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Abstract: Artificial intelligence (AI) is assuming an increasingly important and central role in several
medical fields. Its application in endoscopy provides a powerful tool supporting human experiences
in the detection, characterization, and classification of gastrointestinal lesions. Lately, the potential
of AI technology has been emerging in the field of inflammatory bowel disease (IBD), where the
current cornerstone is the treat-to-target strategy. A sensible and specific tool able to overcome human
limitations, such as AI, could represent a great ally and guide precision medicine decisions. Here we
reviewed the available literature on the endoscopic applications of AI in order to properly describe
the current state-of-the-art and identify the research gaps in IBD at the dawn of 2022.

Keywords: inflammatory bowel disease; artificial intelligence; endoscopy; capsule endoscopy;
machine learning

1. Introduction

Crohn’s disease (CD) and ulcerative colitis (UC) are chronic inflammatory bowel
disease (IBD), with increasing incidence all around the world and a great impact on general
well-being, social functioning, and utilization of healthcare resources [1,2]. The diagnosis
of IBD is a daily challenge for physicians, being based on different elements such as clinical
data, biochemical values, radiology, endoscopy, and histology [3]. Among them, endoscopy
represents a cornerstone in the diagnosis and follow-up of CD and UC [4,5].

In the last five years, the concept of endoscopy has evolved from a traditional one
to a new idea based on artificial intelligence (AI). AI is defined as any machine that has
cognitive functions mimicking humans for problem solving or learning [6]. AI has already
been tested in several fields of endoscopy, such as in the detection of Barrett’s esophagus [7]
or the evaluation of adenoma detection rate during colonoscopy [8,9].

Attention has shifted to the potential role of AI in the field of IBD where endoscopic
activity is based on several scores, such as the Mayo endoscopic subscore (MES), the
Ulcerated Colitis Endoscopic Index of Severity (UCEIS), the Crohn’s Disease Endoscopic
Index of Severity (CDEIS), the Lewis score, and the Capsule Endoscopy Crohn’s Disease
Activity Index (CECDAI) [10–14]. The reason for this large number of scores lays in the
need for establishing a strict definition of disease activity, thus reducing the interobserver
variability and having a solid comparative analysis of different patients or studies [15].
In this context AI could be a great step forward in the research of homogeneity and
reproducibility of endoscopic data. This article aims to summarize the literature data on AI
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endoscopic applications in the field of IBD, underlining the strengths and limitations of the
currently available tools at the dawn of 2022.

2. What Is Artificial Intelligence and Its Current Application in Endoscopy?

AI-assisted endoscopy is based on computer algorithms that perform as human brains
do [16]. They react (output) to what they receive as information (input) and what they have
learned when built. The fundamental principle of this technology is “machine learning”
(ML) [17].

There are many different ML methods (Table 1) and one of the most popular is the use
of artificial neural networks (ANN) [18]. ANN is based on multiple interconnected layers
of algorithms, which process data in a specific pattern and feed data so that the system
can be trained to carry out a specific task [19]. Another diffuse ML method is the Support-
vector machine (SVM), which is used for classifying data sets by creating a line or plane to
separate data into distinct classes [20]. An evolution of ML is deep learning (DL): a complex,
multilayer neural network architecture learns representations of data automatically by
transforming the input information into multiple levels of abstractions [21,22]. An evolution
of the simpler ANN is the convolution neural network (CNN), inspired by the response of
human visual cortex neurons to a specific stimulus and being able to convolve the input
and pass its result to the next layer [19,23].

Table 1. Algorithms involved in machine learning process.

Supervised The algorithm is trained by labeling data tagged with the correct answer

Semisupervised The algorithm is trained without marking the training data

Unsupervised The algorithm is structured on a large amount of unlabeled data based on
a small amount of labeled data

Based on this technology, three kinds of tools have been generated to support en-
doscopy in each part of its activity [24–26]:

- Computer-aided detection (CADe), which detects gastrointestinal lesions;
- Computer-aided diagnosis (CADx), which characterizes gastrointestinal lesions;
- Computer-aided monitoring (CADm), which evaluates the procedure and the endo-

scopist, thus improving the quality of endoscopy.

