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Abstract 
Diabetic retinopathy (DR) is a serious disease that may cause vision loss unawares without any alarm. Therefore, it is essential 
to scan and audit the DR progress continuously. In this respect, deep learning techniques achieved great success in medical 
image analysis. Deep convolution neural network (CNN) architectures are widely used in multi-label (ML) classification. 
It helps in diagnosing normal and various DR grades: mild, moderate, and severe non-proliferative DR (NPDR) and prolif-
erative DR (PDR). DR grades are formulated by appearing multiple DR lesions simultaneously on the color retinal fundus 
images. Many lesion types have various features that are difficult to segment and distinguished by utilizing conventional 
and hand-crafted methods. Therefore, the practical solution is to utilize an effective CNN model. In this paper, we present a 
novel hybrid, deep learning technique, which is called E-DenseNet. We integrated EyeNet and DenseNet models based on 
transfer learning. We customized the traditional EyeNet by inserting the dense blocks and optimized the resulting hybrid 
E-DensNet model’s hyperparameters. The proposed system based on the E-DenseNet model can accurately diagnose healthy 
and different DR grades from various small and large ML color fundus images. We trained and tested our model on four 
different datasets that were published from 2006 to 2019. The proposed system achieved an average accuracy (ACC), sen-
sitivity (SEN), specificity (SPE), Dice similarity coefficient (DSC), the quadratic Kappa score (QKS), and the calculation 
time (T) in minutes (m) equal 91.2% , 96% , 69% , 92.45% , 0.883, and 3.5m respectively. The experiments show promising 
results as compared with other systems.

Keywords Diabetic retinopathy (DR) · Convolution neural network (CNN) · Transfer learning · EyeNet · DenseNet · 
E-DenseNet

1 Introduction

The human eye anatomy includes iris, cornea, pupil, lens, 
vitreous, macula, retina, and optic nerve. The cornea is the 
front of the eye and transfers light to it. Iris and its dark 
aperture pupil regulate the amount of entered light. The lens 
is the transparent structure that converges the light rays on 
the retina. The retina is the light-sensitive tissue of the eye’s 
back surface. It creates electrical impulses that cross through 
the optic nerve (ON) to the brain. Therefore, we can define 
ON as the connection between the eye and the brain’s visual 
cortex. Vitreous fills the middle of the eye [1]. Following the 
previous anatomy, the retina includes the macula, optic disc 

(OD), blood vessels (arteries and veins) (BV), and fovea. 
The macula is a small area in the retina that surrounds the 
fovea and includes special light-sensitive cells. These cells 
give the human the capability to see the details clearly. From 
the retina’s importance in the human eye, we concentrated 
on the most famous disease, which is diabetic retinopathy 
(DR). DR is the most complication of diabetes that is result-
ing from the elevation of the glucose in the blood. DR may 
damage the retina and cause blindness suddenly. It is a pro-
gressive disease that needs early detection and in-time treat-
ment. The studies conducted from 2012 to 2020 estimate 
that, by 2040, diabetes will affect about 642 million adults 
overall the world. To that end, DR will affect one from every 
three people with diabetes [2, 3].

There are several lesions or signs of the DR, such as 
hemorrhages (HM), microaneurysms (MA), exudates (EX), 
venous reduplication (VR), neovascularization (NV), and 
venous loops (VL). The appearance of at least one of these 
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lesions in the retina represents one of the DR grade [4]. In 
early grades, no symptoms are noted on the patient. On the 
other hand, in the progressive grades, patients may suffer 
from blurred vision, black areas in visions, floaters, distor-
tion, progressive visual severity loss, and sudden blindness. 
DR can be categorized into non-proliferative DR (NPDR) 
and proliferative DR (PDR). NPDR includes mild, moderate, 
and severe grades. Severe NPDR leads to the PDR category.

MA is the earliest clinical DR sign. It appears as small 
red dots on the BV. It may be increased in size in larger 
BVs. It appears in the retina’s superficial layers. Besides, 
it is accumulated by fibrin and red blood cell in its lumen. 
Another variation is the laceration. It produces blot/flame 
hemorrhages (B-HM and F-HM). Dot (D-HM) and B-HM 
occur as MA membranes in the retina’s deeper layers, such 
as the inner nuclear and outer plexiform. F-HM is superficial 
HM while B-HM is deeper [5]. HM appear similar to MA 
if they are small and vice versa. Moreover, EX is a vital DR 
sign and maybe soft (S-EX) or hard (H-EX). The occurrence 
of these lesions forms the different DR grades. The mild 
grade is diagnosed by appearing a little small MA, but HM’s 
occurrence with MA and soft EX refers to moderate grade. 
Increasing the number and regions of the aforementioned 
signs and/or H-EX leads to severe grade. Moreover, the 
closer the EX to the macula determines the grade of macu-
lopathy and macular edema (ME). PDR grade means the 
growth of a new weak BV, which is called NV. In this grade, 
fragile and weak new BV forms on the retina’s surface. They 
result in blood leakage, which leads to blindness. Figure 1 
shows most DR lesions’ appearance in the PDR case. Fundus 
scans are used widely in DR screening. It reports the retina 
abnormalities continuously. This modality includes various 
types, stereoscopic, and wide-field [6, 7]. We prefer to utilize 
it because it is inexpensive and can monitor DR progression 
over time [8].

Another critical thing to remember is that deep learn-
ing (DL), which has a vital critical role in diagnosing DR 
grades especially, convolution neural networks (CNN) that 
achieve great prosperity in many real-life applications, such 
as [4, 9, 10]. In general, human learners have inherent meth-
ods to transfer knowledge between tasks, especially if these 
tasks are correlated. The relevant knowledge from the pre-
vious learning experiences is recognized and applied while 
encountering new tasks. The more related new task is to the 
previous experience, the more easily it can be mastered [11]. 
Therefore, transfer learning uses knowledge from a learned 
task to improve the performance of a related task [12]. 
Transfer learning is needed when there is a limitation of the 
target training data. This could be due to the data being rare, 
expensive to collect and label, and inaccessible [13].

Despite the importance of detecting the DR disease early, 
many challenges threaten the ophthalmologists, radiologists, 
and developers, such as DR diagnosis need well-trained 

physicians. The manual detection of the retina’s abnormali-
ties is time-consuming, inaccurate, and burdened by the 
physician [14]. On the other hand, the developed automated 
systems, which solve the manual detection problems, are 
based on hand-crafted features tools that burden the devel-
opers. These tools are sensitive to noise, contrast, and the 
illumination of the color fundus images, in addition to the 
variety and diversity of the extracted features. The few dif-
ferences between the features that need to be extracted make 
it no easy task. A deep fine-tuned CNNs outperform the 
fully trained CNNs essentially, in a small training dataset 
[15]. Few studies diagnosed the DR grades. As reviewed 
in [5], 73% of the covered conducted studies detected only 
the presence/absence of DR, but just 27% of the studies are 
worked on various DR grades diagnosis [5].

With these problems in mind, we introduce a novel com-
puter-aided diagnosis system (CAD) system based on trans-
fer learning to accurately diagnose healthy and DR grades 
by utilizing color fundus images. The proposed system starts 
with some preprocessing operations. The system removes 
noise and enhances the contrast of the color fundus images. 
Normalization and some transformation processes were used 
to standardize the images sizes and maximize the limited 
datasets and avoid overfitting. In the modeling phase, we 
present a novel hybrid CNN model. The proposed model 
diagnoses the normal and various DR grades without the 
need to use hand-crafted feature extraction/selection and 
segmentation. We made a hybrid model that integrates the 
customized EyeNet model [16] and the fine-tuned DenseNet 
model [17] based on transfer learning. We modified the tra-
ditional EyeNet model to diagnose the normal and four vari-
ous DR grades rather than DR presence/absence. Next, we 
optimized the hyperparameters and combined the custom-
ized EyeNet model with the DenseNet to fulfill the proposed 
E-DenseNet model. The proposed model incubated the accu-
racy of grading the DR cases from four various multi-label 
(ML) standard datasets. Each image in these datasets con-
tains at least two DR lesions. We compared the proposed 
system with others and measured the performance by cal-
culating significant performance metrics. The advantages 
of the two-hybrid models are reducing the complexity and 
ensuring robustness. Besides, it improves the generalization 
and the model inference ability. For reader convenience, 
the used abbreviations in this paper are listed in Table 1. 
The remainder of this paper is organized into five sections. 
Section 2 presents the related work. It discusses the cur-
rent limitations and highlights the main directions and solu-
tions that were included in the proposed system to overcome 
the current shortcomings. Section 3 explains the detailed 
phases and techniques, which were utilized in the proposed 
DL CAD system framework. Section 4 describes the dif-
ferent experiments and findings, which were conducted 
and got. Section 5 introduces the discussion and provides a 
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comparative analytical study among the proposed CAD sys-
tem and other state-of-the-art techniques. Finally, Section 6 
presents a conclusion of our work and findings in addition 
to highlighting our future research directions.

