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Summary

Adequate representations of protein evolution should consider how the acceptance of mutations 

depends on the sequence context in which they arise. However, epistatic interactions among sites 

in a protein result in time and spatial substitution rate heterogeneity beyond the capabilities of 

current models. Here, we exploit parallels between amino acid substitutions and chemical reaction 

kinetics to develop an improved theory of protein evolution. We constructed a mechanistic 

framework for modelling amino acid substitution rates that employs the formalisms of statistical 

mechanics, with population genetics principles underlying the analysis. Theoretical analyses and 

computer simulations of proteins under purifying selection for thermodynamic stability show that 

substitution rates and the stabilisation of resident amino acids (the ‘evolutionary Stokes shift’) can 

be predicted from biophysics and the effect of sequence entropy alone. Furthermore, we 

demonstrate that substitutions predominantly occur when epistatic interactions result in near 

neutrality; substitution rates are determined by how often epistasis results in such nearly neutral 

conditions. This theory provides a general framework for modelling protein sequence change 

under purifying selection, potentially explains patterns of convergence and mutation rates in real 

proteins that are incompatible with previous models, and provides a better null model for the 

detection of adaptive changes.
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Introduction

Proteins continuously change as mutations are fixed or eliminated depending on their effect 

on the protein’s structure, stability, functionality, and intermolecular interactions. These 

holistic properties result from interactions between amino acids throughout the protein, 

inducing epistatic (non-additive) fitness interactions among mutations, and leading to long-

term coevolution such that a substitution at one site alters the relative probability of 

substitutions at other sites1–9. Because of the complexity of epistatic interactions, it has 

been difficult to identify what determines substitution rates at a site, characterise how these 

rates depend on the rest of the sequence, and understand how they vary with time and 

location in the protein.

Standard empirical substitution rate models neglect epistatic interactions and the resultant 

rate heterogeneity beyond simple scaling factors10–12. Although these models have had a 

major impact throughout the life sciences, they cannot estimate the effect of epistatic 

interactions on structural stability, function or fitness, predict the role of compensatory 

substitutions in protein evolution13,14, predict which of the 10% of deleterious mutations in 

humans are harmless in other species15, or accurately represent the rate and time 

dependence of convergence and homoplasy14. More complicated empirical models have 

been developed16–21, but their utility is limited by the large number of required parameters. 

More mechanistic substitution models that represent the underlying process of molecular 

evolution hold the promise of increased accuracies using fewer biologically meaningful 

parameters, but require a deeper understanding of the process of sequence change, especially 

the characteristics and effects of epistasis.

We previously demonstrated that computational simulations of protein evolution, with 

fitness determined by thermodynamic stability, can reproduce many of the puzzling aspects 

of protein evolution including the rate- and time-dependence of convergence14 and the site- 

and time-dependence of substitution rates22. These models exhibit a phenomenon called the 

‘evolutionary Stokes shift’6, the tendency for newly resident amino acids at a site to be 

stabilised, or ‘entrenched’8 over evolutionary time following a substitution. We also 

observed a tendency for the new amino acid to be pre-stabilised prior to the substitution by 

chance or contingency8,9. The pre- and post-adjustments of the protein to the new amino 

acid occur without corresponding changes in fitness, distinguishing this process from paired 

compensatory substitutions where the constituent substitutions have non-zero fitness 

effects23. Despite debate about the relationship between structural stability and fitness and 

the frequency of large reversals in amino acid propensities, the role of epistasis in protein 

evolution has become increasingly recognised1–9.

To understand how selection for structural stability determines amino acid substitution rates, 

and what drives the pre- and post-substitution structural stabilisations in the absence of 

changes in fitness, we developed a mechanistic framework employing the formalisms of 

statistical mechanics. We find that average substitution rates in proteins selected for 

structural stability can be explained by the evolutionary equivalent of transition state theory, 

with fluctuations in amino acid preferences due to epistatic interactions representing an 

essential aspect of the substitution process. Just as entropy plays a preeminent role in 
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statistical mechanics, the sequence entropy of folding, defined as the log of the number of 

possible sequences that fold with the evolutionarily determined degree of structural stability, 

is central to evolutionary mechanics. We test our mathematical approximations and 

predictions using computational simulations of protein evolution. We demonstrate that 

average substitution rates at a site can be predicted from site-specific structural stability 

distributions estimated in the absence of selection on that site and the dependence of the 

sequence entropy of folding on overall protein stability. The effect of other global factors 

such as effective population size, protein structure designability, and selective strength are 

combined in the entropy term and do not need to be considered or estimated separately.