In particular, CADe and CADx are the best developed systems with many experiences
around the world demonstrating their better performance than the human eye [9,27–29];
for example, the GI-Genius Medtronic system reached a sensibility of 99.7% in polyps’
detection as shown by Hassan et al. [27]. The application fields of AI are expanding rapidly
and IBD is the next target of this innovative technology.

3. AI in the Diagnosis of IBD

One of the first applications of AI has been the attempt to facilitate the diagnosis of
IBD and the differential diagnosis between CD and UC. In the model of Mossotto [30],
three supervised ML models were developed utilizing endoscopic data only, histological
only, and combined endoscopic/histological with an accuracy of 71.0%, 76.9%, and 82.7%,
respectively [30]. The model combining endoscopic and histological data was tested on
a statistically independent cohort of 48 pediatric patients from the same clinic, with an
accuracy of about 83.3% in patients’ classification.

Quénéhervé and colleagues [31] tried to design a model to diagnose IBD and establish
differential diagnoses between CD vs. UC. They based their study on confocal laser
endomicroscopy (CLE), which is an adaptation of light microscopy whereby focal laser
illumination is combined with pinhole limited detection to geometrically reject out-of-focus
light [32]. The authors built a score based on 14 functional and morphological parameters
to perform a quantitative analysis of the mucosa called cryptometry and detect a diagnosis
of IBD with a sensitivity and a specificity to near 100%. Moreover, this study reached a
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sensitivity of 92.3% and a specificity of 91.3% in the differential diagnosis between CD
and UC.

Diagnosis of IBD can be a complex and challenging procedure due to its heterogeneous
presentation. It is generally believed that making a correct diagnosis requires information
on the endoscopic and histological features, together with clinical and biochemical data.
AI support may be helpful in the diagnostic process by combining all suggestive features
intelligently.

4. AI in UC, State-of-the-Art

As previously underlined, endoscopy plays a fundamental role in the diagnosis and
assessment of IBD activity [5]. According to this concept, endoscopy should guarantee an
exact staging of the disease and a high level of concordance between different operators.
Indeed, the definition of recurrence or the assessment of remission are cornerstones in the
disease management, thus guiding the next clinical or surgical decisions [33,34].

In the study of Ozawa, the authors designed a CAD system using a CNN and evaluated
its performance in the identification of normal or inflamed mucosa, using a large dataset
of endoscopic images from patients with UC [35]. The performance of this new tool was
valuable, with areas under the receiver operating characteristic curves (AUROCs) of 0.86
and 0.98 in the identification of MES 0 (completely normal mucosa) and MES 0–1 (mucosal
healing state), respectively [35]. In a similar experience from Stidham et al. [36] a CNN
showed an AUROC of 0.96 in distinguishing endoscopic remission (MES = 0 or 1) from
moderate to severe disease (MES = 2 or 3), with a good weighted κ agreement between
the CNN and the adjudicated reference score for identifying exact MES (κ = 0.84; 95% CI,
0.83–0.86). The application of this CNN to the entirety of the colonoscopy videos had high
accuracy in identifying moderate to severe disease with an AUROC of 0.97 [36].

Moreover, Gottlieb and colleagues [37] developed another recurrent neural network
able to predict MES and UCEIS from entire endoscopy videos and not only from images.
The system automatically selected the frame to be analyzed and scores were calculated
on the colon section, showing high agreement with the human central reader score [37].
Similarly, a fully automated video analysis system was developed to assess the grade of
UC activity and predicted MES in 78% of videos (κ = 0.84). In external clinical trial videos,
reviewers agreed on MES in 82.8% of videos (κ = 0.78) [38]. Automated MES grading of
clinical trial videos (often low resolution) correctly distinguished remission (MES = 0 or 1)
vs. active disease (MES = 2 or 3) in 83.7% of videos.

Not only were automated systems able to assess endoscopic activity from still im-
ages [39], but they were also able to predict a binary version of the MES directly analyzing
a raw colonoscopy video, resulting in a high level of accuracy (AUC of 0.94 for MES ≥ 1
and 0.85 for MES ≥ 2 and MES ≥ 3) [40]. Looking forward, it seems that AI can also guide
real-time therapy decisions in patients with UC in clinical remission by helping to stratify
the relapse risk one year after AI-assisted colonoscopy [41].