2  Related work

Recently, many researchers have focused their attention on 
diagnosing the various DR grades depending on DL. They 
utilized DL techniques, such as pre-trained CNN models, to 
save the effort of extracting and selecting features as com-
pared to the hand-crafted feature-based and segmentation 
techniques. For example, Khalifa et al. [22] utilized deep 
transfer CNN models to diagnose the grades of DR from 
APTOS 2019 dataset. They applied reflections around the 
x, y, and x & y axes, respectively, as data augmentation. 
They compared AlexNet, Residential Energy Services Net-
work (Res-Net18), SqueezeNet, Very Deep Convolutional 
Networks (VGG16, VGG19), and GoogleNet. The authors 
proved that DenseNet achieved high accuracy (ACC). They 
utilized only one dataset and ignored noise removal. The 
authors made data augmentation to enlarge the dataset to 
avoid overfitting.

To emphasize the importance of the preprocessing step, 
Patil et al. [25] recorded the ACC of the CNN model with 
preprocessing and without. They found that the ACC of 
the CNN model with preprocessing outperforms the other 
method. They introduced a customized CNN model by 
hyperparameters tuning to classify the DR grades. Their 
model included five convolution (CONV) layers. Each 
one was followed by a max-pooling (MP) layer. They 
added a flatten layer then two fully connected (FC) layers. 

Unfortunately, the authors achieved less ACC and fell in 
overfitting.

Nazir et  al. [26] combined Fast Region-based CNN 
(FRCNN) and fuzzy k-means (FKM) techniques to segment 
EX, HM, MA, OD, and optic cup (OC). The last two signs 
are segmented for detecting Glaucoma and DR. The authors 
utilized FRCNN to detect and localize the disease using a 
bounding box. In contrast, they used FKM to extract the 
region of interest (ROIs) from the localized regions. Their 
work’s main advantage is that they segmented some indica-
tors or signs of DR, maculopathy, and Glaucoma. However, 
they did not detect the BV abnormalities. BV segmentation 
is essential to detect DR, not only HM, EX, or MA. On the 
other hand, BV, EX, HM, and MA are not only the signs of 
DR, as illustrated in the previous section.

Shah et al. [27] utilized CNN architecture to detect ref-
erable DR. The authors started their framework by differ-
entiating the retinal images from non-retinal ones. After 
that, they applied quality assessment and data augmenta-
tion techniques. Then, they detected the DR stage. Finally, 
they annotate the DR lesion on the color fundus image. 
The authors achieved good results in detecting severity and 
normal classes, but they did not accomplish a reasonable 
classification for mild and moderate grades. Their system 
could not differentiate between the mild and moderate cases, 
especially in the absence of H-EX and S-EX signs.

Eftekhari et al. [20] segmented MA signs from the color 
fundus images using the CNN model. They filtered the 
images by a median filter and made normalization, then 
subtracted the retinal image’s background. They utilized the 
CNN model to classify MA and non-MA pixels. They used 
two CNN models. The first one included three CONV lay-
ers, one MP layer followed each CONV layer, and three FC 

Fig. 1  PDR contains most of DR lesions with different sizes, areas, features, and count on different regions on retina: (a) H-EX and S-EX, (b) 
B-HM and D-HM, (c) retina anatomy and PDR case, (d) NV from OD, and (e) F-HM
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layers. The second model was deeper than the first one as it 
used five CONV layers, one MP layer followed each CONV 
layer, and three FC layers. Although they tried to solve the 
data imbalance issue by making data augmentation, they 
manually employed the utilized network architecture and 
its parameters by trial and error. The way they follow was 
time-consuming and error-prone.

Gurani et al. [21] used a multi-layer perceptron or feedfor-
ward of ANN through backpropagation to detect DR classes 
from color fundus images. Their network layers were CONV, 
MP, Rectified-Linear-Unit (ReLU), dropout (DO), FC, and 
classification using softmax. They used the quadratic kappa 
score (QKS) and sensitivity (SEN) for performance evalua-
tion. They applied their method to the Kaggle dataset.

Islam et al. [19] developed a CNN model to detect the 
early stages of DR by allocating the MA lesion. The authors 

used a multi-layer CNN architecture followed by two FC and 
one output layer. They resized all images to get the same 
radius. Then, they subtracted the local average color. After 
that, the authors clipped the images to remove the bound-
ary effect. They made some data augmentation operations, 
such as rotation, cropping, flipping, and transition. Their 
proposed network architecture composed of 18 layers with 
( 4 × 4 ) kernel size of CONV and MP was ( 3 × 3 ). Two FC 
layers followed each CONV layer. The authors applied the 
ReLU activation function and L2 regularization. They used 
the objective function mean squared error (MSE) and the 
stochastic gradient descent (SGD) optimizer. The author 
applied the binary classification to address healthy and DR 
cases. On the other hand, they applied another binary clas-
sification to differentiate the low grade (mild) and the other 
high grades (moderate and severe). The authors directed 

Table 1  The used abbreviations

ACC Accuracy MA Microaneurysms
AUC Area Under Curve ME Macular Edema
AP Average Pooling MLC Multi-Label Classification
APTOS 2019 Asia Pacific Tele-Ophthalmology Society MLSVM ML support vector machine
B-HM Blot Hemorrhages MP max-pooling
BV Blood Vessels MSE Mean Squared Error
BPs bifurcation points NPDR Non-proliferative DR
CAD Computer-Aided Diagnostic NV Neovascularization
CM confusion matrix OC optic cup
CNN Convolutional Neural Network OCT Optical Coherence Tomography
CONV convolution OCTA OCT Angiography
CLAHE contrast limited adaptive histogram equalization
D-HM Dot Hemorrhages OD Optic Disc
DL Deep Learning ON Optic Nerve
DO dropout PA Padding
DR Diabetic Retinopathy PDR Proliferative DR
DSC Dice Similarity Coefficient PO Pooling
EX Exudates QKS Quadratic Kappa Score
FC fully connected ReLU Rectified-Linear-Unit
F-HM Flame Hemorrhages RESNET Residential Energy Services Network
FKM fuzzy k-means ROC Receiver Operating Characteristic
FN False Negative ROIs region of interest
FOV Field of View S Stride
FP False positive S-EX Soft Exudates
FRCNN Fast Region-based CNN SEN Sensitivity
GANs generative adversarial networks SGD Stochastic Gradient Descent
GAP Global Average Pooling SHAP Shapley Additive exPlanations
GT Ground Truth SPE Specificity
H-EX Hard Exudates TN True Negative
HEBPDS Histogram Equalization for Brightness Preservation Based 

on a Dynamic Stretching Technique
TP True positive

HM Hemorrhages VGG Very Deep Convolutional Networks
IDRiD Indian diabetic retinopathy image dataset VL Venous Loops
Lr Learning Rate VR Venous Reduplication
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their work based on binary classification and ignored the 
ML classification (MLC). It is advisable to utilize the ML 
idea to benefit from the correlation among labels to produce 
new labels. The label correlation can improve the classifica-
tion results.

Maninis et al. [18] extracted OD and BV by CNN. They 
performed two feature map volumes. The first four finer 
stages and the same for the second coarser to segment OD, 
and BV, respectively. They utilized SGD with momentum. 
It is essential to extract the features of BV after removing 
the OD. But the authors did not detect the DR grades or DR 
presence/absence as BV is not enough to detect DR and its 
various grades.

Hagos and Kant [23] utilized Inception-V3 model to 
make a binary classification. They detected only two classes, 
healthy and unhealthy cases. The authors cropped the color 
fundus images and resized them to 300 × 300 . In modeling, 
they operated an SGD optimizer with 5 × 10−4 and cosine 
loss function. Although they made a binary classification, 
they achieved low ACC.

