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Abstract

In this paper, we present our winning method for survival time prediction in the

2015 Prostate Cancer DREAM Challenge, a recent crowdsourced competition Invited Referees
focused on risk and survival time predictions for patients with metastatic 1 2 3
castration-resistant prostate cancer (NCRPC). We are interested in using a

patient's covariates to predict his or her time until death after initiating standard version 1 ? v '
therapy. We propose an iterative algorithm to multiply impute right-censored published report report report

survival times and use ensemble learning methods to characterize the 16 Nov 2016

dependence of these imputed survival times on possibly many covariates. We
show that by iterating over imputation and ensemble learning steps, we guide
imputation with patient covariates and, subsequently, optimize the accuracy of
survival time prediction. This method is generally applicable to time-to-event
prediction problems in the presence of right-censoring. We demonstrate the
proposed method's performance with training and validation results from the
DREAM Challenge and compare its accuracy with existing methods.
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1 Introduction

Predicting overall survival for cancer patients remains central to
studying new treatment options. Given a patient’s covariates and
preferences, doctors can anticipate prognosis and likely treat-
ment effects and make clinical recommendations accordingly. For
example, docetaxel is a standard treatment for patients with meta-
static prostate cancer who have developed resistance to conven-
tional androgen deprivation therapy. Using data from the docetaxel
arm of four recent phase III trials of experimental interventions,
the 2015 Prostate Cancer DREAM Challenge' aims to amass
community-based efforts to develop, apply, and validate prognostic
models for overall patient survival under this standard treatment.

A frequently encountered problem in survival analysis is data
censoring, in which exact survival times are not observed for all
patients. The most common type of censoring is right censoring, in
which the survival time is only observed up to a certain censoring
time; event times are not observed for individuals after censoring
occurs. Many state-of-the-art statistical and machine learning tools
cannot be directly applied to censored data while most standard
methodologies that do allow for censoring assume independence
between censoring and survival time; this assumption is frequently
inappropriate.

Among survival analysis methods that accommodate censoring,
many approaches focus on maximizing the partial likelihood, which
depends only on the order of events rather than the time at which
they occur. One of the most widely used methods, the proportional
hazards model (also known as the Cox regression model) param-
eterizes this partial likelihood through a baseline hazard function
and a multiplicative scaling term that depends on covariates™’.
Other methods in this class often seek different formulations of the
hazard function. For instance, proportional hazard models based on
artificial neural networks*’ and the gradient boosting proportional
hazard model® have been developed to model more complex forms
of the non-linear hazard function.

Alternate objective functions have also been developed for survival
analysis with censored data. Support vector regression techniques
can be adapted to survival time prediction by considering cen-
sored outcomes as interval targets and forming a new maximum
margin loss function directly with log-transformed survival time’.
In random survival forests (RSF)*’, a tree-based ensemble model
that relies on bagging, each survival tree split is determined by
maximizing the survival difference'’ between child nodes. More
recently, a gradient boosting-based model with direct optimization
of Harrell’s concordance index has been developed'':'”.

As an alternative to the above methods that directly accommodate
right-censored survival data, multiple imputation'’ methods treat
the censored observations as missing data. To overcome the obsta-
cle posed by censoring, these methods randomly generate missing
survival outcomes many times in order to permit complete-data
inferences. Taylor et al.(2002)"* propose two nonparametric impu-
tation methods that enable estimation of the survival distribution
for right-censored survival data without covariates. One approach,
risk set imputation (RSI), replaces an individual’s censored time
with a random draw of observed event times among those at risk
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(beyond the particular censoring time), starting from the smallest
and proceeding toward the largest censored time. With an infinite
number of imputations, RSI survi\//\al point e;,\stimates are equivalent
to the Kaplan-Meier estimator, E{Ss(?)} = S,,(f), where the expec-
tation is taken with respect to the distribution of all possible random
imputations. This imputation technique does not use the covariate
data which, if modeled jointly with survival times, can improve
accuracy of survival time predictions.