Other experiences pushed forward the application of AI in the prediction of histology.
Indeed, Takenaka and colleagues [42] designed a deep neural network algorithm, defined
as DNUC, based on more than 40,000 images from colonoscopies and 6000 biopsies of
875 patients prospectively collected. AI system evaluations were matched with the UCEIS
score expressed for each image by three expert endoscopists and with the Geboes score
determined by pathologists [43]. The DNUC revealed an accuracy of 90.9% and 92.9% in
the detection of endoscopic and histological remission, respectively. In addition, Maeda
et al. [44] developed a CADx system to predict persistent histological inflammation using
endocytoscopy in 187 retrospectively collected patients. Endocytoscopy is one of the
most valuable technologies, although it is not widely available in endoscopic departments.
Providing ultra-high-resolution white light images (520x), endocytoscopy allows the so-
called virtual histology or optical biopsy [45]. The results obtained by the CAD algorithm
were compared with the Geboes score defined by five expert pathologists, blinded from
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endoscopist results. The algorithm showed a sensitivity of 74% and a specificity of 97%,
with high level of reproducibility and interobserver agreement (κ value = 1).

Honzawa and colleagues [46] moved forward with the AI-application in trying to
differentiate between MES 0 and MES 1 in patients with UC in clinical remission. The
authors investigated the correlation among the so-called MAGIC score (Mucosal Analysis
of Inflammatory Gravity by i-scan TE-c Image), MES, and histological Geboes score. Inter-
estingly, the MAGIC score, based on the level of mean inflammation derived from all the
pixels, was significantly higher in the MES 1 group than in the MES 0 group (p = 0.0034),
with a significant correlation with histology (p = 0.015).

Similar to the color map of the MAGIC score, a validation study [47] elaborated an
operator-independent, computer-based tool, named Red Density (RD), that determined
disease activity in UC according to a redness map and vascular pattern recognition. The
RD score, which is different from the previous exposed experiences as it is based on pure
physics parameters, significantly correlated with the histological scoring systems (Robarts
Histopathology index, r = 0.74) and with MES and UCEIS endoscopic scores with r = 0.76
and 0.74, respectively. Some weak points of this work are the monocentric experience,
the small population (29 patients), and the analysis being performed only on the single
picture and not on the entire colonic segment. However, this study represents an important
application of AI as testified by the high level of performance. Notably, the algorithm
structure does not require as much information as the CNN system due to the possibility of
sequential modulation of the algorithm during the development.

Finally, a multicenter study in inactive patients with UC (PRognOstiC valuE of rEd
Density in Ulcerative Colitis: PROCEED-UC; NCT04408703) is planned to assess the predic-
tive value of the RD score for sustained clinical remission. It is plausible that the RD score
might be used in the future as the first objective operator-independent endoscopic target in
a treat-to-target strategy in UC. The main characteristics of the studies on endoscopic AI
application in IBD are summarized in Table 2.

Table 2. Most relevant studies on endoscopic AI application in IBD.

Author (Year) Study Design Population Aim Results

Mossotto et al. (2017) Prospective cohort
study 287 paediatric IBD

To develop a ML model
to classify disease

subtypes

Classification accuracy with
supervised ML models of
71.0%, 76.9%, and 82.7%

utilizing endoscopic data only,
histological only, and

combined
endoscopic/histological data,

respectively

Quénéhervé et al.
(2019)

Retrospective
cohort study

23 CD patients, 27
UC patients, and 9

control patients

To test computer-based
analysis of CLE images

and discriminate
healthy subjects vs.

IBD, and UC vs. CD

Sensitivity of 100% and
specificity of 100% in IBD

diagnosis;
sensitivity of 92% and

specificity of 91% in IBD
differential diagnosis

Ozawa et al. (2019) Retrospective
cohort study

26,304 colonoscopy
images from a

cumulative total of
841 UC patients

To test a CNN-based
CAD system in
identification of

endoscopic
inflammation severity

AUROCs of 0.86 and 0.98 to
identify MES 0 and 0–1,

respectively

Stidham et al. (2019) Retrospective
cohort study

16,514 images from
3082 UC patients

To test DL models in
grading endoscopic

severity of UC

AUROCs of 0.96, PPV of 0.87,
sensitivity of 83.0%, specificity
of 96.0%, and NPV of 0.94 in
distinguishing endoscopic
remission from MES 2–3
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Table 2. Cont.