Abdelmaksoud et al. [24] presented a comprehensive 
CAD system for DR grades detection based on ML clas-
sification. They performed some preprocessing operations 
on different fundus image datasets. They then segmented 
the most famous four DR lesions by utilizing a matched 
filter with a first-order Gaussian derivative filter and mor-
phological operations. They segmented EX, HM, BV, MA, 
and bifurcation points (BPs). After that, they extracted the 
GLCM and the lesions areas. The authors depended on the 
hand-crafted methods and classified the DR grades using 
the ML support vector machine (MLSVM) classifier. These 
hand-crafted feature extraction and classification burden 
the developer, especially when applied to high-dimensional 
datasets. Besides, they entered all the normal and DR images 
into the segmentation process. Their system produced five 
segmented images from each normal one. If the dataset 
includes 10 normal images, then at least their system pro-
duced 8 × 5 useless segmenting images of BV, BP, EX, 
MA, and HM, where 8 × 3 of EX, MA, and HM were black 
images. This resulted in some confusion to the ophthalmolo-
gists. On the other hand, it wasted space and memory with 
useless black images.

Tymchenko et al. [28] detected DR from color fundus 
images. They did some augmentation processes, such as 
zoom, horizontal and vertical flip, transpose, and rota-
tion. Based on the pre-trained models, the authors made 
an ensemble of three CNNs. They utilized EfficientNet 
B4, EfficientNet B5, and SE-ResNeXt50. The authors used 
Shapley Additive exPlanations (SHAP) in order to ensure 
training the useful features. They used dropout and weight 
decay for regularization. The advantage of their method is 
that it increases generalization and reduces variance. They 
need to calculate SHAP for the whole ensemble, not only 

for a particular network. Moreover, they want more accurate 
hyperparameter optimization.

In addition, Abdelmaksoud et al. [29] combined DL with 
conventional methods for DR grades diagnosis. They opti-
mized the CNN U-Net model for segmenting EX, BV, MA, 
and HM. They extracted more features and utilized more 
various datasets. They also used the MLSVM classifier for 
the final diagnosis. Although they achieved higher perfor-
mance than [24], they needed to increase the performance 
by using DL to deal with most DR lesion features. On the 
other hand, the fundus images’ features have few differ-
ences between each other and are very near to be similar 
to the significant eye contents. So, it is essential to extract 
more DR lesions features, not only the most famous EX, 
BV, HM, and MA. The practical solution is to utilize an 
accurate DL technique to extract more feature maps from 
the entered fundus images without segmenting each lesion 
and extracting some features. Therefore, they developed 
our CAD system based on the proposed hybrid E-DenseNet 
model by utilizing transfer learning to diagnose the health 
and DR cases from various small and large Multi-Label 
(ML) datasets.

Aswathi et al. [30] utilized a pre-trained InceptionV3 on 
ImageNet to detect DR grades. They started their framework 
by enhancing the fundus images by using contrast limited 
adaptive histogram equalization (CLAHE) and Powerlaw 
transformation. They assigned DO to 0.5. They measured 
the performance of each class against the others. The authors 
compared InceptionV3, VGG19, ResNet, NASNet, and 
MobileNet. They found that all models approximately have 
equal ACC, but the VGG19 model takes a short running 
time. The main limitations of their work are that the model 
performance decreases with the increase of the number of 
classes or categories. Besides, their framework suggests bet-
ter results in classifying normal and mild, but not much effi-
cient in classifying (moderate, severe) and (normal, severe) 
binary classifications.

Table 2 lists the summary of the current literature that 
was conducted in DR diagnosing from the year 2016 to 
2021. From the previous review, we can conclude the cur-
rent literature’s main limitations in DR grading from color 
fundus images as follows:

– Most studies focused on detecting the presence or 
absence of DR. They ignored detecting the DR grades.

– Many studies utilized small and imbalanced datasets.
– Many studies could not predict the mild grade accurately, 

while the other could not differentiate between mild and 
moderate grades, especially with the absence of H-EX 
and S-EX.

– Some studies ignored preprocessing steps, while the 
noise and contrast affect the classification accuracy.

– Many systems fall with respect to the overfitting.
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To overcome the current literature’s limitations and improve 
the diagnosis performance of detecting healthy and DR 
cases, we produce the CAD system based on the hybrid 
E-DenseNet DL model. Primarily, we preprocessed the 
images. The main goal is to enhance contrasts and remove 
the noise of the entered images. Then, we made some trans-
formation processes to put all images in a standard size and 
increase their number. We resized images to ( 256 × 256 ), 
cropped, rotated, and made color normalization for all 
images of the four utilized ML datasets. Then, in the mode-
ling phase, we customized the traditional EyeNet model [16] 
by optimizing its hyperparameters to diagnose the healthy 
and various DR grades accurately [16]. We combined the 
customized EyeNet model and the DenseNet BC-121 archi-
tecture [17] to produce the E-DenseNet model. We com-
pared the proposed E-DenseNet model with some state-of-
the-art models. In the comparison, we utilized five different 
performance metrics to guarantee the model performance in 
diagnosing the healthy and various DR grades.

3  The proposed CAD system

This work is an extension to our work in [31]. In this section, 
we give a detailed explanation of the proposed framework. 
To diagnose the healthy and different DR grades, we built 
three phases framework. It starts by supplying the preproc-
essing phase with the four datasets, EyePACS [32], Indian 
diabetic retinopathy image dataset (IDRiD) [33], MESSI-
DOR [34], and Asia Pacific Tele-Ophthalmology Society 
(APTOS 2019) [35]. In the preprocessing phase, we care 
about enhancing the images and removing noise. After that, 
we scaled the images to a standard size and made some 
transformation processes, such as cropping, rotation, and 
mirroring. The normalized preprocessed images are fed to 
the customized E-DenseNet model in the modeling phase. 
Finally, we made the validation by training and testing the 
proposed model. Figure 2 shows the proposed CAD system. 
We present below the three phases of the proposed frame-
work in detail.

Fig. 2  The proposed CAD system
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3.1  Preprocessing

We achieved the preprocessing phase by performing differ-
ent steps and utilizing various techniques as follows:

– Filtering and contrast enhancement: This step is criti-
cal in most medical image analysis systems. The medi-
cal images are characterized by various noise, artifacts, 
and insufficient quality that vary from one modality 
to another. Fundus images suffer from illumination, 
low contrast and quality, and noise. In this respect, 
image quality has a large influence on model perfor-
mance. If the contrast of the images is insufficient, 
the extracted features of the processed image will be 
insufficient. The enhancement of images can affirm 
the local or overall characteristics of the images, clear 
the unclear image, assure certain features of interest, 
suppress unnecessary features, and enlarge the differ-
ence between the features of the various objects in 
the images. Moreover, it can improve image quality, 
enhance image interpretation and recognition, fertilize 
information, make images more suitable for human 
visual systems, and reduce the training time [36]. We 
enhanced the contrast and filtered all images by histo-
gram equalization for brightness preservation based on 
a dynamic stretching technique (HEBPDS) and median 
filter, respectively [24].

– Resizing: We resized all of the images to a standard size 
256 × 256.

– Data augmentation: It is crucial in our work to avoid 
overfitting in the utilized DL models. There are different 
transformation techniques, such as geometric, kernel fil-
ters, color space transformation, mixing images, random 
erasing, adversarial training, feature space augmentation, 
neural style transfer, generative adversarial networks 
(GANs) based augmentation, and meta-learning schemes 
[37]. In this phase, we made the data augmentation using 
data transformations, such as cropping, rotation, and flip-
ping. By data augmentation processes, we increased the 
number of images by a factor of 5 times in addition to the 
resized and enhanced whole original images compared 
with the original dataset. 

1. Cropping: It means mixing the width and height 
dimensions by cropping the image’s central patch. 
It cut only the most significant part of the retina and 
remove the black contour and unneeded parts. We 
cropped the entered images to remove noise and 
unnecessary outliers in addition to focus on the 
retina part.

2. Rotation: It means rotating the image right or left 
around an axis between  1o and  359o. We rotated the 
cropped images to  90o,  120o,  180o, and  270o.

3. Flipping: It means overthrowing the image horizon-
tally or vertically.

   The imbalance of the datasets and the limited num-
ber of training images are solved by applying different 
data augmentation techniques. All black images that gave 
only black backgrounds without retina as in the EyePACS 
dataset were removed. Algorithm 1 shows the steps of the 
preprocessing phase.