Results

Site-specific stabilities and relative substitution rates

To develop a mechanical theory of protein evolution, we considered how purifying selection 

for stability determines site-specific substitution rates. To make the material more accessible, 

detailed equations underlying our results are in the Methods section; however, we endeavor 

here to provide an outline of the main concepts. Although real proteins are under selection 

for a range of properties, this specific form of selective pressure is well defined, theoretically 

tractable, and a common constraint. Analysing selection on stability also provides a ‘null 

model’ to examine other forms of selection. The stability Φ(X) of protein sequence X was 

defined as the negative of the free energy of folding, with more positive values indicating 

greater stability. The fitness m(X) = m(Φ(X)) was set equal to the probability that the 

encoded protein would be folded at thermodynamic equilibrium (Equation (1))6,24,25. 

Thus, increases in stability correspond to increases in fitness.

Consider site k, occupied by amino acid α. The protein stability can be partitioned into two 

contributions Φ(X) = ϕk, α(X∌ k) + Φk,Bath(X∌ k). The first term includes interactions 

between the amino acid α resident at site k and those resident at other sites; in statistical 

mechanics, this term represents the system of interest. The second sequence-dependent term 

includes the much larger set of interactions amongst amino acids at all sites not including k, 

and corresponds to the thermodynamic bath in statistical mechanics. Both terms include 

interactions in the folded and unfolded states. For simplicity, we use Φ, ϕα and ΦBath to 

represent Φ(X), ϕk,α(X∌ k) and Φk,Bath(X∌ k), respectively.

In the low mutation rate regime, the instantaneous substitution rate from resident amino acid 

α to new amino acid β is equal to the corresponding mutation rate times the fixation 

probability, which in our model depends on the impact of the two amino acids on the 

protein’s stability. We note that real and simulated proteins usually evolve within a narrow 

range of stabilities around an average value Φ̄24,26–29 where selection and the genetic drift 

of large numbers of slightly destabilising mutations balance30,31, dependent on factors such 

as temperature24 and effective population size. Under this condition, the change in fitness 

Δmα→β, and therefore the probability of fixation, is determined by the difference between 

ϕα and ϕβ.

Values of ϕα and ϕβ will vary as substitutions occur in the rest of the protein, which will be 

affected by the amino acid occupying position k6. We assume other sites are sufficiently 
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numerous and change sufficiently rapidly that the protein is always equilibrated with the 

amino acid occupying site k. The joint probability distribution of ϕα and ϕβ when site k is 

occupied by α can be described by the stationary distribution ρ(ϕα, ϕβ|α). The average 

substitution rate from α to β is completely determined by the mutation rate and this resident-

dependent joint probability distribution. Because of its importance, we focus on 

characterising this joint distribution.

With our approximations, all sequences with a specific ρ(ϕα, ϕβ|α) have identical fitnesses. 

ρ(ϕα, ϕβ|α) is then proportional to the number of sequences with specific values of ϕα and 

ϕβ; in analogy to Boltzmann’s description of entropy as the log of the number of 

microscopic configurations corresponding to a specified macroscopic state, we characterise 

the log of the number of sequences corresponding to specific values of ϕα, ϕβ, xk = α and Φ̄ 

as the ‘sequence entropy of folding’ S(ϕα, ϕβ|α). This quantity is notably different from the 

‘sequence entropy’ used to represent site-specific variability in a set of aligned sequences32.

To explore and evaluate our theoretical analysis, we simulated the evolution of a 300-residue 

protein with fitness equal to the probability of the protein being folded at thermodynamic 

equilibrium, matching our theoretical model. These simulations are not meant to make 

specific quantitative predictions, but rather to predict general characteristics of evolutionary 

behaviour for proteins that require a native confirmation to carry out their biological 

function, and have demonstrated their ability to reproduce fundamental aspects of protein 

evolution6,24,25. By using a simple pair-contact model of protein thermodynamics, we were 

able to perform replicate simulations corresponding to about 5 billion years given typical 

eukaryotic substitution rates.

We grouped sites with similar substitution patterns into four different site classes, with class 

1 the most exposed and 4 the most buried. Figs. 1a-d illustrate ρℂ(ϕGlu, ϕLys|Glu) and 

ρℂ(ϕGlu, ϕLys|Lys), the joint probability distribution of site-specific contributions of glutamic 

acid and lysine when one or the other is resident, for sites belonging to site class ℂ = 

{1,2,3,4}. Corresponding distributions of population-scaled selective coefficients are shown 

in Supplementary Fig. S2. The distributions are broad, consistent with earlier results 

demonstrating that selective pressures vary over a wide range as substitutions occur 

elsewhere in the protein6. Exposed, rapidly evolving sites with few selective constraints (site 

class 1, Fig. 1a) have more compact distributions with smaller variances compared to buried, 

slowly evolving sites (site class 4, Fig. 1d). The potential contribution of an amino acid to 

protein stability is usually greater when that amino acid is resident at a site, a reflection of 

the ‘evolutionary Stokes shift’6. The amount of this increase appears correlated with the 

variance in ϕα.