Author (Year) Study Design Population Aim Results

Gottlieb et al. (2021)
Phase II

randomized
controlled study

249 UC patients

To test a recurrent
neural network model

in predicting
MES and UCEIS from
individual full-length

endoscopy videos

Excellent agreement metric
with a QWK of 0.84

for MES and 0.85 for UCEIS

Yao et al. (2021)
Phase II

randomized
controlled study

315 videos from 157
UC patients

To test a fully
automated video

analysis system for
grading endoscopic

disease

Excellent performance with a
sensitivity of 0.90 and

specificity of 0.87;
correct prediction of MES in

78% of videos (k = 0.84)

Bhambhani et al. (2021) Retrospective
cohort study

777 endoscopic
images from 777

UC patients

To test a DL models in
the automated grading
of each individual MES

AUC of 0.89, 0.8, and 0.96 for
classification of MES 1, 2, and

3, respectively;
overall accuracy of 77.2%

Becker et al. (2021) Prospective cohort
study

1672 videos from
1105 UC patients

To test a DL–based
system on raw

endoscopic videos

AUC of 0.84 for MES ≥ 1, 0.85
for MES ≥ 2 and 0.85 for

MES ≥ 3

Maeda et al. (2021) Prospective cohort
study 145 UC patients

To test AI in stratifying
the relapse risk of
patients in clinical

remission

Relapse rate significantly
higher in the AI-active group
than in the AI-healing group

(28.4% vs. 4.9%, p < 0.001)

Takenaka et al. (2020) Prospective cohort
study

40,758 images of
colonoscopies and
6885 biopsy results

from 2012 UC
patients

To test a DNN system
based on endoscopic

images of UC for
predicting endoscopic

and histological
remission

Accuracy of 90.1% and κ

coefficient of 0.798 for
endoscopic remission;

accuracy of 92.9%and κ

coefficient of 0.85 for
histological remission

Maeda et al. (2019) Retrospective
cohort study 187 UC patients

To test a CAD system
in predicting persistent
histologic inflammation

using EC

Sensitivity, specificity, and
accuracy of 74%, 97%, and

91%, respectively; κ =1

Honzawa et al. 2019 Retrospective
cohort study

52 UC patients in
clinical remission

To test a new
endoscopic imaging

system using the iscan
TE-c (MAGIC score) to

quantify mucosal
inflammation in

patients with quiescent
UC

MAGIC score significantly
higher in the

MES 1 than in the MES 0 group
(p = 0.0034);

MAGIC score significantly
correlated with the Geboes

score
(p = 0.015)

Bossuyt et al. (2020) Prospective cohort
study

29 UC patients and
6 controls

To test a RD algorithm
based on channel of the

red-green-blue pixel
values and pattern
recognition from

endoscopic images

Good correlation between RD
and RHI (r = 0.74, p < 0.0001),
MES (r = 0.76, p < 0.0001), and

UCEIS
(r = 0.74, p < 0.0001)

Abbreviations: AUC: area under the curve; AUROC: areas under the receiver operating characteristic curve;
CAD: computer-assisted diagnosis; CD: Crohn’s disease; CLE: confocal laser endomicroscopy; CNN: convolution
neural network; DL: deep learning; DNN: deep neural network; IBD: inflammatory bowel disease; MAGIC:
Mucosal Analysis of Inflammatory Gravity by i-scan TE-c Image; MES: Mayo endoscopic subscore; ML: machine
learning; NPV: negative predictive value; PPV: positive predictive value; QWK: quadratic weighted kappa, RD:
red density; RHI: Robarts Histopathology index; UC: ulcerative colitis, UCEIS: Ulcerative Colitis Endoscopic
Index of Severity.
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5. AI in CD, State-of-the-Art

In the field of CD, AI has been mostly applied on video capsule technology (Table 3),
which has been assuming an important role both in the diagnosis and assessment of mucosa
healing in the small bowel [48]. In the current European Crohn’s and Colitis Organisation
(ECCO) guidelines, patients suspected to have CD but with a negative endoscopy should
undergo a second level diagnostic method such as magnetic resonance imaging (MRI) or
video capsule endoscopy [4]. Moreover, even in cases of normal imaging tests, such as
MRI and clinical signs suspicious of small bowel CD (e.g., elevated calprotectin and/or
unexplained iron deficiency anemia), video capsule endoscopy is indicated to exclude
small bowel involvement [4]. However, the use of video capsules has some limitations,
such as the collection of a huge amount of data and the duration of the analysis [48]. AI
may overcome these barriers by selecting the frame or the part of video needed for the
assessment and cutting off the time for diagnosis, thus requiring a limited amount of data
to store.