Conditional survival estimates are more informative for individual
surviva}\time predict/i\ons. Unbiased conditional survival estimation,
ie., E{Skrs(t; 0)} = Sg(t; x) ensures unbia%ed populatim}\—averaged
survival curve estimation, E{Szs (1)} = S, (t) = Ex [Skm (& X)],
while the reverse does not hold. Given a covariate-specific survival
distribution estimate, Pr(7, >1|X,), V¢ > 0, it remains open as to
how to predict an individual’s exact survival time (7;). Our method
approaches this problem from another perspective by directly
modeling survival times.

In this paper, we propose a new method for exact survival time pre-
diction that relies on strategically imputing censored time and, then,
building an ensemble prediction model based on the “complete”
dataset. In so doing, we are able to exploit the predictive power
of many state-of-the-art regression technologies. This imputation
algorithm first multiply imputes censored survival times in order
to construct a complete dataset without using covariates. Then, the
algorithm iterates between 1) predicting the completed survival
times using covariates and 2) adjusting the imputed value.

In the following, we first describe the data for training, testing, and
validating our proposed survival time prediction model and, then,
summarize the statistical methods that we used to construct the
ensemble model. We conclude by discussing potential directions
for future research and further improvements.

2 Data

Data from the control arm of four phase III clinical trials of
experimental therapies for mCRP were made available to par-
ticipants in the Prostate Cancer DREAM Challenge. The tri-
als are ASCENT-2 (conducted by Memorial Sloan Kettering
Cancer Center)"”, VENICE (Sanofi)'°, MAINSAIL (Celgene)"’,
and ENTHUSE-33 (AstraZeneca)'®. Training data include
survival outcomes (time of death or censored survival time) and
131 clinical covariates from the ASCENT-2, MAINSAIL, and
VENICE trials. Only covariate data were available for the
ENTHUSE-33 trial; survival outcomes were blinded for scoring.
Clinical covariates included patient demographics, vital signs, lab
results, medical history, medication use, and tumor measurements.

2.1 Data cleaning and summaries

2.1.1 Data consolidation: A primary dataset, referred to here as the
“CoreTable", was provided by the DREAM Challenge organizers
and summarized many relevant baseline covariates at patient level.
An additional five raw datasets containing more detailed baseline
and follow-up data were also provided. We summarized additional
baseline information from these secondary tables to augment the
CoreTable. For example, medications were grouped according to
drug type or use including opiod analgesics, anti-depressants, and
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vitamin supplements. Tumor data were also summarized across
disease sites including the number, average size, and maximum
size of lesions. Continuous lab values were log-transformed; non-
transformed values were also kept in the data. Covariate data
from secondary tables that duplicated or were highly correlated
with existing variables in the CoreTable were excluded from the
analysis.

The resulting dataset had 2070 observations and 256 covariates,
among which 78 covariates were continuous variables and 177
were categorical variables.

2.1.2 Splitting data for 10-fold cross-validation: In order to main-
tain consistent groupings for cross validation, we evenly split the
training data into ten groups by randomly generating a uniform
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10-fold index for each observation. As a result, we were able to
maintain the same hold-out datasets as we employed different pre-
diction methods. When generating the random 10-fold index, we
set a random number generation seed for reproducibility (DOI:
10.7303/syn4732982).

2.1.3 Multiply imputing covariates: Missingness was common in
the combined dataset. Figure 1 shows the missingness patterns for
covariates (columns) within each study (row block). As suggested
by the heat map, the missingness is largely study-dependent and
likely due to the differences in study protocol and data collection
procedure.

The ten continuous covariates with the most missingness are
listed in Table 1. Since a considerable proportion of categorical
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Figure 1. Heatmap of missing value patterns in training and validation data. Darker color indicates higher missing value percentage.

Table 1. Continuous variables with greatest
proportion of missing values.