The bivariate distributions are surprisingly independent of population size (Figs. 1e-h, S2), 

but highly dependent on amino acid pair (Figs. 1i-l, S2). Distributions for physicochemically 

similar amino acids (e.g., glutamic acid versus aspartic acid, Fig. 1I) are highly correlated, 

while those for dissimilar amino acids (e.g., glutamic acid versus alanine, Fig. 1J) are anti-

correlated. A non-resident amino acid is generally stabilised if the distributions are 

correlated (e.g. ϕGlu is positive when aspartic acid is present), but destabilised if the 

distributions are anti-correlated (e.g. ϕGlu is negative when alanine is present).
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Predicting relative substitution rates

Substitution rates should be predictable from knowledge of ρ(ϕα, ϕβ|α). To test this, we 

modelled ρ(ϕα, ϕβ|α) as a bivariate normal distributions and numerically integrated over 

these distributions to calculate substitution rates33–35 (Equation (2)). There is extremely 

good agreement between expected substitution rates and those obtained by counting 

substitutions that occurred during simulations, as shown in Figs. 2a-c. The population size 

independence of the predicted (Figs. 2a-c) and observed substitution rates (Fig. S1b) 

matches previous observations36, and arises from our use of a concave-down fitness 

function (Equation 1)37.

We next investigated whether substitution rate calculations could be simplified by 

considering the dynamics of the substitution process. As described above, the values of ϕα 
and ϕβ vary as the rest of the protein sequence changes. A part of the evolutionary trajectory 

before and after a glutamic acid to lysine substitution is shown in Fig. 3. Prior to substitution 

when glutamic acid is resident, glutamic acid is generally stabilised by the evolutionary 

Stokes shift, while lysine is slightly destabilised, reflecting the physicochemical differences 

between these two amino acids. The pattern is reversed after the substitution. Strikingly, 

substitutions occur in a narrow region along the diagonal ϕGlu = ϕLys, where substitutions are 

nearly neutral (Figs. 1 and S2). These observations suggest the applicability of transition 

state theory (TST), a method for predicting the rate of chemical reactions38. TST focuses on 

how the energies of the reactants and products vary as the reactants undergo conformational 

fluctuations. The reaction occurs when the reactants are in a ‘transition state’ in which the 

energies of reactant and product are equal. The predicted reaction rate is equal to the 

probability that the reactants are in the transition state, times the conversion rate from 

reactants in the transition state to products.

Adapting this theory, the substitution rate from α to β was estimated from the probability 

that the protein is in the nearly neutral region (the ‘transition state’) times the rate of neutral 

substitution. The width of the neutral zone is approximately  where γ describes γ the 

dependence of the number of sequences on protein stability (ρ(Φ)~eγΦ), which can be 

estimated by the relative numbers of destabilising and stabilising mutations. We obtained a 

closed-form expression for substitution rates (Equation (6)) that produces strikingly accurate 

substitution rate predictions (Fig. 2d-f). Notably, because this calculation considers only 

neutral substitutions, Kimura’s fixation probability formula is no longer needed, greatly 

simplifying the calculations.

The equilibrium distributions of site-specific stabilities and the evolutionary ‘Stokes Shift’

As described above, the rate of amino acid substitutions is determined by ρ(ϕα, ϕβ|α) in the 

region where ϕα ≈ ϕβ. A full mechanistic description requires that we understand how these 

distributions, and therefore the substitution rates, are determined; we approach this goal 

using the principles of statistical mechanics and sequence entropy of folding.

ρ(ϕα, ϕβ|α) reflects the number of sequences corresponding to specified values of ϕα, ϕβ, xk 

= α and Φ̄. We approximate ρ(ϕα, ϕβ|α) by the product of two terms, ρLoc(ϕα, ϕβ) × 
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ρBath(ΦBath = Φ̄ – ϕα). The local term ρLoc(ϕα, ϕβ) represents the fraction of sequences with 

site-specific ϕα and ϕβ, while the second term ρBath(Φ̄ – ϕα) represents the fraction of 

sequences where the bath interactions provide sufficient contributions to the stability so that 

ϕα + ΦBath = Φ̄. We approximated the first ‘absolute’ reference term by performing 

simulations in which a non-interacting amino acid ∅ was fixed at that site and all other sites 

were allowed to evolve under selection, as before. We then calculated the values of ϕα and 

ϕβ that would result if amino acids α and β were substituted for ∅ in the resulting 

sequences. Interactions involving the focal amino acid represent a small fraction of total 

stability contributions, so the second term ρ(ΦBath) was approximated by the distribution of 

protein sequences with total stability Φ, ρ(Φ)~eγΦ.

The product of these distributions suggests that the evolutionary Stokes shift alters the 

average value of ϕα by an amount  where  is the variance in the distribution 

of ρ(ϕα|∅), while the variance itself is unaltered (Equation (7)). We can understand this shift 

by comparing the relative contributions of ϕα and ΦBath to Φ̄. Increasing values of ϕα 
decrease the value of ΦBath necessary to fulfill ϕα + ΦBath = Φ̄. As the number of possible 

sequences increases rapidly with decreasing ΦBath, there is a strong bias towards increased 

values of ϕα. This stabilisation resulting from the large increase in sequence entropy of 

folding with decreasing ΦBath is precisely the evolutionary Stokes shift.