Table 3. Most relevant studies on video capsule AI application in CD.

Author (Year) Study Design Population Aim Results

Girgis et al. (2010) Retrospective
cohort study

47 videos from 29
CD, 17 control, 1

celiac patient

To test a system able to
detect inflammation among

the thousands of images
acquired by the WCE

Total accuracy, specificity,
and sensitivity of 87%, 93%,

and 80%, respectively

Kumar et al. (2012) Retrospective
cohort study

47 videos,
30 of which

contained CD
lesions

To test a supervised
classification for CD lesions

and for quantitative
assessment of lesion severity

Good precision (>90% for
lesion detection) and recall

(>90%) for lesions of
varying severity

Charisis et al. (2016) Retrospective
cohort study

800-image database
from 13 CD patients

To test HAF-DLac approach
for automated lesion

detection

Accuracy, sensitivity,
specificity, and precision of
93.8%, 95.2%, 92.4%, and

92.6%, respectively

Klang et al. (2020) Retrospective
cohort study

17,640 CE images
from 49 CD patients

To test a CNN in classifying
images into either normal
mucosa or mucosal ulcers

AUC of 0.99 and accuracy
ranging from 95.4% to

96.7%

Klang et al. (2021) Retrospective
cohort study 27,892 CE images To test a DLN for detecting

CE images of strictures

For classification of
strictures vs. nonstrictures,
average accuracy of 93.5%

(±6.7%)

Barash et al. (2021) Retrospective
cohort study

17,640 CE images
from 49 CD patients

To test a CNN in
automatically grading
images of ulcers and

compare the resulting
algorithm with a consensus

reading

Algorithm accuracy of 0.91
for grade 1 vs. grade 3

ulcers, of 0.78 for grade 2
vs. grade 3, and of 0.62 for

grade 1 vs. grade 2

Majtner et al. (2021) Retrospective
cohort study

7744 images from
38 CD patients

(small bowel 4972,
colon 2772)

To test the ability of a DL
framework to detect lesions

with panenteric capsule
endoscopy

Diagnostic accuracy of
98.5% for small bowel and

98.1% for colon

Ferreira JPS et al. (2021) Retrospective
cohort study 8085 images

To develop and validate a
CNN for ulcer and erosion
detection using panenteric
capsule endoscopy images

Model sensitivity,
specificity, precision, and
accuracy of 90.0%, 96.0%,

97.1%, and 92.4%,
respectively

Abbreviations: AUC: area under the curve; CD: Crohn’s Disease; CE: capsule endoscopy; CNN: convolutional
neural network; DL: deep learning; DLac: differential lacunarity; DLN: deep learning network; HAF: hybrid
adaptive filtering; WCE: wireless capsule endoscopy.
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The first experience was conducted about 10 years ago. Girgis et al. [49] built a
system that identified the inflamed regions after a SVM training, with an accuracy of 87%,
sensitivity of 93%, and specificity of 80%. Two years later, Kumar et al. [50] developed a
similar system with a precision of about 90% in detecting CD lesions. Lately, several studies
have been conducted for the development of systems able to automatically detect ulcers
and/or aphthae and to grade mucosal damage.

A novel filtering process, called hybrid adaptive filtering (HAF), was proposed for
efficient extraction of lesion-related characteristics using wireless capsule endoscopy. This
system was trained on 800 images collected by 13 different patients and offered high
performances in the detection of severe lesions (93.8% of accuracy, 95.2% of sensitivity,
92.4% specificity, and 92.6% of precision) [51]. The group of Klang provided two experiences
in this direction [52,53]. The former showed an AUC of 0.99 with an accuracy ranging from
95.4% to 96.7% in classifying images into either normal mucosa or mucosa with ulcers [52].
The latter exhibited a good accuracy of 93.5% [±6.7%] in classifying strictures vs. non-
strictures [53].

