcr-1, which could be a heritable repository and thrive again 
when confronted with new selective pressures. To the best of our knowledge, this is the first study to systematically 
reveal the genomic basis of chromosomally-encoded mcr-1, and report a specific transmission pattern involved in 
phage-like region. Overall, we demonstrate the origin mechanisms and risks of chromosomally-encoded mcr-1. It 
highlights the need of public attention on chromosome-encoded mcr-1 to prevent from its reemergence.
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Short report
The emergence and rapid dissemination of plasmid-
mediated mobile colistin resistance gene (mcr-1) have 
become a severe threat to public health [1]. The pre-
dominant carriers of mcr-1 were IncX4, IncI2, and 
IncHI2 plasmids, which are transferable and adaptive 

plasmid types with broad host range and contributed to 
the spread of mcr-1 among various sources and bacterial 
species [2–4]. Besides, recombination of transposons, 
especially Tn6330 (ISApl1-mcr-1-pap2-ISApl1), the pri-
mary vehicle for transmission of mcr-1, and phage-like 
sequences enable mcr-1 to transfer across plasmids and 
isolates. Such contributed factors facilitated high mcr-1 
prevalence in several sources around the world, pushing 
local governments in Europe, Brazil and China to pro-
hibit the use of colistin as growth promoter additive for 
livestock [5–8].
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Accumulated evidence showed that banning of colis-
tin in animal feed efficiently restricted mcr-1 prevalence, 
not only in animals but also in humans and the whole 
ecosystem in China [2–4]. However, our previous study 
showed that a low proportion of Escherichia coli carry-
ing chromosomally-encoded mcr-1 continually existed 
in the ecosystem [4], which was sporadically reported 
by other studies as well [9–11]. On account of the plas-
mid that could be lost under certain circumstances due 
to instability, the chromosomally-encoded events could 
stabilize the heritage of mcr-1, threatening the interven-
tion of colistin stewardship. In current study, we sys-
tematically investigate the epidemiological and genomic 
characterizations of E. coli population with chromosom-
ally-encoded mcr-1.

Based on our previous large-scale epidemiological 
study from 2016 to 2018 in Guangzhou, China [4], we 
identified 24 (3.5%) out of 688 mcr-1-positive E. coli iso-
lates with the chromosomally-encoded mcr-1 (Table  1). 
The prevalence of chromosomally-encoded mcr-1-posi-
tive E. coli was from 0 to 9.8% for each source and from 
2.2 to 4.8% for each epoch, indicating that the chromo-
somally-encoded mcr-1 was at a low prevalence state in 
different dimensions (Table  1). Additionally, the com-
parison of prevalence for chromosomally-encoded mcr-1 
between different niches or epochs showed no significant 
difference (Fisher’s exact test, p > 0.05 for each com-
parison), suggesting that the emergence of chromosom-
ally-encoded mcr-1 was sporadic without temporal or 
source-specific signals.

To systematically illustrate the genomic basis of chro-
mosomally-encoded mcr-1-positive E. coli population, 
we collected other 30 E. coli genomes with chromosom-
ally-encoded mcr-1 from published literature for subse-
quent analysis (Additional file  1: Table  S1). Through in 
silico multilocus sequence typing (MLST) assignment, 
32 different sequence types (STs) within 10 ST com-
plexes were determined (Fig.  1). The most common ST 

among chromosomally-encoded mcr-1-positive E. coli 
isolates was ST10 (n = 10, 18.5%), which is consistent 
with the main host for plasmid-mediated mcr-1 on E. 
coli species [3, 4, 12]. The phylogeny demonstrated two 
sequence clusters (SCs), except for two isolates which 
were distinct from two SCs as the outgroup (Fig. 1). The 
sources and serotypes of these genomes were scattered 
on the phylogeny, suggesting that the emergence of chro-
mosomally-encoded mcr-1 was random without source- 
or lineage-based specificity (Fig.  1). Since most of the 
chromosomally-encoded mcr-1-positive E. coli isolates 
have been identified in China (n = 40, 74.1%), which was 
attributed to the extensive screening of mcr-1 in China, 
the associations between locations and SCs was ambig-
uous (SC1 [11/16] vs SC2 [29/36], Fisher’s exact test, 
p = 0.49).