Variable name

Free prostate specific antigen

Brain natriuretic peptide

Mean corpuscular volume
Mean corpuscular hemoglobin

Urine protein creatinine ratio

Creatinine (urine)
Chloride
Bicarbonate

Uric acid

Creatinine clearance

Percent missing
78.4
78.3
77.6
77.5
76.1
751
74.6
74.6
74.6
72.9
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variables were created by categorizing continuous variables (for
e.g., labeling lab values as low, normal, or high), these categorical
variables have a rate of missingness similar to their continuous
counterparts. Other categorical covariates with a large proportion
of missingness include a categorization of baseline weight and
height (77.6% and 77.3% missing, respectively) and an indicator
for a history of smoking (77.1% missing).

Missing covariate data for the combined dataset was then imputed
using multiple imputation”® via the fastpmm function in the R
package mice (R 3.2.1). Multiple imputation was performed
using covariate data from both training (ASCENT-2, VENICE,
MAINSAIL) and validation (ENTHUSE-33) studies and was repeated
to obtain five completed datasets.

2.1.4 Covariate standardization: We standardized continuous
data by applying the Box-Cox transformation (with power
parameter 0.2) to all continuous covariates, followed by mean-
variance standardization.

2.1.5 Survival summaries: Figure [X of the main paper] shows
the the Kaplan-Meier estimates of survival curves along with the
95% confidence band for each of the three studies in the DREAM
Challenge training data. The three studies have similar survival
curves up to 17 months from baseline.

3 Methods

In this section, we describe an iterative imputation procedure that
can be used in tandem with ensemble learning methods to predict
survival times given possibly many covariates. This method con-
stitutes our wining algorithm for the Prostate Cancer DREAM
Challenge’s sub-challenge 1b for predicting exact survival times.
Throughout our presentation, we use integrated area under the
curve (IAUC) to evaluate predictive accuracy and select optimal
values for tuning parameters'”.

Let (¥, A) be the pair of observed or censored survival times and the
censoring indicator for patienti=1, ... ,N. A, = 1 if ¥ is the observed
survival time and O if censored. Let X be the vector of covariates.
We describe our prediction algorithm below in three steps.

I. Initial survival time imputation without covariates

For individuals with censored survival times—I, = {i | A, =
0}—add independent exponential random numbers to the

F1000Research 2016, 5:2672 Last updated: 20 FEB 2017

right-censored survival times, i.e., Y{.,= Y, + E, where E,
~Exp(a), for i € 1. For individuals with observed survival
times, no imputation is necessary; keep the observed Y,.

Note that « is a tuning parameter for this initial step (as well as
throughout the prediction algorithm). We select a value for a with
a grid search that seeks to maximize the 10-fold cross-validated
iAUC. In the initial imputation step, the value of « is set to be
study-specific but constant across covariates within a study
(given exploratory analysis showing heterogeneity across trials).
As a result, the values of a chosen are: 400 (ASCENT-2), 420
(MAINSAIL), and 460 (VENICE).

II. Adjust imputed survival times using covariates

We then use covariates to build a predictive model for
the completed survival times. Specifically, we iterate
between two processes: training an ensemble prediction
model (step Ila) and adjusting the survival times
(step IIb) for iterations k=1, ... , K.

IIa) Select features and train prediction models:

Feature selection Feature selection proceeds using the
following three models to identify salient predictors of
(log-transformed) survival time: regularized random
forest (RRF) with two predictors sampled for splitting
at each node (regularization parameter = 0.95); support
vector machine (SVM) regression with radial kernel
(bandwidth = 0.02, center = 0.15); and, partial least
squares (PLS) regression with two components.

Each model returns a vector of variable importance (VI),
which is calculated by R package caret and within
the range of 0 — 100. VI vectors are averaged across the
three models to obtain a mean VI vector. We then choose
"important variables", which we define as those with a
final VI greater than tuning parameter ¥ = 24 (chosen to
maximize cross-validated iAUC.) Covariates with the
highest VI are discussed in section 4.4

Ensemble model training and predicting Using selected
features, we train five prediction models (listed in
Table 2). Tuning parameters for each model were chosen
by 10-fold cross-validation to maximize iAUC.