3.2  Modeling

In this phase, we give an overall definition for transfer 
learning and highlight details about EyeNet [16] and the 
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DenseNet-BC architectures [17]. In addition, we provide the 
pseudo-code of the modeling steps.

3.2.1  Transfer learning

CNN is a type of DL architecture for analyzing data, espe-
cially images. It gives better results in image ML classi-
fication. It consists of three basic layers: CONV, PO, and 
FC [38]. The first and second layers perform feature extrac-
tion and reduction while the third layer maps the final out-
put’s extracted features. The main advantage of using these 
methods is that CNN does not require hand-crafted feature 
extraction. Many CNN models are commonly used. These 
architectures can be categorized into classical and modern 
neural networks (NNs). The classic NNs are like LeNet-5, 
AlexNet, and VGG16. The modern NNs are like Inception, 
ResNet, ResNetXt, and DenseNet [39].

Fine-tuned DL architectures are helpful in medical image 
analysis. They can outperform the fully trained CNNs, espe-
cially in small training set [11]. We give the full definition 
of transfer learning as the following. The pre-trained models 
on a particular task can be applied to other tasks. This is the 
idea of transfer learning. Assume that we define the domain 
by feature space and the probability distribution where D, 
F, and P(F) are for the domain, feature space, and the prob-
ability distribution, respectively.

For the given domain D, the task T is defined by a label 
space Y while the predictive function is pf(.). It is learned 
from the feature vector and label pairs fi, yi where fi ∈ F 
and yi ∈ Y  . Now, D = [F,P(F)] and T = [Y , pf (.)] , but the 
source domain DS = [(fS1, yS1)..., (fSn, ySn)] , where fSi ∈ FS is 
the ith data instance of DS and ySi ∈ YS is the corresponding 
class label for fSi.

In the same way, we can use the same learned task on 
other domain or target domain. Let DT  is defined as the 

(1)F = [f
1
, ..., fn] ∈ F

target domain data and DT = [(fT1, yT1)..., (fTn, yTn)] , where 
fTi ∈ FT is the ith data instance of DT , and yTi ∈ YT is the cor-
responding class label for fTi . Furthermore, the source task 
is notated as TS , the target task as TT , the source predictive 
function as fS(.) , and the target predictive function as fT (.) . 
Now, by given the DS with related TS and DT with the related 
TT . In conclusion, we can define the transfer learning as the 
improvement of the target predictive function fT (.) where 
DS ≠ DT or TS ≠ TT.

3.2.2  The EyeNet model

The main advantage of utilizing the traditional EyeNet 
model is its ability to diagnose the severe or PDR grade 
in imbalanced datasets accurately. Another advantage of 
EyeNet is that its suitability in working on large-scale 
datasets. Besides, its ability to perform the diagnosis 
on local devices. Therefore, the model can be facilely 
used in remote areas. The model architecture includes 
3 CONVs layers with 32 filters in each layer, followed 
by MP with 2 × 2 and ended by a single FC layer with 
size 128. The softmax classifier outputs two nodes (DR, 
normal). The utilized activation function, optimizer, loss 
function, kernel size, stride, DO, batch size are sigmoid, 
Adam, binary cross-entropy, 8 × 8 , 1, 0.2, and 512 with 
30 epochs, respectively. Figure 3 shows the traditional 
EyeNet architecture.

3.2.3  The customized EyeNet model

We modified the traditional EyeNet to output five classes 
instead of only two classes (normal, DR) from ML data-
sets. On the other hand, we enhanced the performance of the 
EyeNet as the model became deeper. Besides, we optimized 
the hyperparameters, such as L regularization, learning rate 
( Lr ), DO, and optimizer. We utilized ReLU activation for 
non-linearity and extracting complex features. Moreover, 

Fig. 3  The traditional EyeNet 
model
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ReLU is more efficient in computations than sigmoid and 
does not vanish gradient. Three CONV layers with a ker-
nel size of 4 × 4 are added. The used parameters are Lr of 
9 × 10−5 , L1 is le − 6 , L2 is le − 5 , pool size is 4 × 4 with 
stride equals 1, DO is 0.5, the optimizer is Adam with 
Lr = 5 × 10−5 , loss function is categorical cross-entropy and 
softmax classifier with 200 epochs. The PO layer manages 
the feature maps dimensions and controls the overfitting. 
DO, L

1
 , and L

2
 also controls the overfitting. Algorithm 2 

shows the steps of the customized EyeNet model.

3.2.4  The DenseNet model

It works like ResNet [39, 40] but it concatenates the output 
of one layer with the incoming feature maps of the previ-
ous one rather than summing them. It connects the layer 

output with the following one after some transformation 
operations, such as CONV, PO, BN, and ReLU activation. 
The main features of the DenseNet models are the follow-
ing: (1) The network is narrow and easier, (2) It uses few 
filters and requires fewer parameters, in addition to the 
efficiency of used parameters, (3) It lessens the redundant 
feature maps and saves the memory space, (4) DenseNet 
helps the final classifier to make its decision on all feature 
maps in the network [17], and (5) All layers can easily 
access their preceding layers. Therefore, it helps in reus-
ing the information from the previously calculated feature 
maps easily.

The different types of DenseNets are DenseNets-B, 
DenseNets-C, and DenseNets-BC. DenseNets-B are just 
regular DenseNets. They decrease the feature map size by 
getting merits of CONV layer with filter 1 × 1 before CONV 
layer with filter 3 × 3 . They improve the efficiency of the 
computations. DenseNets-C are considered little incremental 
step to DenseNets-B [41]. Figure 4 presents the DenseNet 
architecture.

Let xL is the output of the Lth layers, TL(xL) the nonlin-
ear transformation processes, such as batch normalization, 
ReLU activation, and CONV layer with filter 3 × 3 which are 
done to the output of the previous layer xL−1 . In concatenat-
ing all the features maps through the feedforward way, the 
output of the xL is defined by Eq. 2.

The layer between each dense block is called the transition 
layer that performs CONV and average pooling (AP). Each 
TL(XL) for each layer produces feature maps K, and the input 
feature map is K

0
 , which is determined by the number of 

channels of the input image. On the other hand, K is called 
the growth rate of the network. So, it should be minimized to 
a small integer. Therefore, the layer Lth = K × (L − 1) + k

0
 . 

In order to reduce the input feature maps, the bottleneck 

(2)xL = TL([xL−1, xL−2, xL−3,… ., x
0
])

Fig. 4  The DenseNet model
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layer is added. It is represented by adding CONV layer with 
filter 1 × 1 in the TL processes before each CONV layer with 
filter 3 × 3 , such as (BN, ReLU, and CONV layer with filter 
1 × 1 ) then (BN, ReLU, and CONV layer with filter 3 × 3 ). 
This layer improves computation efficiency. The model, in 
this case, is called DenseNet-B. This model can reduce four 
times K. On the other side, to reduce the generated features 
maps from the transition layer to improve the compactness, 
the compression factor � is used as follows:

– If the dense block contains features maps m, then the 
transition layer produces �m where 0 < 𝜃 ≤ 1.

– If � = 1 , then the transition layer produces m without any 
changing.

– If 𝜃 < 1 then the model is called DenseNet-C. The model 
becomes DenseNet-BC [17, 39].

– If both the bottleneck and transition layers with 
𝜃 < 1 are used. We conclude that the DenseNet-BC 
model reduces the generated features maps from 
the bottleneck and transition layers. Therefore, it 
is more efficient than DenseNet-B and DenseNet-
C

3.2.5  The proposed E‑DenseNet model

Figure  5 shows the proposed E-DenseNet architec-
ture. We applied dense block based on the fine-tuning 
DenseNet-BC 121, while 121 denotes the model depth. 
Then, we added three CONV layers from the custom-
ized EyeNet. After that, we insert global average pooling 
(GAP), which does not need any parameters to process 
and prevent overfitting. Finally, FC outputs five healthy 
and DR grades. The parameters that were optimized 
here were, such as optimizer Adam with Lr = 10−4 and 
decay = 1e − 6 , loss function was categorical cross-
entropy, activation function was ReLU, and softmax 
classifier. We utilized regularization L

2
= 10−4 with 100 

epochs, and DO = 0.5 . By utilizing the L
2
 regularization, 

DO, and data augmentation, we can avoid overfitting. 

Algorithm  3 shows the pseudo-code of the proposed 
E-denseNet model.