The mcr-1 gene was initially found on plasmids 
in Enterobacteriaceae and on a transposon Tn6330, 
prompting that the chromosomally-encoded mcr-1 could 
come from recombination of plasmid segments or trans-
position of Tn6330 [13–15]. Therefore, we investigated 
the plasmidome of 54 genomes to illustrate the potential 
origin of chromosomally-encoded mcr-1. We identified 
33 plasmid Inc types among all isolates, and the results 
showed that the most common Inc type was IncFIB(K) 
(45.8%, n = 22), followed by IncColRNAI (43.8%, n = 21), 
IncHI1 (33.3%, n = 16), IncX1 (31.3%, n = 15), IncFIB 
(AP001918) (27.1%, n = 13), and IncY (20.8%, n = 10). 
Remarkably, the common Inc types of mcr-1-harboring 
plasmids, such as IncX4, IncI2, IncHI2, and IncpO111 
[1, 3, 4, 12], were rarely detected among these isolates 
(Fig. 1), indicating that the chromosomally-encoded mcr-
1 may derive from ISApl1/Tn6330 through transposition, 
but not from the plasmid.

We subsequently analyzed the genetic context of mcr-
1 for each isolate to investigate the genetic model of 
chromosomally-encoded mcr-1, except seven isolates 
were excluded due to short mcr-1-harboring contigs. 

Table 1  Prevalence of chromosomally-encoded mcr-1 among 688 mcr-1-positive E. coli isolates

Data are % (n/N)

Sample source Epoch (Oct 1 to Dec 31) Total

2016 2017 2018

Pig 3.8% (3/78) 0% (0/63) 3.4% (2/58) 2.5% (5/199)

Healthy human carrier 9.8% (6/61) 4.0% (3/75) 0% (0/8) 6.3% (9/144)

Colonized patient 5.0% (3/60) 0% (0/41) 0% (0/9) 2.7% (3/110)

Infected patient 0% (0/27) 0% (0/17) 0% (0/11) 0% (0/55)

Food 7.4% (4/54) 3.9% (2/51) 0% (0/2) 5.6% (6/107)

Environment 0% (0/50) 4.5% (1/22) 0% (0/1) 1.4% (1/73)

Total 4.8% (16/330) 2.2% (6/269) 2.2% (2/89) 3.5% (24/688)
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We found that most of the mcr-1 genes (93.6%, 44/47) 
were flanked by ISApl1, comprising 24 isolates harbor-
ing upstream ISApl1 and 20 isolates carrying composite 
Tn6330, which complied with the hypothesis of trans-
position-mediated chromosome insertion.

By mapping the insertion site onto the chromosome 
of E. coli MG1655, we noted that the distribution of 
chromosomally-encoded mcr-1 insertion sites was 
sporadic (Fig. 2a). Thirty-seven clusters of mcr-1-har-
boring segments were generated based on sequence 
clustering analysis (Fig.  2a), which included three 
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Fig. 1  The phylogenetic tree and annotation of epidemiological and genomic features. The red colour range on the phylogenetic tree represents 
sequence cluster 1 (SC1), and the blue colour range represents SC2. The heatmap is showing the presence/absence of characters for antimicrobial 
resistance genes (ARGs) and plasmid Inc types

Fig. 2  The insertion site and genomic patterns of chromosomally-encoded mcr-1. a The insertion patterns mapped to the Escherichia coli str. 
K-12 substr. MG1655 (Accession: NC_000913.2). The ring colored with orange represents the genome sequence of Escherichia coli str. K-12 substr. 
MG1655. The number in the outmost represents the order for each pattern, which showed in b, c and Additional file 2: Figure S1. b The genetic 
structure of chromosomally-encoded mcr-1 patterns which included more than one isolate. c The genetic structure of chromosomally-encoded 
mcr-1 which located on an integrative element region and a plasmid-like region