A CNN was trained to detect erosions and ulcers, demonstrating performances com-
parable with the activity of two expert gastroenterologists, with an AUC of 0.96 for the
detection of abnormalities [54]. Interestingly, a consensus reading was used to train another
CNN in automatic grading of images of CD ulcers. The resulting algorithm was tested
against capsule readers, showing high accuracy in classifying severe ulcers (0.91 for grade
1 vs. grade 3 ulcers compared to 0.6 for grade 1 vs. 2) [55].

DL methods for autonomous detection and classification of CD lesions have also
been applied to panenteric capsule endoscopy system that is now available allowing
simultaneous investigation of the small bowel and colon. AI technology has increased the
diagnostic yield and reduced interobserver variability in this integrated procedure [56,57].

Not only did AI show a high level of performance, but also a significantly faster
reading with an average time of 3.5 minutes against 50 minutes for a full video of capsule
endoscopy [52,58].

Some limitations of these works warrant attention. Firstly, they were made on single
images and not on the entire video so that the analysis was not able to provide an overall
evaluation of the validated scores for video capsule (e.g., the Lewis score). Moreover, they
are retrospective cohort studies based on restricted samples of patients.

Nevertheless, all these experiences could give a great impulse to capsule endoscopy in
CD. The inflammation in the proximal bowel is correlated with a worst prognosis and a
higher surgical risk [59], therefore a modern method of analysis with high sensitivity and
specificity is eagerly awaited in clinical practice [60].

6. AI for the Detection of Neoplasms in Long-Standing IBD

Given the increased risk for developing colorectal neoplasia, surveillance colonoscopy
plays an important role in the management of UC [61]. The gold standard method for
dysplasia surveillance is chromoendoscopy, which utilizes indigo carmine or methylene
to better define the superficial gastrointestinal mucosa [62]. New endoscopic imaging
technologies such as virtual chromoendoscopy, autofluorescence imaging, CLE, and en-
docytoscopy are now emerging, but there are only a few reports about the application of
AI-assisted colonoscopy techniques for the early diagnosis of colorectal cancer [5].

The AI capacity has been tested in the detection of colorectal neoplasia (Figure 1) but
not specifically in patients with IBD.

The first experience is a case report of Maeda and colleagues [63] where the Endo-
BRAIN eye system was tested for detecting dysplasia in a patient with long-standing
UC. This system is able to identify colorectal lesions with high accuracy in general pop-
ulation [64], but in this case it proved to support endoscopists in the identification of
UC-associated dysplasia, which is not always easy to detect due to its flat appearance and
unclear boundaries.
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Another example of AI-support in the detection of dysplasia was reported by Fuku-
naga [65]. In this case report, EndoBRAIN system helped endocitoscopy in the detection of
high-grade dysplasia in a patient with long-standing UC who subsequently underwent
an endoscopic submucosal dissection. To note, colitis-associated colorectal cancer may be
generally difficult to diagnose due to consequences of inflammation on mucosal appearance
(Figure 2) and the use of EndoBRAIN could help non-expert endoscopists to identify lesions.
These experiences underline the potential and future role of AI in the colitis-associated
dysplasia and neoplasia detection during IBD surveillance.
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7. Conclusions and Future Perspectives

AI is a cornerstone revolution in endoscopy. In the field of IBD, its primary appli-
cations are providing great results in the diagnosis and staging of the disease. In a field
of medicine where the current mantra is the treat-to-target strategy and where treatment
directions are guided by endoscopic remission, a sensible and specific tool able to over-
come human limitations could represent a great ally. High-performing diagnostic aids
with low variability are useful in the detection and standardization of results and in the
targets’ assessment. Moreover, if mucosal healing could be perceived as a realistic target, a
concept that moves forward and takes to the extreme the previous idea is disease clearance.
Even though a clear definition is still lacking, this objective includes simultaneous clinical,
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endoscopic, and histological remission of disease. It follows that the modern algorithms
presented in the current review could help in the detection of this ambitious goal.

All the reported experiences improved the awareness about AI potential strengths
and limitations. Most were nonrandomized and retrospective with small sample sizes.
In addition, very limited studies were conducted to test AI support in the detection of
dysplasia and neoplasia in patients with IBD. We believe these limitations should be
overcome before AI becomes part of real-life practice.

In the context of AI and big data, a future perspective is the creation of algorithms for
diagnosis and monitoring of IBD based not only on endoscopic, but also on clinical and
histological data in order to have a complete overview of all disease features.
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