4  Experimental results

This section gives a detailed demonstration of the four 
utilized ML datasets, which are APTOS 2019, MESSI-
DOR, EyePACS, and IDRID. After that, we present the 
detailed experiments and the final proposed CAD sys-
tem results based on the proposed E-DenseNet model 
due to five performance measures. On the other side, 
we compared the proposed system with other models. 
The utilized datasets description is shown in Table 3. 
Table 4 shows the class distributions on the four used 
datasets from class 0: normal to class 4: PDR.

Fig. 5  The proposed 
E-DenseNet model
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4.1  Dataset description

– EyePACS dataset [32]: It is a large set of retina images 
with high-resolution. These images were captured under 
various imaging conditions, such as various camera 
types and settings with different sizes and appearances. 
Images are captured from different people for paired 
(right and left) eyes. Clinicians have rated DR in each 
image on a scale of 0 or normal to 4 or PDR cases. 
However, there are many black images contained in this 
dataset. All images were stored in JPEG format.

– APTOS 2019 dataset [35]: It includes about 18590 color 
fundus images. They are separated into 3662 images for 
training, 1928 images for validation, and 13000 images 
for testing. The JPG is the extension of all images. The 
ground truth (GT) of the dataset is two CSV grading files 
for training and testing.

– MESSIDOR dataset [34]: The color fundus images 
were captured in three different sizes, which are 
1440 × 960 with 8 bits color plane. It includes 1200 
images.

– IDRiD dataset [33]: It contains 516 fundus images, 
which were captured for the DR grading. They are in 
JPEG format. The images are split into 413 images for 
training and 103 images for testing sets. They have a 
large resolution of 4288 × 2848 . All images were cap-
tured by the same digital fundus camera, which is 
AKowa VX-10 alpha with 500 FOV. The camera was 
centered near the macula.

4.2  The Performance Measures

We utilized five different performance measures, which 
are ACC, SEN, SPE, DSC, and QKS. ACC is the ratio of 

the correct predictions to the total number of the input 
samples. Of course, ACC works well if the numbers of 
samples belonging to each class are equal. Therefore, we 
utilized DSC, which is essential in imbalanced dataset 
evaluation. To define the equations of the aforementioned 
performance measures, we first define their arguments, 
which are true positive (TP), true negative (TN), false 
positive (FP), and false negative (FN). TP is the cases 
that are predicted true, and their actual output is also 
true. TN is the cases that are predicted false, and their 
actual output is also false. FP is the cases that are pre-
dicted true, and their actual output is false. Finally, FN 
is the cases that are predicted false, and their actual out-
put is true. Each argument is determined for each class 
against the rest of the classes. We mean that TP, TN, FP, 
and FN are evaluated for each category of classes sepa-
rately. For example, we constructed CM including true 
labels versus predicted labels. The values are reported for 
class 0/class 1, class 0/class 2, class 0/class 3, and class 
0/class 4, and so on for classes 1, 2, 3, and 4, as will be 
illustrated next.

DSC determines how many samples are classified cor-
rectly. SEN asks about how many DR cases are correctly 
predicted.

On the contrary, SPE asks about how many normal 
cases are correctly predicted [42]. Finally, QKS is 
a measure of the agreement between two raters (the 
human scores and the prediction scores). These raters 
determine which category some samples belong to. 
The two raters either agree in their rating or disagree 
by subtracting the agreement according to chance. 
QKS falls between -1 (which means a complete disa-
greement between the raters) and 1 (which means a 
complete agreement between the raters). ACC, SEN, 

Table 3  The main specifications of the four utilized benchmark datasets

Dataset Images Camera Resolution Format GT Experts Classes

APTOS 2019 [35] 18590 different cameras with various FOV from 474 × 358 
to 3388 × 2588

JPG Yes: grading CSV many 5

IDRiD [33] 597 AKowa VX-10 alpha with 50o FOV 4288 × 2848 JPG Yes: grading CSV unknown 5
EyePACS [32] 35,126 different cameras with various FOV 1440 × 960 jpeg Yes: grading CSV many 5
MESSIDOR [34] 1200 Topcon TRC NW6 with 450 FOV 1440 × 960 TIFF Yes: grading CSV 3 4

Table 4  Classes of the utilized 
datasets: 0 = Normal, 1 = 
mild, 2 = moderate, 3 = severe 
NPDR, and 4 = PDR

Dataset 0 1 2 3 4 Train Valid

EyePACS 25810 2443 5292 873 708 34126 1000
MESSIDOR 32 13 11 − 44 80 20
IDRiD 134 20 136 74 49 330 83
APTOS 2019 1805 370 999 193 295 2929 733
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SPE, DSC, and QKS performance measures matrices 
can be calculated from Eqs. 3–7.

To calculate QKS, suppose pa is the ratio of observations in 
agreement, pe is the ratio in agreement due to chance. The 
relationship between SEN, SPE, and QKS is defined with 
details in [43]. For the relation between SEN and QKS, SEN 
is linearly increased as QKS increases. On the other hand, 
SPE linearly increases also as QKS increases.

(3)ACC =
TP + TN

TP + TN + FP + FN

(4)SEN =
TP

TP + FN

(5)SPE =
TN

TN + FP

(6)DSC =
2 × TP

2 × TP + FP + FN

(7)QKS =
pa − pe

1 − pe

4.3  The results

We implemented the proposed framework by using python 
3.7 and cloud computing “Google Colab”. This work was 
implemented on TensorFlow 2.4. Also, for the preprocessing 
steps, we utilized the open-source Python library OpenCV. 
For classification, we utilized DL Python open-source 
Library (Tf) Learn. We ran our experiments on a core i5/2.4 
GHz machine. It had 8GB RAM and an NVIDIA VGA card 
with 1GB VRAM.

Table 5 shows the hyperparameters optimization experi-
ments of the EyeNet model on the EyePACS dataset. We 
combined the customized EyeNet with the DenseNet-BC 
121 to accurately diagnose the normal and the DR grades 
from different color fundus images. The regularization L1 
and L2 in addition to DO and AP avoid the overfitting.

From Table 5, we can notice that the customized EyeNet 
model with the aforementioned hyperparameters achieved 
95.5%, 95%, and 90.1 for ACC, DSC, and QKS, respectively. 
We applied the customized EyeNet model on the other three 
datasets.

In addition, we present the results of applying the pro-
posed CAD system based on the E-DenseNet model and 
others, such as the customized EyeNet, ResNet50 [40], 

Table 5  The customized EyeNet 
hyperparameters to diagnose the 
DR grades on EyePACS dataset

Optimizer Parameters Epochs ACC (%) DSC (%) QKS

Adam Lr = 0.01 20 67.56 76.60 0.578
Adam Lr = 0.01 50 66.40 78.33 0.615
Adam Lr = 0.01 75 68.03 75 0.55
Adam Lr = 0.01 100 67.75 72 0.52
SGD Lr = le − 3 100 64.35 66.60 0.458
RmsProp Lr = le − 4 100 70.12 71.6 0.532
Adagrad Lr = le − 4 100 62.50 75 0.56
Adam Lr = 0.01 120 66.20 68.33 0.47
Adam Lr = 0.001 150 71.00 76.60 0.594
Adam Lr = 0.001 175 71.40 80 0.646
Adam Lr = 0.0001 50 74.50 81.60 0.681
Adam Lr = 2 × 10−4 50 70.70 78.30 0.621
Adam Lr = 0.001 100 74 83 0.704
Adam Lr = 0.001 150 70 75 0.58
Adam Lr = 5 × 10−5 200 76 83.30 0.713
Adam Lr = 7 × 10−5 200 78.80 83.30 0.719
Adam Lr = 9 × 10−5 200 79.50 85 0.745
Adam �

1
= 0.2 , �

2
= 0.2 , � = 1e − 08 , 

decay = 0.01,Lr = 10−4
200 70 73 0.55

Adam decay = le − 6 , Lr = 10−5 200 95.5 95 90.1
Adamax � = (0.9, 0.999), � = 1e − 08 , Lr = 0.002 10 65.2 62 30
Adadelta � = 0.9, � = 1e − 06,Lr = 0.001 100 74 68 20
Adagrad � = 1e − 10,Lr = 0.001 50 66 73 15.7
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Inception V3 [44], VGG19 [45] on the four benchmark ML 
datasets. On the other hand, we experimented E-DenseNet-
BC with depths of 169, 121, and 201 by the customized 
pre-trained weights and the pre-trained ImageNet weights.