The predicted distributions of ρ(ϕα, ϕβ|α) versus those observed in thermodynamic 

simulations are shown in Figs. 1m-p. Estimated ζα|α values match observations surprisingly 

well given the approximations made (Fig. 4a-c). As predicted, the entropic stabilisation is 

approximately linear with , with slope close to the estimated value of γ = 1.26 (kcal 

mol-1)-1 (Fig. 4d-f), confirming the trends evident in Fig. 1. The observed entropic 

stabilisation is smaller than predicted for the largest shifts in the two slowest rate classes, 

involving the charged lysine, arginine, aspartic acid and glutamic acid. Earlier work 

demonstrated that equilibration for the most buried states can be extremely slow6, so 

deviations may result from insufficient time to adjust to the presence of the new amino acid.

In earlier work, we described how the evolutionary Stokes shift results in stabilisation of 

amino acids that are similar to the current resident, and destabilisation of amino acids that 

have large physicochemical differences. The basis of this effect, according to our theory, is 

that the presence of α at the site shifts values of ϕβ by ζβ|α = γ φαβ|∅ σα|∅ σβ|∅, where 

φαβ|∅ is the correlation between ϕα and ϕβ in ρ(ϕα, ϕβ|∅); these shifts can be to higher or 

lower values depending on whether the physicochemical properties of the amino acids are 

similar or different (positive or negative φαβ|∅, respectively), increasing or decreasing the 

density of the distribution in the region ϕα ≈ ϕβ and the corresponding substitution rate. 

Substitution rates estimated with the TST approximation (Equation (6)) and site-specific 

stabilities calculated using Equation (7) are remarkably accurate for all four site classes over 

four orders of magnitude (Fig. 2g-i).

Goldstein and Pollock Page 6

Nat Ecol Evol. Author manuscript; available in PMC 2018 April 23.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Discussion

The probability of fixation of an amino acid-altering mutation in proteins selected for 

stability depends on the relative contributions to stability made by the resident (ϕα) and 

mutant amino acid (ϕβ), and the effect of the resulting stability change (ϕβ−ϕα) on 

organismal fitness33–35. The situation is complicated by epistatic interactions connecting 

the mutating site to other sites throughout the protein, resulting in fluctuations in these 

contributions and corresponding fixation probabilities as substitutions occur throughout the 

protein. Surprisingly, this apparent complication leads to a simplification; substitutions that 

occur when stability contributions are similar dominate the evolutionary process, and the 

nearly neutral zone can be modeled using transition state theory. This represents a 

fundamental change in understanding of substitution rates; the focus shifts from estimating 

the fitness change resulting from a substitution to calculating the fraction of the time that 

substitution is nearly neutral. Fluctuations in stability contributions cannot be ignored 

because they create the conditions under which substitutions occur.

The frequency of nearly neutral conditions depends on the joint distribution of ϕα and ϕβ. 

Amino acids with similar physicochemical properties make correlated contributions to 

stability, increasing the probability of near-neutrality resulting in higher rates of conservative 

change, a phenomenon first described by Fisher39. The multiplicity of interactions at buried 

sites increase the variances of ϕα and ϕβ, reducing the probability of near neutrality and thus 

the substitution rate (Figs. 1a-1d), consistent with observed slower substitution rates 

observed at internal sites.

The joint stability distribution is affected by the tendency for the resident amino acid (and 

similar amino acids) to be stabilised by substitutions at other sites, the ‘evolutionary Stokes 

shift’6. This shift can be understood purely in terms of biophysics and the sequence entropy 

of folding; increases in the stabilising contributions of resident amino acids reduce the 

amount of stabilisation required from interactions amongst the remaining amino acids (the 

‘bath’). Because more sequences are able to fulfill this reduced stabilisation requirement, the 

contributions of the bath to the sequence entropy of folding is larger, and higher affinities for 

the resident amino acid are entropically favoured. Although describable as an adjustment, 

this evolutionary mechanism can be fully reversible, as are the simulations described here, 

with similar processes of moving into and away from the neutral zone6. These processes, 

called ‘contingency’ and ‘entrenchment’ by Plotkin and colleagues8, are mirrors of each 

other, so that a tape of the dissipation (entrenchment) process, played backwards, would 

have the same statistical properties as the pre-adaptation (contingency) process played 

forwards.

The predicted average substitution rates for sites under purifying selection for stability can 

be estimated solely based on the mutation rate and the joint distribution of ϕα and ϕβ, with 

no adjustable parameters. Thus, when we show that, as long as the assumptions and 

approximations of the analysis remain valid, ρ(ϕα, ϕβ) depends only on details of the protein 

structure and function (which affect ρ(ϕα|∅) and γ), we can infer that Kimura’s formula is 

not required to predict and explain substitution rates amongst amino acids. Although 

evolutionary mechanics theory fully incorporates population genetics theory, substitution 
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rates and the evolutionary Stokes shift do not depend on population size (Figure 2, Figure 4), 

despite its centrality to Kimura’s formulation.