Table 2. Models for survival time prediction at imputation step Il.

Model name Tuning parameter Tuned value at lla Tuned value at lll R package
Regularized random forest  mtry, coefReg 2,09 2,09 RRF

SVM-RBF kernel o C 0.001, 0.1 0.002, 0.3 e1071

Quantile random forest mtry 6 6 quantregForest
SVM-Polynomial kernel degree, scale, C 3, 0.0005, 0.15 5, 0.0005, 0.3 e1071

Partial least square ncomp 2 2 pls
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Trained prediction models are then used to obtain
out-of-sample predictions for survival time. In the case
of 10-fold cross-validation, covariate and outcome data
on 90% of patients are used for training prediction models
which then, in turn, provide out-of-sample survival
time predictions for the remaining 10% of patients.

IIb) Adjust imputed survival times:

For each censored individual (A, = 0), predicted survival
times from each prediction model (Table 2) are averaged
to Y5, where k is the iteration number for step II. We
adjust predicted survival times as follows: ¥*) =y®) if

i,new iadj

Y > Y otherwise, Y0 =Y + E, where EV ~ Exp(a*
= 80). (Here, a* is a tuning parameter whose value is
determined by a grid search to maximize the 10-fold
cross-validated iAUC.) This adjustment serves to increase
under-estimated imputed values to a random quantity

greater than the observed censoring time.

Using these imputed survival times, ensemble survival
time prediction (Ila) is repeated. The training and
adjustment process is repeated until the incremental
increase in cross-validated iAUC is smaller than a pre-set
threshold. In our application, we used a relatively large
threshold (0.2) to avoid over-fitting, and the algorithm
converges after just three iterations.

More generally, steps Ila and IIb are repeated several
times, say K, in order to obtain the adjusted survival
imputations {Y " el } produced by the last iteration.

inew?

Original Survival Data
Y;=min(T;, G, A=1(T; <C)

Step I: Initial Imputation
YO, ew=Y; + [A-1XE;
E; ~ Exp(a), k=1
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We combine these values with the observed (uncensored)
survival times and use them as the complete outcome
vector for constructing a final prediction model.

. Final predictions for patients in the validation dataset

Individual model. We trained five prediction models
(Table 2) using log-transformed Yl(nk;w and Box-Cox
transformed features selected in the final (Kth) iteration
of step Ila above. We chose tuning parameters in order to
maximize 10-fold cross-validated iAUC; tuned parameter
values are listed in Table 2. In this application, we used the
same five modeling approaches for both the imputation
and prediction steps, though using the same models is not
necessary.

Super learner. Because we have I = 5 multiply-imputed
covariate datasets (see Data cleaning), the prediction
procedure described above can be used to produce distinct
sets of survival time predictions for all combinations of
I =15 datasets and M = 5 survival time prediction models.
For each prediction model, we average the resulting
out-of-sample (10-fold) predictions for each of the
I =5 imputed datasets. Finally, we fit a LASSO regression
model with log-transformed survival time as the outcome
to determine the optimal weights for combining
predicted survival times from the M = 5 models. The
final output is a predicted survival time based on patient
covariate data.

This algorithm is summarized in Figure 2.

Step lI: Adjust Imputation using Covariates

II(a) | 1. Feature selection

2. Train prediction model Y®D,__

~ X for imputation
3. Make out-of-sample predictions: Y&

k=k+1

l

11(b) Adjust imputed survival times:
if A=0& Y“‘)i,adj >C;:
Y(k)i new Y(k)i adj

else if A;=0 & Y0, < C;,

else
yh, -y,

i,new i

YO, ey =Y T E, B ~ Exp(a”)

NO

Check for convergence.