In APTOS 2019 dataset, the customized EyeNet model 
achieved 75.7%, 74.9%, and 0.609 for ACC, DSC, and QKS, 
respectively.

From Table 6, we observe that the proposed E-denseNet 
BC-121 with the pre-trained customized weights model 
achieved higher ACC, DSC, and QKS. It ranked the first 
order, while the same model with 201 depth using the Ima-
geNet weights came in the second order. The proposed 
model with 169 depth with both customized and ImageNet 
weights came in the third order. The customized EyeNet 
came in the fourth order with a difference of 6%, 18%, 9%, 
6.9%, and 0.11 for ACC, SEN, SPE, DSC, and QKS, respec-
tively. VGG19 came in the fifth order and ResNet50 in the 
sixth order. Finally, Inception V3 came in the last order. 
There was no agreement between the raters. E-DenseNet 
BC-169 with the pre-trained ImageNet and customized 
weights were very near each other. They were still greater 
than E-DenseNet BC-121 architecture with the custom-
ized pre-trained weights in SPE while lower in SEN than 
E-DenseNet BC-121. For the calculation time comparison, 
we can observe that the InceptionV3 model takes a long time 
followed by ResNet50, then VGG19 with a difference of 
three minutes (m) more than the customized EyeNet model. 
The calculation time is 38m, 27m, 17m, and 14m, respec-
tively. On the other hand, the E-DenseNet models take 10m, 
7m, 5.2m, 4m, and 3m for E-DenseNet BC-201-ImageNet, 
E-DenseNet BC-169, E-DenseNet BC-169-ImageNet, 
E-DenseNet BC-121, and E-DenseNet BC-121-ImageNet, 
respectively. Figure 6 shows the receiver operating charac-
teristic (ROC) curves of the four DR grades in addition to 
the training and validation ACC and loss on APTOS 2019 
dataset. We can notice that the system achieved a higher 
ROC curve area in PDR grade, severe NPDR grade followed 
by moderate grade, and a less ROC curve area in mild grade. 
The proposed system achieved 94%, 89%, 83%, and 61%, 
respectively.

From Table  7, we predestine that the proposed 
E-DenseNet BC-121 with the pre-trained customized 
weights achieved 96.8% for ACC, 98.3% for SEN, 98.33% 
for DSC and 0.97 for QKS. However, it achieves less 
SPE. The customized EyeNet came in the second order. It 
achieved 95.5%, 95.7%, 95%, and 0.90 for ACC, SEN, DSC, 
and QKS, respectively. The E-DenseNet BC-201-ImageNet 
ranked the third order, then, E-DenseNet BC-121-Ima-
geNet followed by E-DenseNet BC-169 and E-DenseNet 
BC-169-ImageNet model. VGG19 model achieved higher 
ACC than ResNet50 by 3.1% difference, but ResNet50 was 
higher than VGG19 in DSC and QKS. It achieved 86.7% and 
0.78, respectively. Inception-V3 model achieved less ACC, 
DSC, and QKS than ResNet50 by about 6.6%, 4.7%, 0.13, 
respectively. Although Inception V3 achieved higher DSC 
than VGG19 by 1.4%, VGG19 increased ACC and QKS by 
10.3% and 0.04 from that war achieved by Inception V3, 
respectively.

For the calculation time comparison, we can observe 
that the InceptionV3 model still takes a long time, followed 
by VGG19, ResNet50, then, customized EyeNet model. 
The calculation time is 55m, 45m, 43m, and 22m, respec-
tively. On the other hand, the E-DenseNet models take 
9m, 8m, 7m, and 5m for E-DenseNet BC-201-ImageNet, 
E-DenseNet BC-169, E-DenseNet BC-169-ImageNet, 
E-DenseNet BC-121, respectively. E-DenseNet BC-121 
is equal to E-DenseNet BC-121-ImageNet in calculation 
time.

Figure 7 shows the ROC curves of the four DR grades in 
addition to the training and validation ACC and loss on the 
IDRiD dataset. We noticed that the AUC under the ROC 
curve for PDR, severe, mild, and moderate NPDR grades 
were 95%, 83%, 58%, and 54%, respectively.

Figure 8 shows the ROC curves of the four DR grades 
in addition to the training and validation ACC and loss 
on the EyePACS dataset. We can notice that the system 
achieved a higher ROC curve area in severe grade, mod-
erate NPDR grade followed by PDR, and achieved less 
ROC curve area in mild grade. The proposed system 
achieved 100%, 90%, 76%, and 63%, respectively.

Table 6  The comparisons 
between the customized EyeNet, 
ResNet50 [40], Inception V3 
[44], VGG19 [45], and the 
proposed E-DenseNet BC with 
different depths and weights 
on APTOS 2019 dataset due to 
ACC, SEN, SPE, DSC, QKS, 
calculation time (T) in minutes 
(m) performance measures

Model ACC (%) SEN (%) SPE (%) DSC (%) QKS T(m)

A customized EyeNet 75.7 76 82 74.9 0.61 14
ResNet50 [40] 67.4 70 52.6 66.2 0.51 27
Inception V3 [44] 49.3 53 51 49.1 0.13 38
VGG19 [45] 72.5 80 68 71 0.55 17
E-DenseNet BC-169-ImageNet 80.2 73.6 92 80 0.70 5.2
E-DenseNet BC-169 80.6 72 90 80.9 0.71 7
E-DenseNet BC-201-ImageNet 82.2 74.6 92.3 82 0.73 10
E-DenseNet BC-121-ImageNet 72 75 48.4 71.54 0.58 3
E-DenseNet BC-121 84 94 73 83.7 0.75 4
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Figure 9 shows the ROC curves of the normal and the 
three DR grades in addition to the training and valida-
tion ACC and loss on the MESSIDOR dataset. We can 
notice that the system achieved a higher ROC curve area 

in PDR, and mild NPDR grades. It achieved 93%, and 86% 
respectively.

Table 8 shows the comparison between the nine mod-
els on the MESSIDOR dataset. We can notice that the 

Fig. 6  The ROC curves areas of the DR grades and the training and 
validation ACC and loss on APTOS 2019 dataset: (a) the ROC curve 
of the mild grade, (b) the ROC curve of the moderate grade, (c) the 

ROC curve of the severe NPDR grade, (d) the ROC curve of the PDR 
grade, (e) the training and validation ACC, and (f) the training and 
validation loss
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proposed E-DenseNet BC-121 architecture model achieved 
higher ACC, SEN, SPE, DSC and QKS than other mod-
els. It achieved 91.6%, 95%, 95.1%, and 0.92, respectively. 
E-DenseNet BC-121-ImageNet came in the second order, 
then, E-DenseNet BC-169 followed by A customized 
EyeNet. E-DenseNet BC-201-ImageNet ranked the fifth 
order. In this dataset, it was the first time to notice the big 
difference between E-DenseNet BC-169 with pre-trained 
customized weights and the same architecture with the pre-
trained ImageNet weights. E-DenseNet BC-169-ImageNet 
was very near to Inception V3 [44], ResNet50 [40], and 
VGG19 [45]. On the other hand, the comparison of the cal-
culation time shows that the E-DenseNet models take less 
time than the other models. E-DenseNet BC-169-ImageNet, 
E-DenseNet BC-201-ImageNet, and E-DenseNet BC-169 
are equal in the calculation time of 4m. E-DenseNet BC-
121-ImageNet and E-DenseNet BC-121-ImageNet are also 
equal. Their calculation time is 2m. On the contrary, the 
InceptionV3 model takes a long time, about 50m, followed 
by ResNet50 that takes 33m. After that VGG19 model takes 
about 28m, and lastly, the customized EyeNet model takes 
15m.