Here, we addressed only the theoretical predictions and simulations near equilibrium. Some 

discrepancies between the predicted and observed Stokes shifts for charged residues in 

buried sites, however, may be explained by inadequate time for equilibration. Individual sites 

at specific time points may be constrained by conserved neighbouring sites as well as 

conserved structural features. Such effects may influence the time-dependent probability of 

back and subsequent substitutions, an important topic for investigation. The interaction of 

fluctuating selection and fluctuating population size also requires further investigation.

We have considered purifying selection with fixed population size and fitness based purely 

on folding stability. We and others have previously shown that evolutionary simulations 

based on protein thermodynamics produce patterns of epistasis, convergence, and 

entrenchment that are qualitatively similar to patterns in real proteins4–7,14,40; we now 

have a clear explanation why these patterns may have been produced, from statistical 

mechanics considerations. Selection for other properties involving contributions from 

multiple amino acid sites would define their own nearly neutral landscape. We argue that 

other forms of constant selection such as interactions with other proteins, ligand binding, 

catalysis, and avoiding proteolysis and aggregation should restrict the number of acceptable 

sequences but not otherwise affect the theory or calculations. Other selective pressures may 

force occasionally adaptive, non-neutral substitutions when external pressures change. An 

evolutionary Stokes shift would still occur following such a forced substitution, but the 

process would no longer be reversible6. The simple theory described here provides an 

improved conceptual basis to understand what would happen in the absence of further 

complications, and should allow more confident prediction of non-structural functional 

constraints, adaptation, and fluctuating population sizes when they do occur. Analogous 

models can be applied to other forms of selection acting at higher levels such as 

development41.

The work described here establishes a theory of evolutionary mechanics, and simulations 

demonstrate that this theory can be used to predict substitution rates from the basic 

properties of how amino acids interact. Assuming that most proteins under constant selective 

pressures are dominated by thermodynamic (or similar) processes, we provide a mechanistic 

explanation for the known predominance of nearly neutral evolution and a better 

understanding of what happens during purifying selection. As with statistical mechanics and 

thermodynamics, the theory of evolutionary mechanics allows us to connect the microscopic 

events of evolutionary mechanics (mutation rates, fitness differences, and fixation 

probabilities) with the macroscopic events of molecular evolution (relative rates of 

substitution, and distributions of fluctuating rates across sequences and over time).

Methods

Simulations of protein evolution

The methods used to simulate protein evolution have been described previously6,24,25. Our 

simulations modelled proteins evolving under selection for a common requirement for 
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globular proteins, stability of the native conformation. The free energy G(X, r) of a protein 

sequence X = {x1, x2, x3 … xn} in conformation r was calculated by summing the pairwise 

energies of amino acids in contact in that conformation, using the contact potentials derived 

by Miyazawa and Jernigan42. The free energy of folding ΔGFolding(X) was computed by 

first determining the free energy of the sequence in a pre-chosen native state, the 

conformation of the 300-residue purple acid phosphatase, PDB 1QHW43. The energies of 

unfolded states were assumed to follow a Gaussian distribution; the parameters 

characterising this distribution were estimated by calculating the free energies of the 

sequence in a widely diverse set of 55 different protein structures. The energy of the 

unfolded state was then calculated by assuming a large set (10160) of possible unfolded 

structures with free energies drawn from this distribution. The free energy of folding 

ΔGFolding(X) was calculated as the expected difference between the two, and stability was 

Φ(X) = −ΔGFolding(X). The Malthusian fitness of a sequence m(X) was defined as the 

fraction of that sequence that would be folded to the native state at equilibrium

(1)

where T is temperature in units of energy, 0.6 kcal mol-1.

The simulations implemented a Gillespie algorithm44 representing the evolution of a protein 

in the low mutation rate limit where the monomorphic population is represented by a single 

sequence. Starting from a single randomly chosen nucleotide sequence encoding a 300 

amino-acid protein, we simulated evolution by considering in each step all possible 

nucleotide mutations with rates given by the K80 nucleotide model (κ = 2)45. The fixation 

probability of each mutation was calculated based on the Kimura formula for diploid 

organisms33–35,

(2)

where X and X′ are the sequences before and after the mutation. The total substitution rate 

was set equal to the product of the mutation rate times the fixation probability, summed over 

all possible mutations. At each step, the evolutionary time was advanced by an amount 

chosen from an exponential distribution based on the total substitution rate, and one 

substitution was chosen to be fixed at random with relative probabilities determined by the 

product of the mutation rates times the acceptance probabilities.