Output Y®

Step llI:
Train final predictive model Y®_ . ~X.

Figure 2. Summary of the imputation and prediction algorithm.
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4 Results

4.1 The behavior of iterative imputations

Figure 3 displays Kaplan-Meier (KM) estimates for observed
survival data and several stages of survival time prediction. The
black curve shows the KM estimate for the observed survival data
assuming independent censoring. The density function for cen-
soring is given by the dashed black line and indicates that most
censoring occurred between six and 20 months.

The red, green, and blue curves show the KM estimates for sur-
vival predictions after initial random imputation (step I) and k
=1 and k = 2 iterations of the covariate-based, adjusted survival
time predictions (step II), respectively. All imputed survival time
curves closely track the observed survival curve until 16 months
follow-up, at which time survival decreases more rapidly than
expected under the assumption of independent censoring.

We note that it is possible for survival estimates after initial
imputation (red curve) to lie above or below the observed KM
curve (black) depending on larger or smaller choices of «a,
respectively. Here, we see that cross-validation favors larger val-
ues of a suggesting that censored individuals likely experience
shorter-than-average survival after censoring. Survival estimates
of model-based predictions (green and blue curves) also sug-
gest that patients censored earlier are expected to have an event
around 13-23 months. The green and the blue curves are very
similar, indicating that the imputation algorithm converges very
quickly.
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The left hand panel of Figure 4 shows a plot of the observed times
against the out-of-sample predicted times Y,(;Zg made in the first
predictive iteration (k=1) in step Ila, prior to adjusting prediction
in step IIb. By the imputation algorithm we proposed, we keep a
patient’s survival time ¥, =Y if an event was observed and cen-
soring did not occur(A, =1)and impute a patient’s survival time by
Y, =Y+ Eif Y ;<Y and for patients with censored survival time
(A, = 0). The right hand plot shows that, after multiple iterations
of this algorithm (k=3), the final imputed values show greater risk
stratification for censored patients (blue circles). Because we use
observed event times instead of predicted event times for uncen-
sored patients (red diamonds), these observations lie directly on the
line of equality (black dashed line).

The left panel in Figure 4 also indicates regression to the mean,
i.e., the initial imputations tend to overestimate earlier survival
times (¥, < 16 months) and underestimate later survival times (Y, >
16 months), resulting in a horizontal cloud of points. Our impu-
tation algorithm deals with the underestimation at later survival
times by forcing the imputed times to be larger than the observed
censoring time, i.e., by the Y, =Y + E, step. On the other hand,
overestimation at earlier survival times is controlled by tuning the
rate parameters of the exponential distributions (a,a*) in steps I
and IIb. The right panel of Figure 3 shows that the patients with
earlier censoring times (circles toward the lower left) have larger
differences between the imputed survival time and the observed
censoring time (y — x) in comparison to patients who survive
longer (circles toward the upper right).
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Figure 3. Kaplan-Meier curves of observed and imputed survival times.
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4.2 Survival time prediction

Although iAUC was used for evaluating the prediction performance
in the training stage to make better use of the censored data, root
mean squared error (RMSE) based on uncensored observations is
used as the scoring metric for survival time prediction accuracy.
Based on the training set, the 10-fold cross-validated RMSE of our
ensemble predictive model is 246.5. (In the following section, we
compare our method with other benchmarks with respect to the
cross-validated RMSE using the same data-splitting index.)

In the final scoring round of the DREAM Challenge, our model
was trained on the entire training set and then tested on the vali-
dation dataset from an independent clinical trial (ENTHUSE-33).
Our final ensemble predictive model yielded a RMSE of 198.1 and
was one of the top performing algorithms. Our predictions ranked
sixth overall in accuracy are were not significantly different from
the most accurate survival time predictions (Bayes factor > 3)
[placeholder for main challenge paper].