Table 9 shows the comparison between the nine mod-
els on the IDRiD dataset. We can notice that the pro-
posed E-DenseNet BC-121 architecture model achieved 
higher ACC, SEN, SPE, DSC, and QKS than other 
models. It achieved 93%, 96.7%, 72%, 96%, and 0.94 
respectively. E-DenseNet BC-169-ImageNet came in 
the second order, then E-DenseNet BC-121-ImageNet. 
E-DenseNet BC-201-ImageNet and E-DenseNet BC-169 
were in the fourth and fifth ranks. The customized 
EyeNet model came in the sixth order with a differ-
ence of 20%, 10.2%, and 0.26 in ACC, DSC, and QKS, 
respectively. The difference was very high between 
the proposed E-denseNet BC-121 and the customized 
EyeNet. This proved that it was very necessary to cus-
tomize the traditional EyeNet, but it was not enough 
to utilize it in the prediction. Therefore, it was good to 
make a hybrid model from the customized EyeNet and 

the DenseNet BC architecture with 121 depth by using 
the pre-trained customized weights. The SPE of this 
dataset was not good enough, but we noticed the big 
difference between the proposed model and the other 
models when we made the comparison. In this respect, 
we observed that the VGG19 [45] came in the seventh 
order, followed by the InceptionV3 [44]. Finally, we 
noticed that ResNet50 [40] model came in the last 
order as it gave the worst results. For the calculation 
time, InceptionV3, ResNet50, VGG19, and the custom-
ized EyeNet models take 27.5m, 23.5m, 17.05m, and 
16.4m, respectively. On the other hand, the E-DenseNet 
models take 7m, 6m, 4m, 3m, and 3m for E-DenseNet 
BC-201-ImageNet, E-DenseNet BC-169-ImageNet, 
E-DenseNet BC-169, E-DenseNet BC-121-ImageNet, 
and E-DenseNet BC-121, respectively.

From Table 10, we can notice that the normal images 
that correctly predicted are 319 images, which equal about 
88.4%. The mild cases that are correctly predicted are 45 
images, which equal about 60.8%. The moderate cases that 
are correctly predicted are 165 images, which equal about 
82.5%. The severe NPDR cases that are correctly predicted 
are 35 images, which equal about 89.7%. Finally, the PDR 
cases that are correctly predicted are 55 images, which equal 
about 93.2%.

From Table 11, we can notice that the normal images 
that correctly predicted are 272 images that equal about 
99.2%. The mild cases that are correctly predicted are 170 
images that equal about 92.3%. The moderate cases that 
are correctly predicted are 157 images that equal about 
95.7%. The severe NPDR cases that are correctly predicted 
are 192 images that equal 100%. Finally, the PDR cases 
that are correctly predicted are 170 images that equal 
about 91.3%.

From Table 12, we can notice that the normal images 
that correctly predicted in MESSIDOR dataset are 
6 images that equal about 85.7%. The mild cases that 
are correctly predicted are two images that equal about 
66.7%. The moderate cases that are correctly predicted 

Table 7  The comparisons 
between the customized EyeNet, 
ResNet50 [40], Inception 
V3 [44], VGG19 [45], the 
proposed E-DenseNet BC with 
different depths and weights 
on EyePACS dataset due to 
ACC, SEN, SPE, DSC, QKS, 
calculation time (T) in minutes 
(m) performance measures

Model ACC (%) SEN (%) SPE (%) DSC (%) QKS T(m)

A customized EyeNet 95.5 95.7 73 95 0.90 22
ResNet50 [40] 79.2 83 53 86.7 0.78 43
Inception V3 [44] 72.6 76.7 61 82 0.65 55
VGG19 [45] 82.3 87 49 80.6 0.69 45
E-DenseNet BC-169 86 90 55 93.3 0.89 8
E-DenseNet BC-169-ImageNet 83 87 61 91.6 0.86 7
E-DenseNet BC-201-ImageNet 90.6 94.3 53 95 0.92 9
E-DenseNet BC-121-ImageNet 88.1 93 68 93 0.89 5
E-DenseNet BC-121 96.8 98.3 72 98.3 0.97 5
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are four images that equal about 100%. The severe NPDR 
cases that are correctly predicted are six images that equal 
100%.

From Table 11, we can notice that the normal images 
that correctly predicted are 27 images that equal 100%. 
The mild cases that are correctly predicted are 3 images 

Fig. 7  The four ROC curves of the four DR grades and the training 
and validation ACC and loss on IDRiD dataset: (a) the ROC curve 
of the mild grade, (b) the ROC curve of the moderate grade, (c) the 

ROC curve of the severe NPDR grade, (d) the ROC curve of the PDR 
grade, (e) the training and validation ACC, and (f) the training and 
validation loss
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that equal about 75%. The moderate cases that are cor-
rectly predicted are 24 images that equal about 88.8%. 
The severe NPDR cases that are correctly predicted are 

14 images that equal 93.3%. Finally, the PDR cases that 
are correctly predicted are 9 images that equal about 
90%.

Fig. 8  The four ROC curves of the four DR grades and the training 
and validation ACC and loss on EyePACS dataset: (a) the ROC curve 
of the mild grade, (b) the ROC curve of the moderate grade, (c) the 

ROC curve of the severe NPDR grade, (d) the ROC curve of the PDR 
grade, (e) the training and validation ACC, and (f) the training and 
validation loss
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5  Discussion

In this section, we provide a comparison between the 
proposed E-DenseNet system and other methods that are 

conducted in the literature. The proposed system achieved 
the best results compared to the others. We observed that 
our proposed system outperforms VGG16, VGG19 [45], 
ResNet50 [40], Inception V3 [44], and the traditional 

Fig. 9  The four ROC curves of the four DR grades and the training 
and validation ACC and loss on MESSIDOR dataset: (a) the ROC 
curve of the normal cases, (b) the ROC curve of the mild grade, 

(c) the ROC curve of the moderate grade, (d) the ROC curve of the 
severe grade, (e) the training and validation ACC, and (f) the training 
and validation loss
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EyeNet [16]. When we customized the traditional EyeNet 
by optimizing the hyperparameters and layers, we found that 
the results need to be increased to achieve the DR grades’ 
satisfied predictions. So, we built the hybrid model to save 

memory and time from one side and benefit small datasets 
from the other side (Table 13).

In 2016, Doshi et al. [46] achieved 0.386 for QKS on 
the EyePACS dataset, which is less than ours by 0.6 on 
the same dataset. In the year 2017, Wang and Yang [47] 

Table 8  The comparisons 
of the customized EyeNet, 
ResNet50 [40], Inception V3 
[44], VGG-19 [45], and the 
proposed E-DenseNet BC with 
different depths and weights 
on MESSIDOR dataset due 
to ACC, SEN, SPE, DSC, 
QKS, and calculation time (T) 
in minutes (m) performance 
measures

Model ACC (%) SEN (%) SPE (%) DSC (%) QKS T (m)

A customized EyeNet 63 62.5 90.8 63 0.48 15
ResNet50 [40] 37.5 38 22 38 0 33
Inception V3 [44] 37.5 38 40 38 0 50
VGG19 [45] 43.7 44 37 44 0 28
E-DenseNet BC-169-ImageNet 38 38 21 37 0.09 4
E-DenseNet BC-169 62.5 63 76 61 0.44 4
E-DenseNet BC-121-ImageNet 69.2 70 90 68.7 0.53 2
E-DenseNet BC-201-ImageNet 50.2 52 80 51.5 0.11 4
E-DenseNet BC-121 91.6 95 58 95.1 0.92 2

Table 9  The comparisons 
between the customized EyeNet, 
ResNet50 [40], Inception V3 
[44], VGG-19 [45], and the 
proposed E-DenseNet BC with 
different depths and weights 
on IDRiD dataset due to ACC, 
SEN, SPE, DSC, QKS, and and 
calculation time (T) in minutes 
(m) performance measures

Model ACC (%) SEN (%) SPE (%) DSC (%) QKS T(m)

A customized EyeNet 45 63 35 44.5 0.24 17.05
ResNet50 [40] 32.5 38 0 32.5 0 23.5
Inception V3 [44] 32.5 40 22 32.5 0 27.5
VGG19 [45] 33 40 22 32.5 0 16.4
E-DenseNet BC-169-ImageNet 66.3 70 49 66 0.53 6
E-DenseNet BC-169 61.4 70 43 60 0.46 4
E-DenseNet BC-121-ImageNet 64.2 61.3 50 63.8 0.49 3
E-DenseNet BC-201-ImageNet 62.2 61 55 61.1 0.48 7
E-DenseNet BC-121 93 96.7 72 96 0.94 3

Table 10  CM on the APTOS 2019 dataset

Normal Mild Moderate Severe NPDR PDR

Normal 319 13 11 10 8
Mild 6 45 18 1 4
Moderate 6 14 165 10 5
Severe NPDR 0 1 3 35 0
PDR 2 1 1 0 55