Sequence evolution was simulated for a sufficient number of generations such that protein 

stability was roughly constant, representing mutation-selection-drift selection balance. 100 

equilibrated proteins were chosen, and two longer simulations were performed using each 

these equilibrated proteins as initial starting sequences, for a total of 200 simulations. The 

evolution of each lineage was simulated for an evolutionary distance of approximately seven 

Goldstein and Pollock Page 9

Nat Ecol Evol. Author manuscript; available in PMC 2018 April 23.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



amino acid replacements per amino acid position. The sequence and energy were sampled at 

regular time intervals.

Grouping of sites

For ease of analysis, we divided protein sites into four classes with similar substitution rates. 

Substitution matrices were calculated individually for each site; due to the length of 

simulations, we had on average over 1400 substitutions at each site. Sites were then 

clustered based on the off-diagonal elements of the substitution matrices using K-means 

clustering46,47. The resulting clusters were approximately equal in size, and class 

membership strongly depended on how buried or exposed sites were in the native state (as 

indicated by number of contacts). We ranked clusters by surface exposure, where class 1 is 

the most exposed and 4 is the most buried.

Calculating the site-specific contribution to protein stability

The site-specific contribution ϕk,α(X∌ k) of amino acid α at focal site k as a function of the 

amino acids X∌ k at all sites excluding k is equal to Φ{x1, x2, x3 … xk−1, α, xk+1 … xn}, the 

stability when the focal site is occupied by α, minus Φ{x1, x2, x3 … xk−1, ∅, xk+1 … xn}, 

the stability of a reference state when α is replaced by a non-interacting amino acid ∅, with 

the rest of the sequence and thus all other interactions unchanged. The part of the stability 

unaffected by this replacement is represented by the ‘bath’ interactions Φk,Bath(X∌ k) = Φ(X) 

− ϕk,α(X∌ k) so that Φ(X) = ϕk,α (X∌ k) + Φk,Bath (X∌ k).

Determining the change in fitness

Prior to a mutation, when amino acid α is resident, the protein stability is equal to Φ = ϕα + 

ΦBath with corresponding fitness m(Φ), given by Equation 1 (Methods). After a mutation to 

amino acid β, the stability is equal to Φ′ = ϕβ + ΦBath = Φ + ϕβ – ϕα, corresponding to 

fitness m(Φ′) = m(Φ + ϕβ – ϕα), where we have used the fact that ΦBath is unchanged by the 

mutation. The situation is complicated by the non-linear relationship between fitness and 

stability (Equation 1, Methods), but can be greatly simplified by noting that real proteins, as 

well as proteins from this and other evolutionary simulations under purifying selection for 

thermostability, evolve within a narrow range of stability values around an average value 

Φ̄24,26–29; see Supplementary Fig. S1. This narrow stability range occurs where the 

effectiveness of selection for greater stability is balanced by large numbers of slightly 

destabilising mutations fixed by genetic drift30,31. We therefore approximate the protein’s 

stability prior to the mutation as equal to Φ = Φ̄; the resulting change in fitness is then equal 

to Δmα→β = m(Φ̄ + ϕβ – ϕα) – m(Φ̄). The value of Φ̄ depends on factors such as 

temperature24, effective population size (as shown in24 and Fig. S1), and protein structure 

and function, but will be constant as long as these factors are approximately constant. With 

these assumptions, the change in fitness and thereby the probability of fixation of the 

mutation is therefore determined by the difference between the current values of ϕα and ϕβ.

While the total stability value of Φ̄ is a constant, the manner in which this stability is 

distributed amongst the various interactions, and therefore the values of ϕα and ϕβ as well as 

the corresponding substitution rate, will vary as substitutions occur along the rest of the 

protein sequence. The nature of this variation depends on which amino acid occupies 
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position k because that amino acid affects the evolution in the rest of the protein6. In order 

to compute the estimated average substitution rate, we assume that the other sites are 

sufficiently numerous and change sufficiently rapidly that the protein is always fully 

adjusted to the current amino acid at site k. (This assumption is most likely to break down 

following non-conservative substitutions, as discussed below.) The joint probability 

distribution of ϕα and ϕβ given total stability Φ̄ and the occupation of site k by amino acid α 
can then be described by the stationary distribution ρ(ϕα, ϕβ|Φ(X) = Φ̄, xk = α), which we 

simplify to ρ(ϕα, ϕβ|α).

Calculating the substitution rate integrating over distributions of local contributions

The average rate for substitution α → β at site k, Qk,α → β, is equal to the neutral 

substitution rate υα → β times the average probability of fixation, which is a function of the 

stability of the protein before and after the substitution. The standard deviation of observed 

values of protein stabilities Φ, for example 0.71 kcal mol-1 for population size Ne set to 106, 

was small compared with the range of values of ϕk,α(X∌ k), allowing us to represent the 

distribution Φ by its average, Φ ≃ Φ̄ = 9.26 kcal mol-1. We assumed that the stability before 

the substitution was Φ̄ and afterwards was Φ̄ + (ϕk,β(X∌ k) – ϕk,α(X∌ k)). The average 

substitution rate was then estimated as

(3)

where Δm(ϕk,α, ϕk,β) = m (Φ̄ + (ϕk,β, – ϕk,α)) – m(Φ̄) and ρ(ϕk,α, ϕk,β|xk = α) is the joint 

distribution of ϕk,α(X∌ k) and ϕk,β(X∌ k) for the equilibrium distribution of sequences X∌ k 

when α occupies site k, and we use the fixation probabilities assuming small values of 

2NΔm.