(See figure on next page.)
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clusters involving more than one isolates (Fig. 2b) and 
34 clusters only containing a single isolate (Additional 
file 2: Figure S1). The most common genetic pattern of 
chromosomally-encoded mcr-1 (19.1%, 9/47) involves 
in an insertion segment in size of ~ 25.7  kb, contain-
ing an incomplete phage-like region (score = 40 for 
phage Vibrio 12B8 [NC_021073] by PHASTER) and 
a truncated Tn6330 (ISApl1-mcr-1-pap2), which was 
inserted into the E. coli genome between lysN and hicB 
(toxin-antitoxin system) loci (Fig. 2b). The incomplete 
phage-like region only contains head, tail, and fiber 
protein, and lacks some necessary functional com-
ponents (Fig.  2b), which seems unfunctional under 
current conditions. We used BLASTn to search this 
phage-like sequence in NCBI non-redundant nucleo-
tide database, and the results showed that only five 
sequences, which are located on E. coli chromosome, 
were identified with ≥ 60% coverage and ≥ 90% iden-
tity, indicating the correlation between chromo-
somally-encoded mcr-1 and such phage-like region. 
Collectively, we heuristically concluded that such a 
phage-like region could mediate the emergence of 
chromosomally-encoded mcr-1, and then the phage 
may lose the lysogenic components, stabilization the 
genetic inheritance of chromosomally-encoded mcr-
1. Additionally, the mcr-1 of two isolates showed the 
insertion of mcr-1 located on an integrative element 
region and a plasmid segment respectively, suggesting 
that chromosomally-encoded mcr-1 could be derived 
from the integration of the integrative region and plas-
mid segment (Fig. 2c).

In conclusion, our study comprehensively investi-
gated the genetic basis of chromosomally-encoded 
mcr-1 in prevalence and potential mechanisms of lin-
eage, plasmid, insertion sequence, and phage. Our 
results showed that chromosomally-encoded mcr-1 
was mainly derived from ISApl1 insertion in genomic 
locations sporadically. Notably, we reported a new 
transmission mechanism, a phage-like region without 
functional components, could associate with the emer-
gence and stabilization of chromosomally-encoded 
mcr-1. The chromosomally-encoded mcr-1 in current 
situations seems not a severe threat for public health, 
however, it could be a heritable repository and thrive 
again if the new selective pressure emerges, because 
the chromosome-mediated antimicrobial resistance 
genes (ARGs) might be conferred with genetic sustain-
ability. In-depth investigations are needed to illustrate 
the genomic and epidemiological dynamics of chromo-
somally-encoded mcr-1, which may be changed after 
the approval of colistin in human clinical therapeutics 
in China [16].

Literature searching
We searched PubMed using the terms of “mcr-1” 
[MeSH]/[All Fields] AND “chromosome” [MeSH]/[All 
Fields] AND “Escherichia coli” [MeSH]/[All Fields] for 
articles published before 1th October 2020, and iden-
tified 20 publications, including 30 available E. coli 
genomes with chromosome-mediated mcr-1 (Addi-
tional file 3: Figure S2).

Bioinformatic analysis
Antimicrobial resistance genes screening, plasmid 
incompatibility typing and serotype identification 
were performed by Center for Genomic Epidemiology 
(http://www.genom​icepi​demio​logy.org/). Multilocus 
sequence typing (MLST) was assigned using Enterobase 
(http://enter​obase​.warwi​ck.ac.uk/). Prophage predic-
tion was implemented by PHASTER [17]. The phylog-
eny was constructed using RAxML v8.2 with GTR+G 
model and 1000 bootstrap [18] based on core genome 
single-nucleotide polymorphisms (cgSNPs) produced 
by Roary v3.11.2 and snp-site v2.4.1 [19]. Population 
structure was assessed using cgSNPs with hierBAPS 
[20]. The chromosome map was drawn by BRIG v0.95 
and marked with insertion pattern manually by Easyfig 
v2.2.2 [21, 22]. The sequence clustering was performed 
by CD-HIT-EST [23].

Statistical analysis
The significance of prevalence variation of chromosom-
ally-encoded mcr-1 between niches and epochs were 
tested by Fisher’s exact test using Statistical Package for 
the Social Sciences (SPSS), version 20.0.
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org/10.1186/s1309​9-020-00393​-2.
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Additional file 2: Figure S1. The genetic structure of chromosomally-
encoded mcr-1 patterns which included only one isolate. The number for 
each pattern was identical to Fig. 2a.

Additional file 3: Figure S2. Flow diagram of the study selection process.
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