Table 11  CM on the EyePACS dataset

Predicted
True Normal Mild Moderate Severe NPDR PDR

Normal 272 1 1 0 0
Mild 10 170 0 4 0
Moderate 4 3 157 0 0
Severe NPDR 0 0 0 192 0
PDR 2 8 6 0 170

Table 12  CM on the MESSIDOR dataset

Normal Mild Moderate PDR

Normal 6 1 0 0
mild 0 2 1 0
moderate 0 0 4 0
Severe NPDR 0 0 0 6

Table 13  CM on the IDRiD dataset

Predicted
True Normal Mild Moderate Severe NPDR PDR

Normal 27 0 0 0 0
Mild 1 3 0 0 0
Moderate 2 0 24 1 0
Severe NPDR 0 0 1 14 0
PDR 0 0 1 0 9
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achieved 0.85 for QKS. In 2018, Pan et al. [48] achieved 
78.4% ACC on EyePACS by ResNet18 to detect DR 
grades, but our proposed system achieved 96.8%, 98.3%, 
and 0.97 for ACC, DSC, and QKS. On the other hand, in 
the year 2018, Islam et al. [19] achieved 85.1% for QKS, 
which is less than ours by 12%. In 2019, Hagos and Kant 
[23] achieved 90.9% for ACC. They classified only two 
classes(healthy/unhealthy) cases on 2500 colored fundus 
images of the KAGGLE dataset without using data aug-
mentation. Khalifa et al. [22] achieved 97.7% for training 
ACC on APTOS 2019 dataset using DenseNet. Still, they 
achieved 99.4% for training ACC and 84% for validation 
ACC, and 81.7% for testing ACC on the same dataset. We 
achieved 0.75 for QKS. In the year 2020, the challenges 
are increased. A lot of literature, such as Shah et al. [27] 
achieved 0.95 for kappa, but it is achieved only for the 
DR severity detection on the MESSIDOR dataset. Patil 
et al. [25] achieved 89.1% for ACC. Vora and Shrestha [49] 
achieved 76% for average ACC in binary classification to 
detect only the presence/absence of DR without diagnos-
ing the various DR grades on EyePACS. Tymchenko et al. 
[28] achieved 99% for SEN and SPE, and 0.92 for QKS for 
binary classification on APTOS 2019 dataset. Gadekallu 
et al. [50] achieved 97% for ACC in DR binary classifica-
tion. The authors concluded that their method might not 
give the same performance implemented on the low dimen-
sional datasets as it may fall into overfitting. In this respect, 
we put utilized data augmentation. Finally, in the year 
2021, Aswathi et al. [30] achieved 78% for ACC to detect 
DR grades on MESSIDOR dataset. We achieved 91.6% 
for ACC on the same dataset. Amalia et al.[51] achieved 
90% for ACC on the MESSIDOR dataset by combining the 
CNN and long short-term memory (LSTM). The authors 
performed binary classification, while our system provides 
diagnosing of the healthy and four DR grades.

From Table 14, we can observe that the proposed system 
based on E-DenseNet model achieved 91.35%, 96%, 69%, 
93.3%, 0.90, 3.5m for averages of ACC, SEN, SPE, DSC, 
QKS, and T(m), respectively. On the other hand, Fig. 10 rep-
resents the average results of applying the proposed system 
on the four datasets (IDRiD, MESSIDOR, EyePACS, and 
APTOS 2019). Figure 11 represents the average results of 
applying the proposed system on the aforementioned datasets 
due to the calculation time. The average calculation time is 
3.5m.

From Table 14, we can observe that SPE is lower than 
SEN in all datasets that is returns to some causes such as:

– The similarity of classes. Most DR lesions (EX, MA, 
HM, VB, CWS, NV, and others) take the same color, 

Table 14  The proposed system 
results on the four datasets due 
to ACC, SEN, SPE, DSC, QKS, 
and T(m) performance measures

Dataset ACC % SEN % SPE % DSC % QKS T (m)

IDRiD 93 96.7 72 96 0.94 3
MESSIDOR 91.6 95 58 95.1 0.91 2
EyePACS 96.8 98.3 72 98.3 0.97 5
APTOS 2019 84 94 74 87 0.8 4
Average 91.35 96 69 93.3 0.90 3.5

Fig. 10  The averages of ACC, SEN, SPE, DSC, and QKS of the pro-
posed CAD system on the four benchmark datasets APTOS 2019, 
EyePACS, IDRiD, and MESSIDOR

Fig. 11  The averages of calculation time (T) in minutes (m) of the 
proposed CAD system on the four benchmark datasets APTOS 2019, 
EyePACS, IDRiD, and MESSIDOR
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shape, and other features of the fundamental human eye 
contents (OD, fovea, and BV).

– The illuminations, poor quality, light shadow, noise, blur-
ring, focusing, and exposure, and artifacts may be viewed 
as abnormal signs in the color fundus image. These fac-
tors affect the training procedures and the model per-
formance. Therefore, we utilized the preprocessing pro-
cesses to reduce the influence.

– There are many features of the color fundus images, 
while the difference between these features is very few.

– When wanting to train the model with very high-resolu-
tion fundus images, for small lesions to be easier detected 
accurately. However, the computational complexity, as 
well as the (vanishing and exploding) gradient problem 
of CNNs, prevents this.

– The correct classification of the mild DR cases depends 
on extracting subtle features from these high-resolution 
images. The misclassification was more common for mild 
DR than the other classes. The details of mild cases are 
harder to identify because their size and number are very 
small and little (about 1% of the image).

– Dataset imbalance.

From the previous demonstration, there are some misclassi-
fied images because of the camera malfunction. For exam-
ple, in the EyePACS dataset, total black images are 1050, 
1475, 1557, 10194, 10698, and 10924 for left and right eyes. 
White lines are found in 1061, 1499, 10029, and 10567 for 
left and right eyes. High black shadow is found in images 
number 10131 for the left eye. A big orange blot area is 
found in image number 10440 for the left eye. Image number 
10147 for the left eye is predicted as FP. In the MESSIDOR 
dataset, image number 58065 is covered by shadow. There-
fore, it is predicted as severe while it is normal. In addition, 
image number 61804 is normal but is detected as moderate 
because of the strong yellow spots that are similar to hard 
EX. For the same reasons, IDRiD_010 image is moder-
ate and detected as PDR. In APTOS 2019, image number 
002c21358ce6 is normal and predicted as severe NPDR.

In experiments, we tried to start by the three CONV 
layers of the traditional EyeNet model before DenseNet, 
but the model reported less performance. Therefore, we 
applied the DenseNet to provide us with deeper con-
catenated features and then extended the extraction by 
using the three optimized CONV layers of the EyeNet 
model.

The advantages of the proposed CAD system based on 
E-DenseNet are as follows. First, it has a comprehensive style 
to diagnose the various DR grades. Second, it is more accurate 
than others. Third, it can be applied to different real small/
large ML datasets with different settings. Fourth, it saves time, 
memory, and effort by using the pre-trained DenseNet model 
and DL rather than hand-crafted techniques. Finally, it is one 

of the few studies conducted on the DR grading field. In con-
trast, most of the conducted research in analyzing DR disease 
only detects the presence/absence of DR or segment its lesions 
[5]. This approach’s limitations are that the accuracy needs 
to be increased somewhat, and the AUC value of the normal 
class is only up to 35% except in the MESSIDOR dataset, 
which AUC of normal cases is 67%.

6  Conclusion

DR is a very progressive disease, which if not detected early 
will result in blindness suddenly. Therefore, continuous audit-
ing and screening are needed. But, fundus images are like 
other medical scans. They suffer from noise, artifacts, low 
contrast, and poor quality. Besides, they have few differences 
between their features, which leads to hard differentiation 
between the different characteristics. Moreover, the variety 
of the lesions that accumulate the DR grades. Thus, the hand-
crafted methods to diagnose the different DR grades burden 
the developer. In contrast, the deep learning techniques solve 
feature extraction problems, such as CNN models that achieve 
high success in multi-label classification problem-solving. 
We integrated two deep learning CNN models, EyeNet and 
DenseNet models, to produce the E-DenseNet model to accu-
rately diagnose the healthy and DR cases from different color 
fundus images from four different benchmark datasets. In the 
future, we want to contribute new ideas and focus on apply-
ing the proposed system to other imaging modalities, such 
as OCTA. These imaging modalities can collect different 
diseases features simultaneously, such as DR, glaucoma, and 
age-related macular degeneration.
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