Based on observations in Fig. 1, ρ(ϕk,α, ϕk,β|xk = α) was modeled as a bivariate normal 

distribution of the form 

Parameters were calculated directly from evolutionary simulation, and Equation (3) 

integrated numerically. The neutral substitution rate was calculated using the same K80 

nucleotide model (κ = 2)45 as used in the simulation, with all non-nonsense codons 

considered equally likely.

Calculating the substitution rate integrating assuming only neutral substitutions

As observed in Fig. 1, substitutions generally occur in a neutral region in which ΔΦk,α→β = 

ϕk,β(X∌ k) – ϕk,α(X∌ k) ≈ 0, so that

(4)
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This condition is satisfied in a band of width 2ε centred on ϕk,β(X∌ k) – ϕk,α(X∌ k), where ε 
represents a deviation from strict neutrality that is sufficiently close for Equation (4) to be 

sufficiently accurate.

A natural scale for ε was obtained by considering the ‘free fitness’ Γ(Φ) of the protein equal 

to  where S(Φ) is the sequence entropy of folding, equal to the log of 

the number of sequences corresponding to a given total stability Φ48,49. Free fitness is 

analogous to thermodynamic free energy but with temperature T replaced by 4Ne, and 

encompasses contributions from both fitness and sequence entropy to determine the 

distribution of states; evolutionary dynamics moves towards maximising this quantity. As the 

stability represents the sum of many small interactions, we would expect the distribution of 

stabilities to obey the central limit theorem and to resemble a Gaussian distribution. We are, 

however, on the tail of the distribution where the Gaussian is indistinguishable from an 

exponential, with one additional unidentifiable parameter. We instead assume S(Φ) = ln(Ω0 

e−γΦ) where Ω0 is constant. Noting that the system is at equilibrium with  when Φ 
= Φ̄, it can be demonstrated that a good approximation at the mode is

(5)

Thus, γ defines the rate of change of the population-weighted fitness 4Nem(Φ) with 

stability. Alternatively, a change in stability of  corresponds to a unit change in population-

weighted fitness. In our calculations, we equated  the estimation of γ is described 

below. Note that this calculation demonstrates that ε is, surprisingly, independent of effective 

population size Ne. This is a result of the balance between selection and mutational drift at 

equilibrium; for fixed effect of mutational drift, the degree of selection  adjusts to 

changes in effective population size so that their product is constant36,37.

If we assume that ρ(ϕk,α, ϕk,β|xk = α) is broader than ε, and that Equation (4) is satisfied, 

Recalling that the marginal probability density for a multivariate normal distribution is still 

normal, Equation (3) becomes

(6)

where δ(ϕk,α – ϕk,β) is the Dirac delta function.
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For highly similar amino acids the entire distribution of ρ(ϕk,α, ϕk,β|xk = α) may be 

contained in a region significantly narrower than the neutral zone, resulting in an 

overestimation of Qk,α→β > υα→β. For this reason, the estimated rate was capped at the 

neutral rate υα→β.

Estimating ρ(ϕk,α, ϕk,β)

As described in the Results section, we approximate ρ(ϕk,α, ϕk,β|xk = α) as the product of 

two terms, ρLoc(ϕk,α, ϕk,β) × ρBath(Φk,Bath = Φ̄ – ϕk,α), where ρLoc(ϕk,α, ϕk,β) represents the 

fraction of sequences with given values of ϕk,α and ϕk,β independently of how the rest of the 

protein adjusts to the current amino acid resident at site k, while ρBath(Φk,Bath = Φ̄ – ϕk,α), 

represents the fraction of sequences where the bath interactions contribute sufficiently to the 

stability so that ϕk,α + Φk,Bath = Φ̄.

ρLoc(ϕk,α, ϕk,β) was approximated by ρ(ϕk,α, ϕk,β|xk = ∅), the observed distribution 

observed when site k was occupied by a non-interacting amino acid ∅. We assumed that the 

contribution to the stability was small and approximated the distribution of Bath 

contributions with the distribution of total protein stabilities, ρBath(Φk,Bath = Φ̄ – ϕk, α) ≃ 
ρΦ(Φk,Bath = Φ̄ – ϕk, α) ∝ exp (−γ(Φ̄ – ϕk, α)).