4.3 Comparison with benchmark prediction methods

We also compared RMSE of the proposed method to that of an oft-
the-shelf method: survival random forest (SRF). Ishwaran et al.
(2008)* propose a popular SRF method which outputs ensemble
cumulative hazard function pre/\dictions A(t | x,), enabling one to
specify the survival function S(f) = exp{—A(r | x;)} for subject
i=1,...,n at time t. We predicted the exact survival time using
the g% quantile of the estimated survival curve with ¢ common to
all subjects and selected by 10-fold cross-validation to minimize
RMSE. Survival random forest is distinguished from the usual

¢ Observed survival times

Observed Survival Time (months)

= = =Perfect Agreement

random forest methods by the criterion for choosing and splitting
a node. In our implementation, we used a log-rank splitting rule
that splits nodes by maximizing the log-rank test statistic'**’. We
increased the speed of training using a randomized log-rank split-
ting rule meaning that, at each splitting step of growing a tree, we
randomly split the candidate covariates and choose the covariate
and split point pair that maximize the log-rank statistic. This rand-
omized scheme is recommended to avoid overly favoring splitting
continuous covariates when both continuous and categorical vari-
ables exist.

We generated 1, 000 bootstrap samples from the original training
data (compiled and completed as detailed in section 2). We grew
one survival tree for each bootstrap sample. The survival random
forest produces the final ensemble survival function prediction
by averaging over predictions obtained from these trees. To split
a node in each tree, we tried a maximum of 10 random splits to
determine which variable to split and where to split. Averaged over
the five imputed datasets, we obtained a 10-fold cross-validated
RMSE 344.8 with g% = 37%. Thus, our proposed algorithm per-
formed considerably better (RMSE = 246.5).

4.4 Predictors of survival time

Via ensemble prediction modeling, we also identified the most
salient predictors of survival time in this population. The strongest
predictors of survival time included lab values indicating overall
health and cancer activity and other measures of overall health. For
example, alkaline phosphate (ALP)- the most predictive covariate—
is typically elevated in individuals with metastatic disease. ALP
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was included as covariate in the Halabi et al. (2014) benchmark
model”'. Other lab measurements in the benchmark model-lactase
dehydrogenase (LDH), hemoglobin (HB), prostate specific antigen
(PSA), and albumin (ALB)-were also among the most predic-
tive covariates in our model. The Eastern Cooperative Oncology
Group (ECOG) performance status (a standard measure of daily
living abilities) and use of opiate medication were also included
in the Halabi et al. (2014) nomogram and were found to be highly
predictive of survival in our approach. Disease site, the remaining
predictor in the benchmark model, was not among the strongest
predictors of survival in our model.

5 Discussion

In this paper, we have introduced a survival time prediction method
based on multiple imputation and ensemble learning. It is designed
for right-censored survival data with many covariates. The proposed
method operates by iterating through two stages: iterative impu-
tation of right-censored outcomes and building an ensemble pre-
dictive model of survival time. Compared to the existing methods
for survival time prediction, the second phase of this algorithm is
particularly effective in leveraging covariates to guide imputation
of the censored survival times. By imputation, we have transformed
the difficult problem of time-to-event prediction with censoring to
a standard predictive regression problem. The results of the Pros-
tate Cancer DREAM Challenge 1b have empirically validated the
predictive performance of our algorithm. Further research is
needed to explore theoretical characteristics of the proposed algo-
rithm. Conceptually, the iterative imputation algorithm achieves
strong predictive performance by first generating model-based impu-
tations (which makes use of the covariate information) and, then,
correcting survival time predictions based on observed outcomes.

For future work, we will compare our method with other meth-
ods such as risk set imputation (RSI)"* and recursively imputed
survival trees (RIST)” using more extensive simulation studies.
We will also seek to establish the MSE optimality behind this
algorithm and further improve its imputation and prediction per-
formance. In particular, we will further study the impact of the
initialization strategy in step I on the final predictive accuracy to
explore whether using model-based initialization (such as RIST)
performs better than the current cross-validation-based random ini-
tialization. Finally, obtaining reliable confidence intervals around
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predicted survival time is also crucial for this method to be more
clinically useful.

5.1 Data availability

The Challenge datasets can be accessed at: https://www.project-
datasphere.org/projectdatasphere/html/pcde  Challenge  docu-
mentation, including the detailed description of the Challenge
design, overall results, scoring scripts, and the clinical trials data
dictionary can be found at: https://www.synapse.org/ProstateCan-
cerChallenge The code and documentation underlying the method
presented in this paper can be found at: http://dx.doi.org/10.7303/
syn47329823!
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This article provides a clear summary of how the team's prognostic model was created. Biomedical
prognostic models are frequently built with survival data, but in practice often do not fully address or utilize
the complexity of the data (e.g. dichotomizing the time-to-event outcome out of convenience rather than
scientific motivation), so it was encouraging to read about a method thoughtfully developed for survival
data, and a competition that embraces performance measures tailored for survival data. We have no
major comments but will provide some minor comments for the authors' consideration.

Other methods

The authors' method involves an initial iterative imputation method that is attractive in that it opens up a
richer suite of continuous outcome models for use with the completed data. However, as the authors
mention in their discussion, the theoretical aspects of this imputation procedure are unclear. To that end,
we are curious if the authors considered existing methods that try to formally account for censoring while
retaining loss functions that reduce to "typical” loss functions when censoring is absent (e.qg.
mean-squared error). For example, Steingrimsson et al (2016) ' and Molinaro et al (2004)? study random
forest models with loss functions that 1) can accommodate censored outcomes; and 2) reduce to squared
error loss when censoring is absent.

Covariate imputation

The authors provided a useful graphic summarizing the covariate missingness. Given that there was a
nontrivial amount of missingness, a sensitivity analysis might be helpful to ensure that the results are not
qualitatively different when perturbing certain aspects of the imputation procedure. Alternatively, for each
of the most salient predictors, examining what proportion of observations is missing for that variable may
also be useful.

Requests for clarification

®  The authors mentioned that three datasets were used for training (ASCENT-2, MAINSAIL, and
VENICE) and a fourth dataset was used for scoring (ENTHUSE-33). However, in the "data
cleaning" section and the "super learner" section there is also reference to five different datasets. It
was unclear how to reconcile the two descriptions.

® |n Step | of the Methods section, how do you calculate iAUC in the initial cross-validation step to
determine \alpha, where no covariates are used? Don't you need a score - presumably derived
from the covariates - to calculate iIAUC?
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Choice of IAUC and other performance measures by the DREAM challenge organizers

We commend the competition organizers for embracing prognostic performance measures that are
specifically tailored for survival data, such as the concordance index and cumulative AUC. However, we
are puzzled by the decision to use iIAUC as the primary performance measure.

iAUC is not a standard performance measure and, to our knowledge, is not documented in the literature.
While this would not necessarily preclude iAUC from being used as the primary performance measure, it
would be helpful to understand the justification for its choice. There does not appear to be an immediately
obvious interpretation for iAUC. According to the DREAM website, iAUC is the average of the different
cumulative AUC values over all times t. While the cumulative AUC for a single t is easily interpretable, it is
unclear what the interpretive value of iIAUC is.

Note that Heagerty and Zheng (2005; Section 2.2.1)° state: "[Cumulative AUC is] most appropriate when

a specific time t' (or a small collection of times t'_1,t'_2, ..., t"_m) is important and scientific interest lies in
discriminating between subjects who die prior to a given time t' and those that survive beyond t'."

If one were unable to choose a specific time or small collection of times, the concordance index offers a
reasonable "global in time" alternative. Incidentally, Heagerty and Zheng (2005; Section 2.4)° note that
when the incident/dynamic AUC (related to but different than the cumulative AUC) is averaged over time
(and subject to a specific time-weighting), the result is the concordance index.