Because the number of possible sequences is immense, and because ϕk,α and ϕk,β are the 

result of many interactions, the central limit theorem suggests that ρ(ϕk,α, ϕk,β|xk = ∅) can 

be approximated by a bivariate normal distribution 

 The normalised product of 

ρ(ϕk,α, ϕk,β|xk = ∅) and ρBath(Φk,Bath = Φ̄ – ϕk, α) ∝ exp (−γ(Φ̄ – ϕk, α)) results in an 

estimated shifted bivariate normal distribution 

 with

(7)

Substituting these results into Equation (6) yields
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(8)

Characterising the bath state distribution

As described above, we assume that the number of protein sequences with a given value of 

Φ in the range of interest around Φ = Φ̄ is approximately exponential Ω(Φ)~ e−γΦ. We 

estimated γ from the average change in stability resulting from random mutations, 

〈ρmut(ΔΦ)〉, which is negative due to the greater number of sequences coding for proteins 

with lower stability. This suggests that by correcting for the dependence of Ω on Φ by 

multiplying ρmut(ΔΦ) and eγΔΦ, this bias would disappear. We adjusted γ so that 〈ΔΦeγΔΦ〉 
= 0 where the average was over all possible mutations during the simulations with Ne equal 

to 106, yielding γ = 1.26 (kcal mol-1)-1.

The bath state distribution determines the equilibrium stabilities through Equation (5). 

Substituting Equation (1) into Equation (5) yields . This expression results 

in estimations for Φ̄ of 6.53, 9.26, and 12.05 for Ne equal to 104, 106, and 108, respectively. 

These agree well with the average of the distributions shown in Supplementary Figure S1: 

6.40, 9.15, and 11.90.

We note that under this model, the population scaled fixed load 2Ne(1 – m(Φ̄)) is equal to

(9)

that is, it only depends on the dependence of the sequence entropy on the stability and the 

temperature. For our system, 2Ne(1 – m(Φ̄)) ≈ 0.38.

Data and Code Availability

Data, including structures used, contact potentials, tables of outcomes, and raw program data 

output, is available on Dryad (doi:10.5061/dryad.7b8vb). All simulations and analysis 

software is available on GitHub (https://github.com/EvolutionaryMechanics/Goldstein-

Pollock-2017).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Relative stabilities of amino acid pairs. The stability values of two amino acid residues (Res, 

labelled with standard three-letter abbreviations) are shown on the two axes (ϕ(Res)). In a-l, 

relative local contributions to stability are shown for glutamic acid and lysine in different 

site classes (a-d), or for different population sizes for site class 1 and 3 (e-h), or various 

amino acid pairs in site class 3 (i-l). Points were sampled when the amino acid on the x-axis 

was resident (green), when the amino acid on the y-axis was resident (pink), or during 

transitions between the two (yellow). In m-p, distributions of local contributions to stability 
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in reference state are shown when the non-interacting null amino acid was present (ρ(ϕα, ϕβ|

∅), pink), when the amino acid on the x-axis was present as predicted using Equation (7) 

(ρ̃(ϕα, ϕβ|α), cyan), or as observed (ρ(ϕα, ϕβ|α), green). Grey diagonal lines mark the 

boundaries of regions of near-neutral substitutions. These and all other stability values are in 

kcal mol-1.
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Figure 2. 
Comparison of predicted and observed substitution rates. Predicted rates (x-axis) and 

observed rates (y-axis) are shown for all pairs of amino acids separated by a single base 

change for all sites in the different site classes (Class 1, blue circles; Class 2, pink squares; 

Class 3, black triangles; Class 4, orange diamonds). In a-c: predicted substitution rates 

calculated by integrating over ρ(ϕα, ϕβ|α) for three different population sizes; d-f: Predicted 

substitution rates calculated using transition state theory (Equation (6)), which assumes only 
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near-neutral substitutions occur; g-i: Predicted substitution rates calculated using transition 

state theory with parameters estimated using Equation (7).
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Figure 3. 
Example of a trajectory before and after a substitution from glutamic acid to lysine. 

Stabilities on the x-axis and y-axis are shown as in Figure 1. Local contribution to stability 

when either is resident is shown for before (green) and after the substitution (pink) (green). 

Values during the substitution shown in yellow; beginning and end points are shown as black 

circles. The observed distributions over the simulations when glutamic acid or lysine is 

resident shown as shaded region. Grey diagonal lines mark regions of near-neutral 

substitutions.
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Figure 4. 
Accuracy of site-specific stability and evolutionary Stokes shift predictions. Observed (y-

axis) versus estimated values of the evolutionary Stokes shift (ζα|α, x – axis) are shown in a-

c for all four site rate classes (Class 1, blue circles; Class 2, pink squares; Class 3, black 

triangles; Class 4, orange diamonds), for three different population sizes. The linear 

relationship between the observed evolutionary Stokes shift (y-axis) and the variance in 

amino acid-specific stability contributions in the absence of selection on the site 

 are shown in d-f. The lines shown are theoretical predictions with γ = 1.26. 

Outliers are identified.
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