Typos
® Section 3, Paragraph 1, Sentence 2: "winning" is misspelled.
® Section 4.4, Sentence 4: "...included as a covariate..."
® Section 4.2, last sentence: "...overall in accuracy and were not..."
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The paper is nicely written, and the method is clearly described.
I have only one comment regarding the initial imputation step: why an exponential distribution was

chosen? Does that affect the results? Can the authors provide a brief discussion on this choice? In the
literature, both RSl and RIST uses a model-based imputation value.

I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

Competing Interests: No competing interests were disclosed.
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Devin C. Koestler
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In the manuscript entitled, “Predicting survival time for metastatic castration resistant prostate cancer: an
iterative imputation approach” Deng and colleagues describe a generalizable algorithm for iteratively
imputing event-times for censored observations and apply their methodology to data collected as part of
the Prostate Cancer DREAM Challenge. The approach itself is very interesting, and its application within
an ensemble-based framework as a means toward informing survival predictions is quite creative. The
Introduction provides a nice appraisal of existing methodologies and their limitations, and in the opinion of
this reviewer, adequately motivates methodology being proposed. Overall, the manuscript is well written
and likely to be of interest to the prediction and machine learning communities. Some suggestions for
improvement are given in the space that follows:

Major comments:

1. Augment the Results section with a table or figure that captures the results generated in the
training phase of the authors algorithm, i.e., scatterplot of observed versus predicted survival time
based on the 10-fold cross validation procedure or a Bland-Altman plot. It would also be useful to
know what features were selected to build the final prediction model that was applied to the
validation data set. Lastly, what were the optimal weights for combining the predicted survival
times from the M = 5 models?

Minor comments:
1. Abstract - “...a recent crowd-sourced competition focused on risk and survival time predictions for
patients with...”. |1 would be careful about the use of the term “risk” here since the competition did
not consist of predicting one’s risk of mMCRPC, but rather “risk of early treatment discontinuation”.

2. Abstract - “We are interested in using a patient’s covariates to predict his or her time until death
after initiating standard therapy”. | would recommend removing “her” since the study population is
men diagnosed with mCRPC. Alternatively, you can just replace “his or her” with “their”.

3. Introduction — “Many state-of-the-art statistical and machine learning tools cannot be directly
applied to censored data while most standard methodologies that do allow for censoring assume
independence between censoring and survival time; this assumption is frequently inappropriate”. It
would be helpful to include reference(s) to support the statement that the assumption of
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independence of censoring and survival time is inappropriate. In addition, describing the potential
inappropriateness of this assumption (and its consequences) in the context of the data set(s)
considered here would help further reinforce this point.

4. Results — “Our predictions ranked sixth overall in accuracy and were not significantly different from
the most accurate survival time predictions (Bayes factor > 3)”. My suggestion would be to replace
the last part of this sentence with, “...not significantly different from the model that achieved the
most accurate survival time predictions (Bayes Factor < 3 compared to the top-ranked model in
this subchallenge).

5. Data 2.1.5 Survival Summaries — Might be helpful if you could briefly summarize the censoring
rates and median survival times across the 4 clinical trial data sets.

6. Methods - “We then use covariates to build a predictive model for the completed survival times”. |
am struggling with the term “completed” here. Do you mean the “imputed” survival times? Perhaps
a better way to say this is, “We then used covariates to build a prediction model using the imputed
survival times for censored subjects”.

7. Methods 11b) Adjust imputed survival times — For the purposes of clarity it would be helpful to
denote the predicted survival times with hat notation.

8. Results — What are the units for the RMSE? Days? In other words, the average difference between
observed and predicted survival time based on your methodology was 198.1 days (in the
independent ENTHUSE 33 data set)?

I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however | have significant reservations, as outlined
above.

Competing Interests: | was also a competitor in the Prostate Cancer DREAM Challenge, however, |
have made every attempt to provide a fair and balanced review of the manuscript under question.
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